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Abstract: - In many state estimation problems, typical probability-based sequential state estimators generate point estimates which, while mathematically optimal, are physically impossible estimates of the system state.  For example, if the state variable of a dynamic system can attain only a discrete set of values, a probability-based estimate of that state variable will probability not attain one of the elements of the discrete set of values.  While, in many problems, this may not greatly affect the overall design of a system in which the estimator is a component, there are many situations in which this result might produce unreliable results, including system instability.  In this paper, a sequential estimator is discussed which generates state estimates for linear, time-invariant discrete-time dynamic systems in which the state is subject to multiple instantaneous linear equality constraints.  That is, at each sample time the state is constrained to lie in a given region of the state space.  For the example above, the point estimate of the state is constrained to attain one of the set of discrete values which the state variable must attain.  It is shown that the solution of this problem, at each time instant, requires only the unconstrained linear sequential estimate at that instant and the set of instantaneous constraints which define the constraint region.  If the linear estimate satisfies the constraints, then it is also the constrained estimate.  If the unconstrained estimate does not satisfy the constraints, then the solution is generated from the solution of a set of static linear equations.
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1   Introduction

In certain classes of state estimation problems, the state of the system not only satisfies a linear difference equation but also, at each sample time, a set of linear algebraic inequality constraint equations.  Typically, both the state and the state measurement have noisy components which must be accommodated by the estimation technique.  Because of the noise, a probability-based estimation method, such as a Kalman Filter, is likely to be used; thus, it is possible that the estimate will not satisfy the algebraic constraints.  For example, if the state variable of a dynamic system can attain only a discrete set of values, a probability-based estimate of that state variable will probably not attain one of the elements of the discrete set of values.  While, in many problems, this may not greatly affect the overall results of a system design in which the estimator is a component, there are also many situations in which this result will produce unrealizable results, including system instability.
    In this paper, an estimator is discussed which generates a sequential estimate of the state of a linear, time-invariant discrete-time dynamic system driven by noise where the state is measured through a noisy linear transformation and where the state of the system, at each sample time, satisfies multiple equality constraints.  That is, at each sample time, the state is constrained to lie in a given subset of the state space defined by the equality constraints.  This estimator is an extension of the work reported in references [1], [2], [3], and [4].  For the example, in which the state variable is constrained to a discrete set of values, and, consequently, the estimate, is constrained to the same set of values, an optimal estimate using a probability-based filter, such as a Kalman filter, is difficult to attain because the hard boundary of the constraint region is not readily amenable to a probabilistic solution.  Thus, in this paper, a standard variational calculus method is used because of the ease with which the constraints can be included in the optimization problem.  The solution of the constrained estimation problem, at each time instant, requires only the unconstrained linear sequential estimate at that instant and the multiple constraints defined at that time.  Obviously, if the optimal unconstrained linear estimate satisfies the constraints, then it is also the optimal constrained estimate.  If the unconstrained estimate does not satisfy the constraints, then the solution can be generated from the solution of a set of static linear equations.
2  Unconstrained Weighted Linear Least Squares Problem
The first step of the estimation process is to develop a sequential version of the weighted linear least squares state estimation problem.  Consider a linear discrete-time system defined as follows.  The state of the system is described by the linear, time-invariant difference equation 
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 is a nonnegative integer representing discrete time.  The state of the system is measured through a noisy linear transformation
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where 
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 is the 
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-dimensional measurement vector and 
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-dimensional and has maximal rank.  Given a sequence of measurements 

, the  weighted linear least squares state estimate is generated by minimizing the sum of the squares of the noises, that is, the performance index is chosen to be


[image: image13.wmf](

)

(

)

(

)

(

)

1

1

0

1

0

1

()()()()

2

1

(1)()(1)()

2

k

k

T

j

k

T

j

J

jjjj

jjjj

+

-

=

-

=

=

--+

+-+-

å

å

zCxRzCx

xAxQxAx

(3)

where 
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 must be chosen from some other criteria.  We denote the unconstrained state estimate, that is, the estimate of the state 
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.  The minimizing values of the states are generated by forming the gradient of 

 with respect to the states and equating it to zero, thus forming the partitioned vector-matrix equation
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where
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Solving for the state estimates generates the partitioned vector-matrix equation
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where 
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Finally, the linear unconstrained estimate 
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It can be shown [1] that Equation (6) can also be written in the form of a linear difference equation
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or
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with the initial condition 
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and
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The matrix 
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 can be calculated from the matrix difference equation: 
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with the initial conditions 
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3   Constrained Weighted Linear Least Squares Problem

The next step is to develop the weighted linear least squares state estimate when the state is constrained by a set of instantaneous linear algebraic equality constraints.  Again the system and measurement are defined by Equations (1) and (2) and the performance index is defined by Equation (3).  In addition, the state vector at time k is constrained by a set of scalar equality constraints
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where 
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 constant scalars.  It is assumed that the constraints are linearly independent.  Note that the number of constraints must be less than the number of states, that is,  
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 they are over constrained.  From the performance index and the set of equality constraints, an augmented performance index, 

, is formed as


[image: image57.wmf](

)

()()

1

'

11

p

T

kk

ii

i

i

JJ

kk

lb

å

-

=

=+

++

dx



(13)

where 
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, is a set of Lagrange multipliers.  Now the state vectors, 

 and the Lagrange multipliers are chosen to minimize the augmented performance index.  The gradient of 

 with respect to these variables is generated and equated to zero, thus forming the set of gradient equations
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Equations (14) and (15) and the constraint equations
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Form the minizing equations for the constrained estimation problem.  The desired optimal constrained state estimate must satisfy Equations (14) - (16) and is denoted 
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that is, if the unconstrained estimate satisfies all of the constraints, then
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If the unconstrained estimate does not satisfy all of the constraints, that is, for at least one 
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In this case, 
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 can be calculated directly from Equations (14), (15), and (16).  Based on this, the estimation technique for the constrained problem is as follows:

(a)  At every time step 
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(c) Solve the set of minimizing equations, Equations (14), (15), and (16).  The solution of this set of equations is 
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4   Solving The Minimizing Equations

Referring back to Equation (4), Equations (14) and (15) can be rewritten as
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where 
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 generates the vector-matrix equation
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where 
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, 

, and 

 are the same as in Equation (5).  Apparently then, the optimal constrained estimate can be written as 
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or, comparing this to Equation (6), it can be written in a much more useful form,
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Thus, at any time k at which the unconstrained estimate is not also the constrained estimate, the constrained estimate, 
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which depends only on the current time.  Equations (19) and (20) represent 
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Noting that
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Equation (19) can be rewritten
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and Equation (20) can be rewritten
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where 
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In a combined vector-matrix form, Equations (20) and (21) can be written
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The solution of this equation is given by


[image: image106.wmf](

)

(

)

(

)

(

)

ˆ

(/)

()

11

()()()()

11111111

ˆ

(/)

11

()()

1111

kk

k

TTT

kkkk

kk

u

TTT

kk

=

--

-

--

-

éù

êú

ëû

éù

æö

êú

ç÷

éù

èø

êú

êú

êú

ëû

êú

ëû

x

λ

IMDDMDDMDDMD

x

β

DMDDDMD


and the state estimate is given by:
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Note that the solution for 
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 and known parameters, including the constants that define the set of equality constraints.

5   Scalar System Example

To illustrate this technique, consider a simple scalar example, in which the system is defined by the scalar difference equation and the scalar measurement equation





where a and c are scalar constants.  The performance index is given by





where the weights in the performance index are both unity.  The linear constraint is
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where d=1.  The unconstrained estimate is generated sequentially by the difference equation
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with the initial condition 
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The variable 
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 can be calculated from the difference equation:
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with the initial conditions 
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The optimal estimate, 
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, then the solution is determined from Equation (23) as:


[image: image122.wmf]ˆ

()()(|)

ˆˆ

(|)(|)

()

ˆ

(|)

ˆ

(|)

u

dmkdmkdxkk

u

xkkxkk

u

dmkd

xkk

u

dd

xkk

b

b

bb

-=

-

=+

=+=

æö

ç÷

èø


that is, the constrained estimate, 
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,  is on the boundary.

6   Conclusions
In this paper, a method for solving a state estimation problem under multiple constraints is presented.  The usual method for solving linear sequential estimation problems is based on probability theory and stochastic processes.  These methods are difficult to apply to problems with hard constraints on the states, thus the method presented herein uses the deterministic weighted linear least squares method.  The first step of the development applies the method of weighted linear least squares to the problem in which both the system and the measurement contain additive noise.  This results in a sequential unconstrained estimate.  Then, based on this unconstrained estimate, a procedure was developed which allows the constrained state estimate to be generated at a specific time point using only the unconstrained estimate at the same time point and the constraint.  The fact that the constrained estimate depends only on the unconstrained estimate at that time is key to the ease with which this technique can be applied.
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