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Abstract: - This paper presents a new method for designing effective nonlinear pseudorandom bits generator 
for data security systems. The proposed method allows that design of n-bits Nonlinear Feedback Shift 
Registers (NFSR), which ensure the repeat cycle of 2n.  In contrast to Linear Feedback Shift Registers (LFSR) 
the pseudorandom sequences whish are generated by NFSR cannot be predicted if 2⋅n bits of the sequence are 
known. A generator, designed by the proposed method ensures the high performance and effectiveness of 
hardware realization.     
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1   Introduction 
The dynamic development of the information 
integration based on telecommunication and 
computer networks techniques is closely linked with 
extending the use of the pseudorandom binary 
sequences. Such sequences are widely used in 
CDMA and cosmic telecommunication systems, in 
digital data transmission channels for error detecting 
and error correcting, in VLSI embedded self-
monitoring devices and in data security systems.  
In contemporary situations where the integration of 
information expands and the increase of productivity 
of computer systems which can be used to attack 
data security components the problem of 
guaranteeing data security is acquiring a great 
importance.   
This problem can be solved by way of perpetually 
developing data security methods and techniques, 
including pseudorandom sequence generators. 
Basically they are an important class of 
cryptographic algorithms, which are called stream 
ciphers algorithms. Apart from this, pseudorandom 
binary sequence generators are widely used to 
form keys and they are important components of 
cryptographic protocols and one-way hash 
functions.       
The main sphere of pseudorandom sequence 
generators is utilized in stream cipher algorithms. 
This class of algorithms ensures the greatest 
cryptographic coding rate and is oriented for real-
time data security systems. So, the stream cipher 
algorithms are widely used for cryptographic coding 

of video and voice telecommunications, telemetry 
and telecontrol systems. 
From this point of view, one of the most important 
criterions of pseudorandom sequence generator is 
the effectiveness of bits generation rate.  
Another important criterion of pseudorandom 
sequence generator is the level of crypto-resistance 
which is characterized by the sample size of 
sequence forecasting.     
Most part from modern pseudorandom binary 
sequence generators is build with Linear Feedback 
Shift Registers (LFSR), which ensure a repeat of 
sequence period of 2n-1 (n- bits length of shift 
register) and the effectiveness of hardware 
implementation. The main disadvantage of LFSR 
utilization is that the binary sequence generated by 
the LFSR can easily be forecasted if a sample size of 
2⋅n bits is known (in case the feedback linear 
function is unknown). Therefore, in real sequence 
generators it is necessary to use additional nonlinear 
transformation which increases the complexity and 
reduces the generation rate [2, 3].  
The Nonlinear Feedback Shift Register (NFSR) does 
not have the above mentioned disadvantage of the 
LFSR and the utilization of NFSR ensures a 
significant increase of the crypto - resistance level of 
pseudorandom bits sequence.     
Today there is no mathematical common theory for 
NFSR design [4,5,6,7]. Thus only one possible way 
for NFSR practical implementation consists of the 
development of the particular approaches for the 
NFSR designing.    



 
2 Basic procedure for nonlinear 

feedback function designing 
 
The shift register structure is shown in Fig.1, where 
its state can be describe by a code w which 
corresponds to a binary vector Xw of the shift 
register’s bits value by such a way as follows:    
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Fig.1 

The value of the new code v after the register has 
been shifted, is defined as follows: 
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Let f(x1,x2,…,xn) be the Boolean feedback function 
of n-bits length shift register and this function meets 
the following single-input condition: 

)1,,...,(1),,...,( 1111 nnnn xxxfxxxf ⊕⊕= −−  (1) 
 
If the NFSR feedback function f(x1,x2,…,xn) obeys 
to condition (1) then every shift register code v have 
only one previous code w.   
The cycle of the NFSR shall be named the set of n-
bits codes, which are sequentially formed in the shift 
register if the feedback function obeys the condition 
(1). Each of the 2n possible codes of n-bits entry of 
the register is called in one round. 
Let’s have two rounds: A and B. If code w∈А, and a 
symmetric to w code v=(w+2n-1) mod 2n ∈B, then 
inverting of the feedback function on these codes 
f(Xw)=1⊕f(Xw), f(Xv)=1⊕f(Xv), results in a union or 
a linear combination of these two rounds.    

Proof. Code w∈А and corresponds to binary state 

register vector },...,,{ 21
w
n

ww
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code e follows the w code in round 

A: },...,),({ 11
w
n

w
we xxXfX −= .  

If the feedback function is inverted on code w the 
next code will be  

u: },...,),(1{ 11
w
n

w
wu xxXfX −⊕= .  

Then code v is symmetric to 
w: }1,,...,,{ 121

w
n

w
n

ww
v xxxxX ⊕= − . According to (1), 

f(Xv)=1⊕f(Xw). Therefore, the code u follows v in 
round B. If the feedback function is inverted on the 
code v the next code will be e: 

},...,),(1{ 11
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So, if the feedback function is inverted on a 
symmetric codes w∈А and v∈B after the code w, 
then we obtains the transfer to code u∈B. After that 
we pass through all the codes of round B 
consecutively to code v. From this code the transfer 
to code e∈А is made. In future all code of round A 
are passed. Therefore, the two rounds A and B are 
united in a single round (Fig. 2).  
 
The proposed method for designing the nonlinear 
feedback function which ensures a period of 2n is 
found with the basic procedure of uniting rounds 
which are formed by a feedback rotational function.  
The feedback rotational function of n-bits length 
shift register is equal to high-order bit of current 
code k: 

k
nnn xkXf == − ]
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Evidently, the feedback function (2) satisfies 
condition (1). By using the feedback function (2), 
the NR rounds are formed and every round contains 
codes, which have equal number of ones. Let’s 
denote with R(k), the round containing the code k 
and with L(A), the number of ones in the rotation 
round A code.  For example, for n=4 and k=6: 
R(k)={6(0110), 12(1100), 9(1001), 3(0011)}, 
L(R(k))=2.     
Thus, every one round has only one minimal code. 
Obviously, for any rotation round A, except R(0), 

it’s minimal code q=min(A) is odd  ( 11 =qx ).  
This means that a nonzero minimal code q of 
rotational round always can be represented as:  
q=2⋅d+1.  
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The basic procedure of uniting the rotational rounds 
consists of performing the following sequential 
actions: 
1. The initial value of the current code j is arbitrarily 

selected such that 0<j<2n. The counter h of the 
codes on which the value of the feedback 
function has been determined is set to 1: h:=1.   

2. Calculate the code u=(2⋅j) mod 2n +1. If the 
calculated u is minimal in its rotational round, 
i.e., u=min((R(u)) then the value of the feedback 
function on code j is determined as the inversion 
of the rotation 
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is the smallest integer greater than x), otherwise,   

j
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3. Calculate the new current code u:= (2⋅j) mod 2n + 
f(Xj). The counter h is incremented: h:=h+1. If 
h≤2n then return to step 2, otherwise – end. 

 
The proposed basic procedure for designing the 
feedback function which guarantees the maximum 
period of 2n for n-bits shift register can be 
illustrated by the followed example for n=4: 
 
At the beginning we arbitrarily select the code j =8. 
The process of designing the feedback function is 
shown in table 1. 
 
Table 1 

 
The graph of the feedback codes transformations 
used in the design of the shift register function is 
shown in Fig.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The feedback rotational function is formed in NR 
rounds. The basic procedure ensures the connection 
of all of them into one.   
Proof. The connection of rounds is made pair-wise. 
Let’s consider an arbitrarily selected round B, which 
unite the rounds each containing m ones (0<m<2n). 
Let’s denote the minimal code of this round with 
βmin=min(B). The code βmin follows code β∈B, 
despite the fact that β ≥ 2n-1 and βmin= 2⋅β-2n-1+1.     
Evidently, the code α = β-2n-1 differs from code β by 
the “ones” in high-order bit. Consequently, code α  
belongs to another round A: α∈A and all the codes 
of this round A contain m-1 ones. Thus βmin= 2⋅α+1 
and according to condition (2) of the presented 
procedure on code α the feedback function value 
will be equal to one, F(Xα)=1, and in such way the 
next code after α will be the code βmin.  
According to condition (2) of the presented 
procedure the value of the feedback function on 
code β will be inverted with the rotational function. 
Therefore, after code β, code αnext∈A, αnext = 2⋅α 
will be follow. In this way the proposed procedure 
ensures the connection of rounding pair A and B.  
The transition to round B minimal code min(B) is 
possible from code of round A if  L(B)=L(A)+1 with 
the exception of the situation when L(B)=0. In the 
last case one code is predecessor to minimal codes 
of pair-wise rotational rounds. For example, if n=4 
and the code 8(1000) is predecessor to minimal code 
0(0000) of round {0} then the minimal code 1(0001) 
is predecessor to rounds {1,2,4,8}.     

Code(j)  Xj   h u=(2⋅j) 
mod 
16+1 

      R(u)  F(Xj) 

0 0000 2 1 {1,2,4,8} 1 
1 0001 3 3  {3,6,9,12} 1 
2 0010 13 5 {5,10} 1 
3 0011 4 7  7,14,13,11} 1 
4 0100 16 9 {9,3,6,12} 0 
5 0101 14 11 {11,7,14,13} 0 
6 0110 10 13 {13,11,7,14} 0 
7 0111 5 15 {15} 1 
8 1000 1 1 {1,2,4,8} 0 
9 1001 12 3 {3,6,12,9} 0 
10 1010 15 5 {5,10} 0 
11 1011 9 7 {7,14,13,11} 0 
12 1100 11 9 {9,3,6,12} 1 
13 1101 8 11 {11,7,14,13} 1 
14 1110 7 13 {13,11,7,14} 1 
15 1111 6 15 {15} 0 
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The minimal code value of every rotational round 
has one predecessor code from another round. 
Therefore, the proposed procedure ensures the 
connection of all rotational rounds into one round. 
 
3 Expansion procedure for nonlinear 

feedback function designing 
Let’s consider the above basic procedure of a single 
valued defined topology of rotational rounds then its 
connectivity allows obtaining only one nonlinear 
feedback function at a fixed NFSR length.  
Modifying the considered basic procedure can solve 
the design problem of obtaining more nonlinear 
feedback functions. 
To that end, we suggest beforehand to unite two 
arbitrarily selected rotational rounds A and B with 
the conditions L(B)-L(A)=1 and L(A)>0. Apart from 
this, it is necessary to forbid the foreseen by the 
basic procedure transition to round B minimal code 
min(B).     

The expansion procedure to unite the rotational 
rounds consists of performing the following 
sequential actions: 
 
1. Arbitrarily select code k such, that:  0 < k < 2n-2. 
2. Arbitrarily select code b∈R(k) with its minimal 

code belonging in the rotational round R(k):  
b≠min(R(k)).   

3. Code a is formed as: 12
2

−⋅+



= nba ξ , where 

ξ∈{0,1} and х is the greatest integer but 
smaller than x. The value of ξ is selected in such 
a way that а∉R(b). 

 
4. Define the code d to be the predecessor of the 

greatest from min(R(a)) and min(R(b)): 
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5.  The initial value of current code j is arbitrarily 
selected such that 0<j<2n. The counter h of the 
codes on which the value of the feedback 
function has been determined is set to 1: h:=1.   

6. If j=a or j = (а+2n-1) mod 2n, then 

11
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j
nnj xjXf  and go to 

step 9. 

7. If j=d or j=(d+2n-1) mod 2n, then 
j

nnj xjXf =

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= −12

)(  and go to step 9. 

8. Calculate u=(2⋅j) mod 2n +1. If the calculated u is 
minimal in its rotational round, i.e. ,   
u=min((R(u)), then the value of the feedback 
function on code j is determined as the inversion 
of the rotation 11

2
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х is the smallest integer but greater than x), 

otherwise,  j
nnj xjXf =



= −12

)(   

9. Calculate the new current code j:= (2⋅j) mod 2n + 
f(Xj). The counter h is then incremented by one: 
h:=h+1. If h≤2n then return to step 2, otherwise – 
end. 

The proposed modified procedure for designing of 
the feedback function which guarantees the 
maximum period of 2n for the n-bits shift register 
can be illustrated by the followed example for n=4: 
According to step 1 we arbitrarily selected code k : 
0<k<15. For example, k=12.  
The rotational round R(12)={12(1100), 9(1001), 
3(0011), 6(0110)}, then according to step 2 
arbitrarily we select b∈R(k),  b≠min(R(k))=3. Let 
b=9.  
Code a is formed as:  a=4+ξ⋅8. If  ξ=0, then 
a=4∉R(k). Thus, a=4. 
The rotational round R(12)={12,9,3,6} and 
R(4)={4,8,1,2}, correspondently the min(R(b))=3 
and the min(R(a))=1. According to step 4 the code d 
is defined as:  

1
2

)1,3max(
=



=d . 

Thus, a=4 and a+2n-1=12, d=1 and d+2n-1=9. 
 
Let at the beginning of the procedure j = 0. Since j ≠ 
а = 4, j ≠ a+2n-1 = 12, j ≠ d = 1, j ≠ d+2n-1 = 9, then 
according to step 8 we calculate u=2⋅0+1=1; 
R(u)={1,2,4,8} and u=min(R(u)), therefore f(0000) 
= 1 and next j=1.  
Since j=d=1, then according to step 7, 
f(X1)=f(0001)=0. The next j is defined as j=2⋅1+0 = 
2. 
 
Table 2 has illustrated the consistency of designing 
the feedback functions in the sequel.   
 
The graph of the shift register designed using the 
codes of the feedback nonlinear function 
transformations is shown in Fig.4. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2 

j Xj h 

Equality 
of j to 

a, d,a+2n-1, 
d+2n-1 

u=(2⋅j
+1) 
mod 
16 R(u) F 

0 0000 1  1 {1,2,4,8} 1 
1 0001 2 j = d  - 0 
2 0010 3  5 {5,10} 1 
3 0011 8  7 {7,14,13,11} 1 
4 0100 6 j = a  - 1 
5 0101 4  11 {7,14,13,11} 0 
6 0110 14  13 {7,14,13,11} 0 
7 0111 9  15 {15} 1 
8 1000 16  1 {1,2,4,8} 0 
9 1001 7 j = d+8  - 1 
10 1010 5  5 {5,10} 0 
11 1011 13  7 {7,14,13,11} 0 
12 1100 15 j = a+8  - 0 
13 1101 12  11 {7,14,13,11} 1 
14 1110 11  13 {7,14,13,11} 1 
15 1111 10  15 {15} 0 

The number Nf of the NFSR nonlinear feedback 
function transformations which can be designed by 
using the proposed method for different shift register 
n bits length is represented in Table 3.  
Table 3 

N     Nf n      Nf n Nf 
4       6 8     186 12     3394 
5     18 9     394 13     6930 
6     38 10     810 14   14022  
7     90 11   1764 15   28386 

    
4 Conclusions 
The suggested method for pseudorandom binary 
sequence generators based on the nonlinear feedback 
shift register design ensures the increase of the 

effectiveness of an important class of cryptographic 
algorithms such as the stream cipher.    
The utilization of the NFSR instead of the LFSR 
registers in stream cipher allows a significant 
improved level of stream cipher crypto-resistance.  
At the same time the NFSR, designed by the 
suggested method ensures the maximum value of a 
repeat period of 2n as well as simplicity in the 
hardware implementations.  
The number of nonlinear feedback function which 
can be obtained by the suggested method is 
significantly larger in comparison to the number of 
prime polynomials. For example, if n=15, the 
suggested method allows to built 28386 different 
NFSR schemes. For the same value n=15, only 1800 
different LFSR schemes are existing.  This fact is 
very important for the cryptographic applications of 
pseudorandom bit sequence generators. 
Compared to other known methods [2,3,4,5,6,7], the 
suggested NFSR design approach is much more 
simple and effective from the technological point of 
view  (implementation and algorithmically). Another 
significant advantage of the suggested method in 
comparison to known ones [2,3,4,5,6,7] is the larger 
number of NFSR schemes that may be designed at a 
fixed length of shift register. The stated method is 
implemented in the form of an existing program 
written in С++. 
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