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Abstract: - In this paper a new approach for designing Boolean functions that satisfy the Strict Avalanche 
Criterion (SAC) is presented. The advantage of the suggested approach is the simplicity of its realization and 
the significant greater number of the generated functions compared to the known methods. The formalized 
procedure for construction of nonbalanced and balanced SAC-functions is described in detail; and examples of 
function design are given. 
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1   Introduction 
Recent advancements in information security 
techniques makes the application and further 
development of Boolean functions theory extremely 
important and necessary since it covers a significant 
part of contemporary cryptographic algorithms. 
Development of new cryptographic arrangements for 
information security in computer networks and 
mobile communication systems requires solving for 
some theoretical and engineering problems. These 
problems are associated with the design and 
application of Boolean functions that correspond to 
the total and conditioned entropy maximum criteria 
or, in other words, the balanced functions that satisfy 
the Strict Avalanche Criterion (SAC). 
The class of defined Boolean functions is the basis 
for obtaining so-called one-way functional 
transforms, i.e. those whose inverse transform 
cannot be performed and which are widely adopted 
by modern information technologies. The problem 
of finding the roots of the nonlinear Boolean 
equation system is part of a category of 
mathematical problems that cannot be solved 
analytically. In fact, the only way to find the inverse 
transform is by searching. In the case that these 
equations consist of functions that satisfy the total 
and conditioned entropy criteria, complete searching 
should be performed to solve the inverse transform 
problem. This is an impossible effort in practice due 
to the rather large number of variables. 
In practice, in order to use balanced Boolean 
functions that correspond to the Strict Avalanche 

criterion, some formalized methods of their design 
should be worked out.  
 
2 Principal definitions and properties 

of SAC-functions 
A Boolean function f(x1,…, xn) of n variables is 
defined on 2n possible tuples of their values that 
compose a set Z, which assumes values from the set 
{0,1}. The function satisfies the maximal total 
entropy criterion, i.e. is balanced, if there is equal 
probability that it will take the values of zero or one: 
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A Boolean function f(x1,…, xn) satisfies the 
maximum conditioned entropy criterion, i.e. the 
Strict Avalanche Criterion (SAC), if there is a 50% 
probability that complementing a single input bit it 
results in changing the output bit. 
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Webster and Tavares introduced the notion of the 
Strict Avalanche Criterion for Boolean functions for 
the first time in connection with the study of design 
of S-boxes of DES construction. Since then the 
SAC-function design problem has been vividly 
discussed in relevant literature. For practical use, the 
functions are required to satisfy total and 
conditioned entropy and have a high degree of 



nonlinearity. 
In this case nonlinearity – N(f(x1,…,xn)) of the 
Boolean function f(x1,…,xn) is determined as the 
minimal Hamming’s distance to the linear functions: 
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The characteristics of Boolean function’s 
autocorrelation are closely connected with the SAC 
effect. The Boolean function’s correspondence to the 
SAC, is that its autocorrelation coefficient is equal to 
zero upon the change of a variable. This property is 
of great significance for pseudo-random sequence 
generators. The concept of the SAC criterion may be 
extended in principle over a greater number of 
variables – functions that have a 50% chance that 
their value will change upon inversion of k input 
variables are called PC(k)-functions [2]. 
Correspondingly, such a function has a zero 
correlation coefficient upon inversion of k variables. 
If k = n, a function PC(n) that has a 50% chance it 
will change its output upon the inversion of all the n 
variables is called a bent-function. It was proved [6], 
that the bent–function’s nonlinearity is the 
maximum possible, but in principle it cannot be a 
balanced one. The notion of a bent-function may be 
only defined for even values of n and its nonlinearity 
is equal to: 
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For balanced Boolean functions f(x1,…,xn) of n 
variables the value of nonlinearity N(f) with the 
constraint n>3 has limit superior [6]: 

222)( 12/1 −−≤ −− nnfN  for even n            (5) 

 12/1 22)( −− −≤ nnfN      for odd n 
where х is the maximal integer which is less than 
or equal to х. 
For practical purposes, the SAC-functions that may 
be considered as РС(1)-functions have the widest 
application. Particularities of balanced Boolean 
SAC-functions manifest themselves in specific 
properties of their spectrum [3]. To obtain the 
spectrum F(w1,…,wn) of the Boolean function 
f(x1,…,xn), the direct Walsh transform should be 
performed according to the following formula: 
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The inverse Walsh transform, that is obtaining the 
Boolean function f(x1,…,xn) by its spectrum 
F(w1,…,wn), is achieved through to the formula: 
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The Boolean function f(x1,…,xn) correspondence to 
the SAC-criterion may be determined by its 
spectrum properties F(w1,…,wn): a function 
f(x1,…,xn) is a SAC if and only if its spectrum 
F(w1,…,wn) satisfies the condition: 
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Note that the meaning of the spectrum F(0,…,0) 
equals the number of ones in the truth table of the 
function f(x1,…,xn), i.e. the function f(x1,…,xn) may 
be called balanced if its spectrum on the zero tuple 
F(0,…,0) is equal to 2n-1 . Taking this into account, a 
Boolean function f(x1,…,xn) is balanced and 
corresponds to SAC if its spectrum F(w1,…,wn) 
holds the condition: 
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Thus, if a Boolean function f(x1,…,xn) corresponds 
to the total and conditioned entropy maximum 
criteria, i.e. it is a balanced SAC-function, then the 
sum of its spectrum F(w1,…,wn) squares, which may 
be considered as analogous to the energy spectrum, 
has the maximal value [3]. 
For practical applications of balanced SAC-
functions and, in particular, for pseudorandom 
function generator design [1,4,5], the task of k-th 
order balanced functions synthesis arises. 
A Boolean function f(x1,…,xn) corresponds to the 
Strict Avalanche Criterion of the k-th order (SAC of 
the k-th order) if a Boolean function h(x1,…,xn-k) 
into which f(x1,…,xn) is transformed at fixed values 
(zero or one) of its any k variables also corresponds 
to the Strict Avalanche Criterion. 
 
3   Contemporary State of Balanced 

functions Effective Design 
In practice, the most pressing problem is designing a 
method to automate the synthesis of Boolean 
balanced SAC-functions. Most applications require 
obtaining orthogonal systems of such functions with 
high nonlinearity and from a large number of 
variables (in the order of hundreds). Due to the large 
number of variables, the design methods for 
balanced Boolean functions suitable for practical 
application have to operate with the Algebraic 
Normal Form (ANF) of the functions rather than 
with their truth tables. The latter requires memory 
capacity that is beyond contemporary engineering 
resources available today. 
In practice, the most important quality criteria in the 
design procedures of balanced Boolean SAC-
functions are the following: 



• The amount of allocated computational and 
memory resources in the design process; 

• The number of n variable functions that can be 
designed (‘till now the problem of the total 
number of balanced SAC-functions 
determination for n variables remains open [4]); 

 
Due to the importance placed on the automated 
design of balanced SAC-functions for modern 
information processing, a number of approaches 
have been suggested during the last decade. 
Historically, the first methods for obtaining balanced 
Boolean functions were those suggested by Forre R. 
[3], on the basis of which are laid the properties 
stated above for this class of functions. Analysis of 
formula (9) reveals, that it is possible, in principle, 
to construct all the spectra F(w1,…,wn) for which 
condition (9) is held. All the balanced SAC-
functions may be obtained through the inverse 
Walsh transform of each constructed spectrum 
F(w1,…,wn) using (7). However, it should be stated 
[3] that a real Boolean function f(x1,…,x2) does not 
correspond to each spectrum F(w1,…,wn) that 
satisfies condition (9). In order to decrease the 
number of non-productive inverse transforms (7) 
and to assure high degrees of nonlinearity, it was 
suggested in [3] to somehow find a balanced SAC-
function f(x1,…,xn) and to obtain its spectrum 
F(w1,…,wn) by Walsh transform. It was further 
suggested that the family of the spectra 
F1(w),…,Fh(w), h<2n, for which (9) is held and for 
which the real balanced SAC-functions corresponds, 
should be obtained through alteration of the signs of 
the components F(w1,…,wn) in an arbitrary way on 
all the 2n tuples w1,…,wn . The real balanced SAC-
functions may be obtained by inverse Walsh 
transform. 
From a processing aspect, the Forre method does not 
correspond to the requirements imposed above for 
the design of balanced SAC-functions. This, because 
it operates with a function’s truth tables and the 
spectra’s value tables whose capacity is proportional 
to 2n. The inversion of the Walsh transform to 
expression (7) demands intensive computer time that 
is also proportional to 2n. 
Balanced SAC-functions of high nonlinearity may 
be obtained by de-concatenation of a bent-function 
[6], however obtaining the bent-functions 
themselves from a large number of variables is a 
rather difficult problem whose solution requires 
substantial computational and memory resources. 
The recursive process of obtaining balanced Boolean 
SAC-functions of n variables using four non-
balanced SAC-functions of n-1 variables demands 
much less resources [1]. The greatest disadvantage 

of this method is the fact that it only makes it 
possible to obtain a rather small amount of the total 
balanced SAC-functions. 
An analytical design method of balanced SAC 
functions was suggested by Kurosawa K. and Satoh 
T. [4]. In essence, the method’s idea consists of 
dividing n variables into two non-overlapping sets 
with s and t variables (n=s+t). Further on, a linear 
function g(x1,…,xs) of s variables and a binary 
matrix Q with dimensionality equal to s × t are 
formed. In so doing, the number of one-components 
of the product Q⋅γ1 of matrix Q by any s-component 
vector γ1 with one non-zero component and the 
product γ2⋅Q of any t-component vector γ2 with one 
non-zero component is more than or equals one. The 
vector formed by the coefficients of the function 
g(x1,…,xs) is to be linear-independent of the vectors 
formed by the columns of matrix Q. A balanced 
SAC-function is formed according to the formula: 
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The drawback of this method lies in the difficulty of 
finding a matrix Q at rather high values of n. Great 
resources are required to find the vector system that 
is not linearly dependent on the coefficient vector of 
the linear function Q. A better method to obtain 
balanced SAC-functions was proposed in [5]. The 
principal weakness of this method – as the method, 
which proposed in [4]- is that it allows only a small 
number of balanced SAC-functions to be obtained 
from the whole amount of variables.  
The short review of the existing approaches to the 
design problem of the balanced SAC-functions 
shows that the published methods do not fully 
correspond to the above stated criteria and that is 
why development of more effective formal SAC-
function design procedures is actually and 
practically important. 
 
4   Combinatorial method for SAC- 

functions designing 
Figures and Tables should be numbered as follows: 
Fig.1, Fig.2, … etc and Table 1, Table 2, ….etc. 
For designing functions which correspond to the 
SAC it is proposed to use a system Ω={ϕ1,ϕ2,…,ϕq} 
of basic functions with t variable, that correspond to 
the specified criterion. The functions ϕ(x1,x2,…,xt), 
that are included in the system must satisfy two 
requirements: 
First, correspond to the Strict Avalanche Criterion 
with respect to t variables: 
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Second, the function, formed as XOR by any pair of 
functions belonging to the system Ω must be 
balanced: 
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In the simplest case the system Ω, can be selected 
SAC - functions of t variables with the minimum 
Hamming weight (minimum number of ones in the 
truth table), which take the value “one” on different 
sets. 
Since the minimum Hamming weight for SAC- 
functions of t variables is equal to 2t-2, the function 
formed as XOR by any pair of such functions will 
have in the truth table 2t-1 ones, i.e., it will be 
balanced. 
It is also obvious, that the number of functions 
belonging to the system Ω is always equal to 4. 
In the Table 1 are shown the amount of SAC- 
functions with minimum Hamming weight when 
t ∈ [2..4]. 
For example for t=2 there exist only 4 Boolean 
SAC- functions, which satisfy the given 
conditions. Their representation is shown below 
in the form of values sequence on the sets 00, 01, 
10, 11: 
ϕ1=0001, ϕ2=0010,  ϕ3=0100, ϕ4=1000 
Accordingly, there is only one version of 
selecting the system Ω of basic functions. 
For t=3 there are already 16 SAC- functions with 
minimum Hamming weight 2t-2=2, and their 
systems, which satisfy the above given 
requirements - 250. As an example one of these 
systems is given below for t=3: 
ϕ1=0 1 1 0 0 0 0 0, 
ϕ2=1 0 0 1 0 0 0 0   
ϕ3=0 0 0 0 0 1 1 0, 
ϕ4=0 0 0 0 1 0 0 1 
The system below is an example of system Ω of 
basic functions for t=4 : 
ϕ1=1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0  
ϕ2=0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0  
ϕ3=0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0  
ϕ4=0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 
Table 1 

Number of 
t variables 

Total number of 
SAC functions with 
minimum 
Hamming weight 

Number of 
possible  

systems Ω 

2 4 1 
3 16 250 
4 148 23280 

5 22632 ≈107 

 
The essence of the proposed method lies on the 
fact that the truth table of the Boolean function 
f(x1,x2,…,xn) from n variables, that correspond to 
the SAC, is constructed from 2n-t fragments, with 
every hth, for which, h∈{0,…,2n-t) - φh(x1,…,xt) is 
one of the basic functions ϕ1, ϕ2, ϕ3, ϕ4 or their 
inversions: 
φh∈{ϕ1, ϕ2, ϕ3, ϕ4, ϕ1 ⊕1,ϕ2 ⊕1, ϕ3⊕1, ϕ4 ⊕1}. 
ϕ1, ϕ2, ϕ3, ϕ4 
In other words, the function f(x1,…,xn) is 
constructed in the form of the superposition of 
the functions, which belong to the extended basic 
system on all possible sets of variables  xt+1,…,xn.   
Lets denote as ψh the function, which has value of 
one on the hth set  Хh of variables xt+1,…xn , i.e.: 
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the Boolean SAC- function f(x1,x2,…,xn) then is 
formed as: 
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Function (14) satisfies SAC with respect to the 
variable xi, i∈{1,…,t}  because of the fact that this 
property is held by the functions φ of the extended 
basis Θ which are contained in (14). 
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The Boolean function f(x1,…,xn) constructed with 
the above method satisfies the SAC with respect to 
variable хj, j∈{t+1,…,n}, only when the following 
conditions are fulfilled.    
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Thus, in order for the Boolean function f(x1,…,xn) 
constructed in accordance with (14) to satisfy the 



strict avalanche criterion it is necessary that the 
functions φk and φl  selected as the fragments of the 
constructed function on kth  and lth sets of the values 
of variables xt+1,…,xn (k,l∈{0,…,2n-t-1) would be 
different, if k and l differ in the value |k-l|=2g  
g∈{0,1,…,n-t-1}. This means, for kth and lth sets of 
variable xt+1,…,xn  must be fulfilled : φk ≠ φl, φk ≠ φl 
⊕1. 
Based on the theoretical statements the following 
method of obtaining Boolean functions that satisfy 
the SAC is proposed.  
The number t of the variables for the basic system Ω 
is selected, then arbitrarily one of the possible basic 
systems Ω={ϕ1, ϕ2, ϕ3, ϕ4} is selected followed by 
the construction of its extension  
Θ={ϕ1, ϕ2, ϕ3, ϕ4, ϕ1 ⊕1,ϕ2 ⊕1,ϕ3 ⊕1,ϕ4 ⊕1}. 
The basic system Ω={ϕ1, ϕ2, ϕ3, ϕ4} of functions 
is arbitrarily divided into two non-empty and not 
intersecting subsets  Ω1⊂Ω and Ω2⊂Ω: Ω≠∅, 
Ω1≠ ∅, Ω1 ∩ Ω2 =∅, Ω1∪Ω2=Ω. 
It is obvious that there are 14 ways for the division. 
The truth table of the generated function 
f(x1,x2,…,xn) is built in the form of 2n-t fragments 
with 2t bits, which are the functions that belong to 
basic system Ω. 
In so doing the hth fragment h∈{0,…,2n-t-1} 
corresponds to the hth set Xh of the values of 
variables xt+1,…,xn. 
If the XOR of the values of variables xt+1,…,xn on 
the hth set equals to zero, then as the hth fragment φh 

any function belonging to Ω1 is selected,  otherwise 
is selected a function belonging to Ω2 
In other words:  
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The obtained in the described way functions φh of 
permutation with any hth fragment can be replaced 
with their inversion φh ⊕ 1. 
We will show, that the proposed method ensures the 
fulfilment of conditions: φk ≠ φl for |k-l|=2g, 
k,l∈{0,…,2n-t-1}, g∈{0,1,…,n-t-1}. 
From the fact that the binary representations of k and 
l are different in one bit only follows 
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In accordance with the proposed method this 
indicates that the functions φk and φl of filling the kth 

and lth fragments belong to different sets Ω1 and Ω2, 
and consequently: φk ≠ φl.  
Thus, the proposed method of filling the fragments 
ensures that for any pair k and l which are different 
in one bit the condition φk ≠ φl is fulfilled - necessary 
so that the function f(x1,…,xn) would correspond to 
SAC. 
The proposed method ensures the fact that the 
formulated above condition for the correspondence 
to SAC of the Boolean functions designed according 
to (14) is held.  Consequently, the Boolean function 
f(x1,…,xn) designed by the presented method 
corresponds to SAC. 
The proposed method is illustrated by the following 
example of synthesising a function, which satisfies 
the SAC with 7 variables (n=7). Let the number t of 
variables for the basic system Ω to be 3, (t=3), and 
system Ω itself consists of SAC- functions 
ϕ1=0 1 1 0 0 0 0 0, 
ϕ2=1 0 0 1 0 0 0 0   
ϕ3=0 0 0 0 0 1 1 0, 
ϕ4=0 0 0 0 1 0 0 1 
The resulting function f(x1,…,x7) is constructed in 
the form of the superposition of 27-3=16 of the 
functions φ0,φ1,…,φ15 ∈Ω with  х1,х2,х3 variables on 
all possible sets of values of variables х4,…х7. In 
accordance with the above system Ω is divided into 
two nonintersecting subsets: Ω1 = {ϕ2} and Ω2={ϕ1, 
ϕ3, ϕ4}. 
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for h∈{0,3,5,6,9,10,12,15} respectively, these 
fragments are filled with the function ϕ2∈Ω1, and 
the rest with any of the functions ϕ1 ,ϕ3 ,ϕ4 ∈Ω2. Let 
on the arbitrarily selected set {5,7,12,13,14,15} the 
filling functions are replaced with their inversions.  
The resulting function f(x1,…,x7)  is represented in 
the form of the superposition of fragments, 
presented in Table 2. 
 
Table 2 
   h   φh h   φh    h   φh   h     φh 

   0   ϕ2 4   ϕ1    8   ϕ3  12 ϕ2⊕1 

   1   ϕ1 5 ϕ2⊕1    9   ϕ2  13 ϕ3⊕1 

   2   ϕ4 6   ϕ2  10   ϕ2  14 ϕ4⊕1 

   3   ϕ2 7 ϕ1⊕1  11   ϕ1  15 ϕ2⊕1 

 
The Algebraic Normal Form (ANF) of the 
synthesized function is presented: 
f(x1,…,x7)=1⊕x1⊕x2⊕x3⊕x4⊕x5⊕x6⊕x7⊕x1⋅x2⊕x1⋅
x5⊕x1⋅x6⊕x1⋅x7⊕x2⋅x4  
⊕x2⋅x5⊕x3⋅x6⊕x3⋅x7⊕x4⋅x5⊕x5⋅x6⊕x5⋅x7⊕x3⋅x4⋅x5⊕x3



⋅x4⋅x6⊕x3⋅x4⋅x7⊕x2⋅x3⋅x5⊕ 
x2⋅x3⋅x6⊕x2⋅x3⋅x7⊕x1⋅x4⋅x6⊕x1⋅x4⋅x7⊕x1⋅x3⋅x5⊕x1⋅x2⋅x
7⊕x1⋅x2⋅x6+⊕x1⋅x2⋅x4⊕x2⋅x3⋅x4⋅x6⊕x2⋅x3⋅x4⋅x7⊕x2⋅x3⋅
x4⋅x5⊕x1⋅x3⋅x4⋅x5⊕x1⋅x2⋅x3⋅x7⊕x1⋅x2⋅x3⋅x6 .  
The synthesized function satisfies the SAC, is not 
balanced and has nonlinearity, equal to 40. 
In order for the synthesized by the presented above 
method Boolean function f(x1,…,xn) to be 
additionally balanced, it is necessary that the 
following condition is satisfied: 
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This condition can be satisfied, if among 2n-t 
functions 

1210 ,...,,
−−tnφφφ are exactly 2n-t-1 basic 

functions, which belong to Ω and exactly 2n-t-1 
function- inversions. A version of fragments 
selection, which ensures obtaining a balanced 
function from 7variables, that satisfies the SAC with 
Ω1 = {ϕ2} и Ω2 ={ϕ1, ϕ3, ϕ4} is given in Table 3. 

  
Table 3. 
h φh h   φh    h   φh   h     φh 

0 ϕ2 4   ϕ1    8   ϕ3  12 ϕ2⊕1 

1 ϕ1⊕1 5 ϕ2⊕1    9   ϕ2  13 ϕ3⊕1 

2 ϕ4⊕1 6 ϕ2⊕1  10   ϕ2  14 ϕ4⊕1 

3 ϕ2 7 ϕ1⊕1  11   ϕ1  15    ϕ2 

 
The Algebraic Normal Form (ANF) of the 
synthesized function is: 
 f(x1,…,x7)= 1⊕ x1 ⊕ x2 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x1⋅x2 ⊕ 
x1⋅x3 ⊕ x1⋅x4 ⊕ x1⋅x5 ⊕ x1⋅x6 ⊕ x1⋅x7 ⊕ x2⋅x5 ⊕ x3⋅x6 
⊕ x3⋅x7 ⊕ x4⋅x5 ⊕ x5⋅x6 ⊕ x5⋅x7 ⊕ x1⋅x2⋅x6 ⊕ x1⋅x2⋅x7 
⊕ x1⋅x3⋅x5 ⊕ x1⋅x4⋅x6 ⊕ x1⋅x4⋅x7 ⊕ x2⋅x3⋅x4 ⊕ x2⋅x3⋅x5 
⊕ x2⋅x3⋅x6 ⊕ x2⋅x3⋅x7 ⊕ x3⋅x4⋅x5 ⊕ x3⋅x4⋅x6 ⊕ x3⋅x4⋅x7 
⊕ x1⋅x2⋅x3⋅x6 ⊕ x1⋅x2⋅x3⋅x7 ⊕ x1⋅x3⋅x4⋅x5 ⊕ x2⋅x3⋅x4⋅x5 
⊕ x2⋅x3⋅x4⋅x6 ⊕ x2⋅x3⋅x4⋅x7 .  
The synthesized function satisfies the SAC, is 
balanced and has nonlinearity, equal to 48. 
     
5.  Estimation of the synthesized 

functions amount 
The estimation of the amount of SAC- functions, 
which can be synthesized by the proposed method, 
plays an important role. The method assumes the 
selection of set Ω with 4 base functions. The 
functions, which compose the set Ω, are divided into 
two non-empty subsets Ω1 and Ω2. 
The filling of the fixed q=2n-t-1 fragments of the truth 

table is done with the functions of set Ω1 and the 
other 2n-t-1 fragments with the functions of set Ω2. 
There are 4 versions of the selection of set Ω1 when 
it contains one function, 6 versions of selecting Ω1 
when it contains two functions and 4 versions - 
when set Ω1 contains three basic functions. 
If set Ω1 contains one function, then exactly one 
version of filling the q fragments of the synthesized 
function’s truth table exists.  
The number of methods of filling the other q 
fragments of truth table with the functions of set Ω2 
is 3q, since any of the q=2n-t-1 fragments can be filled 
with any of the functions of set Ω2. 
If the corresponding q fragments of the truth table 
are filled with two functions of set Ω1 (which is 
possible under the condition q=2n-t-1 ≥2) the 
calculation of the possible versions amount is done 
as follows. 
Two of the q fragments must in any case be filled 
with two functions from Ω1. The selection of the 
fragments pair from q can be executed with 

)!22(2
)!2(

2 1

1

−⋅
=








−−

−−

tn

tnq
 methods, and the filling of 

the selected pair - by two methods. 
 

The rest q -2 of fragment, are filled up with any 
functions of set Ω1, which can be executed 2q-2 by 
versions. The number of variants (methods) of 
filling other q of the fragments of truth table by the 
functions of set Ω1 is composes 2q. 
In case when the corresponding q fragments of the 
truth table are filled with three functions of set Ω1 
(which is possible only under condition q=2n-t-1 ≥3) 
the calculation of the possible versions quantity is 
done analogously. 
Three of the q fragments must in any case be filled 
by two functions from Ω1. The selection of three 
fragments from q can be executed with 
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the selected three fragments with three functions- by 
six methods. 
The rest of the q -3 fragments, are filled with any 
functions of set Ω1, which can be executed by 3q-3 
versions. The other q fragments of the truth table can 
be filled uniquely, since the set Ω2 in this case 
contains only one function. 
Thus, the amount of versions W of filling the  2n-t 
fragments of the truth table with 4 fixed basic 
functions from t variables is determined depending 
on value q=2n-t-1  in the following way: 
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        (18) 
When synthesising by the proposed method SAC- 
functions (balanced and non-balanced) from n 
variables, each of the the synthesized function’s 2⋅q 
=2n-t fragments can be filled with basic function or 
its inversion, i.e., the total amount KSAC  of the SAC- 
functions, that can be synthesized by the proposed 
method with fixed selection of the basic set is 
determined by the following formula: 

tn
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⋅=⋅= ⋅ 22 22        (19) 
In the case of synthesis of balanced SAC- functions 
from n variables, exactly half of the 2⋅q =2n-t 
fragments of the truth table must be filled with the 
basic set functions, and the other half – by the 
inversions of the basic functions. 
So, the total number of versions of the inverted and 
non-inverted fillings of the 2⋅q fragments is 
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Accordingly, the total number KBSAC of balanced 
SAC- functions, which can be synthesized by the 
proposed method with fixed set Ω of basic functions 
is determined by the formula: 
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For example, with n=4 and t=2 the proposed method 
makes it possible to synthesize 1344 SAC- functions 
from the total number 4120 of the existing functions, 
that satisfy the SAC and 504 of 1367 existing 
balanced SAC- functions. 
It is completely obvious from the given formulas 
(19,20) that the maximum amount of SAC- 
functions can be obtained at the smallest value of 
t=2. 
 
6   Conclusion 
The proposed method of designing Boolean 
functions of special classes is based on the principles 
of combinatory transpositions and makes it possible 
to obtain both balanced and non-balanced functions 
that satisfy the Strict Avalanche Criterion - SAC. 
The majority of proposed methods currently provide 
for obtaining only balanced functions of this class. 
In comparison with the known methods, the 
proposed approach is technologically simpler and its 
realization requires substantially smaller 
computational recourses, since it does not use the 

complex operations of the spectral Walsh 
transforms, search for the linearly independent 
vectors or bent - functions. According to the 
conducted experimental investigations, the 
productivity of the software realization of the 
developed approach compared to the Kurosawa K. 
and Satoh T method [4] is higher by approximately 3 
orders. 
The basic advantage of the proposed combinatorial 
approach compared to the known ones is the 
substantially greater number of functions, which can 
be generated. In particular, for 4 variables the known 
methods can generate 72 (5%) [ 4 ] or 96(7%) [1] of 
balanced functions from the possible 1368. The 
proposed method allows to make and obtain 504 
functions, or 37%. 
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