
The PRAKTOR Metamodel: Mobile Agents
as Executable Parametric Object Petri Nets

DIMITRIS MOSTROUS, HABIB GORAINE

School of Computing
University of Central England

Perry Barr, Birmingham, B42 2SU
UNITED KINGDOM

d.mostrous@blueyonder.co.uk habib.goraine@uce.ac.uk

Abstract: Mobile agents have emerged as an attractive paradigm for the conceptualization and realisation of
massively distributed and autonomous systems. We describe an original meta-model that can be used to design
scalable, highly concurrent multiagent system architectures potentially consisting of very large numbers of
fully mobile, persistent agents of arbitrary granularity and complexity. The model consists of an agent
modelling language based on High Level Petri Nets and a functional reference implementation that enables the
direct reification of design artefacts into executable mobile agent automata.

Key-Words: Mobile Agents, Multiagent Systems, High Level Petri Nets, Persistence, Migration, Distributed
Systems, Agent Automata, Model-driven development

1 Introduction
Systems populated by autonomous mobile agents
are a prominent example of massively concurrent
architectures, where computing entities are under
continuous execution which is frequently in conflict
and cooperation, and communication is inherently
asynchronous [12]. Also, individual agent behaviour
can frequently be thought of as comprising of
structures that resemble task control workflows,
given that by definition agents exist with some
purposeful role, plan or task encoded into their
structure [4]. Thus, with regard to agent systems
modelling, it would be highly beneficial if we could
use a formalism that has the modelling capacity to
describe all of the above concepts in an intuitive and
at the same time unambiguous way. High Level
Petri Nets (HLPNs) lend themselves as such a
formalism that also seems to have future in terms of
integration of formal methods for system analysis
and verification [8].

We describe PRAKTOR, an original mobile
agent meta-architecture introduced in [14], and we
outline the concrete elements that enable the
reification of agent design artefacts into equivalent,
executable Petri net automata. Moreover, we
describe the proposed inter-agent communication
mechanisms and explain how PRAKTOR attacks
the fundamental problem of agent migration
employing what we will term hierarchical strong
mobility. The name PRAKTOR originates from the
homonymous Hellenic noun which directly
translates to the English noun agent.

2 Background and Motivation
An agent can be though of as a situated entity that
perceives and may act upon its environment in an
autonomous, goal-driven fashion [13]. In addition, a
mobile agent is capable of migrating to remote agent
environments during its execution. More elaborate
definitions can be found in [4].

2.1 Characteristics of Intelligent Agents
Although there is no global consensus on a single
definition, a software entity that employs certain
widely accepted properties would normally be
pronounced an intelligent agent. In particular, we
expect that an intelligent agent would exhibit the
following characteristics [4, 12, 13]:
(a) Autonomy: an agent is (semi-)autonomous, and
acts in accordance with its goals, normally without
user intervention. It should hold a considerable
degree of control over its execution and its resource
management.
(b) Flexibility: An agent should be able to
dynamically select simple or composite actions to
perform in reply to the perceived state of the
external environment.
(c) Execution independence: Agents should operate
asynchronously and independently to other agents
and processes.
(d) Temporal continuity: an agent is a continuously
running entity with a medium to wide lifespan - it
should not be degraded to a mere one-off task.

(e) Location awareness: Agents are aware of their
location. However, this does not adversely affect the
perceived levels of location transparency but rather
provides with the additional benefits of locality.
(f) Social ability: Agents may communicate,
collaborate, and possibly negotiate with other
agents and humans in pursuit of their goals.

2.2 Mobile Agents as High Level Petri Nets
Petri Nets [10] are mathematical abstractions that
have emerged as an important tool for the modelling
and analysis of interacting, concurrent components
[9]. Therefore, considering their modelling power,
we have concluded that in order to define an agent
modelling environment atop, it should be enough to
utilise extensions that can provide more modelling
convenience.

The Petri nets that we will be using as the base
in PRAKTOR are usually referred to as High Level
Petri Nets (HLPN), also commonly known as
Coloured Petri Nets (CP-Nets) [7, 8]. It is assumed
that the reader is familiar with the basics, thus we
shall limit ourselves to reminding that in CP-Nets
tokens are instances of data types, rather than
indistinguishable markers [8]. CP-Nets are a concise
modelling language compared to ordinary Petri nets
with which they still remain equivalent (i.e.,
convertible) in the same way high-level
programming languages are equivalent to machine
language but are more suitable for practical systems
development [8].

We propose a class of such High Level Petri
nets as the means by which we can model agents
that can exhibit the characteristics mentioned in
§2.1. Petri nets are also executable; it is possible,
given an initially marked net, to simulate the
behaviour of that net by applying a set of execution
rules – the next state function. These rules define the
number and actual distribution of tokens in a Petri
net, i.e. the state of the net [9]. Execution occurs in
atomic steps, which are known as the firing of
transitions. The rationale behind using the formalism
of HLPNs is further enforced by three factors: first,
the inherent ability of Petri nets to explicitly
represent control flow intermixing parallelism,
mutual exclusion, iteration, conditionality, and
sequential behaviour; second, the potential
analysability (decidability) of Petri nets against
various dynamic properties such as liveness; thirdly,
the intuitive graphical nature of Petri nets.

We define a PRAKTOR Agent as “an
autonomous software component that has fully
encapsulated data, methods, and architecture, and
that has full control of its logical thread(s) of control

that it uses for the sole purpose of fulfilling its
embedded logic, which is internally encoded in the
form of an executable High Level Petri Net
Automaton. It may communicate only through
asynchronous message passing.”

2.3 The Object Oriented Perspective
PRAKTOR CP-nets, their constituent elements, and
the data tokens they hold, are by definition instances
of appropriate object-oriented abstract data types.
This allows the possibility of having CP-nets as the
data tokens of a CP-net’s places. The latter
capability can be found in the literature wherein
such nets are usually termed Reference Nets [1]. An
immediate consequence of the aforesaid property is
that tokens not only represent values but may also
have methods that can be invoked upon them during
execution.

We further impose that PRAKTOR nets are
strongly typed and thus, a place can only be eligible
to hold multisets of instances over its assigned
object type and its subtypes, rather than data tuples
as in CP-Nets [8]. An implementation must enforce
type safety, either by virtue of native parametric
polymorphism support, or by runtime type
consistency checks. Ideally, a model can be
statically verified before being transliterated to
executable format by the target language compiler.
PRAKTOR nets can thus be labelled Executable
Parametric Object Petri nets.

3 PRAKTOR Modelling Language
We have adopted a series of well-studied extensions
to Petri nets [see 9, 8] in order to achieve the
necessary level of abstraction required for practical
agent design. These include inhibitory and test arcs,
together with transition priorities [9]; reserve arcs
that do not consume their tokens; and total capacity
restrictions on places [1]. These will be introduced
through our description of the PRAKTOR
Modelling Language (PML).

3.1 Basic Agent Net Building Blocks in PML
We present the main structural elements of the PML,
along with explanations on notation. The reader
should note that PML does not use standard CP-Net
notation, as can be seen in the Bootstrap Scheduler
of agent nets (Fig. 1).

3.1.1 Transitions and Transition Guards
Transitions represent a computation step of arbitrary
granularity graphically denoted as a solid bar, and
labelled with a short verb phrase that describes the
task. Additionally, an extra identifier of the general
format “(Tn)”, where +ℵ∈n , can prefix the
description, like e.g. “(T2) Execute scheduler
command” (see Fig. 1).

Optionally, a Boolean expression can be
attached to a transition, and specify that we only
accept bindings (inputs) for which it evaluates to
true [8]. The input to that expression is the set of
multisets produced by evaluating the arc expressions
(or weights) of all input arcs of the current transition
(see §3.1.3). Such expressions are commonly termed
transition guards [8] and in PML, if the result is
positive, they provide the new bindings (i.e., sub-
bags of the evaluated token multisets) that may be
used as the enabling tokens (i.e. actual input tokens)
of the transition, if it fires. An integer]255,0[∈p
can be shown inside a transition to denote its
priority.

Fig. 1 PRAKTOR Runtime Library (PRL) scheduler net,
which may be used to execute any number of agent nets.

3.1.2 Places
Places act as input and/or output buffers to one or
more transitions, holding the data tokens of the agent
being modelled. By convention, places are drawn as
circles or ellipses, and in PML we annotate them
with three pieces of information.

Firstly, places are required to have an
annotation of the format <T> where the less than
and greater than symbols always surround a type
name, abstractly denoted T in this example. Notice
that we do not define the internal structure of type
name T, therefore nested type parameterisation is
possible if the target implementation language
supports parametric polymorphism.

The optional parts of information are the total
capacity [1] and the place name. Total capacity is
shown in the format {k} where k denotes the upper
limit, and +ℵ∈k . A special case exists whereby the
wildcard ‘*’ can be used instead of a positive
number for k, in which case the interpretation is
{+∞}. The requirements on names are relaxed and in
general the guideline is that place names should
normally consist of a descriptive plural noun
phrase, and when required, they could be annotated
with an extra prefix “(Pn)”, where +ℵ∈n , (e.g.
“(P1) Scheduled nets” – also see Fig. 1). Normally,
place types and integer capacities are placed next to
each other adjacent to the first hemisphere of their
associated place, and place names adjacent to the
third, for consistency.

3.1.3 Arcs and Arc Expressions
Transitions, which represent computation, and
places, which represent data, are connected using
directed edges (arcs). Arcs enable the modelling of
input-output functions of each discrete computation
(i.e., each transition) in the agent being modelled.
Arcs are normally annotated with an expression that
evaluates (e.g. using variable unification) to a
multiset over the type of the arc’s associated place.
The cardinality of the resulting multiset may be a
function of the input tokens, thus PML supports
flexible arcs, as defined in [11].

In PML, arcs can be annotated with (a) an
expression in bag notation [8], or (b) an expression
in Object Constraint Language (OCL) [15], or (c) an
integer +ℵ∈w , that represents arc weight [9]. A
short verb phrase may be also added as an extra
description; only one of (a), (b), or (c) can be used
on a single arc. When (a) or (b) is used, the
expression is expected to appear within curly
brackets. Expressions attached to arcs must always
evaluate to multisets (i.e. bags), irrespective of the
actual notation used. OCL also supports the building
of expressions that evaluate to bags (see [15]), but
using a different syntax than the one found in CP-
nets literature (see [8]). An alternative to the abstract
expression formats is the direct use of language-
specific code in place of arc annotations. When code
is to be used directly as an arc expression, a short
verb phrase may optionally be shown in the PN
graph for conciseness, instead of the actual code.

Arc weights are not always required, and when
omitted, the interpretation should be that weight = 1.
Note that an arc can only be annotated with either an
integer weight or an expression, but never both, as
arc expressions are always assumed to suppress
weights in PML.

Inhibitor arcs [9, 1] are always directed from a
place to a transition, and are drawn using a small
hollow circle instead of an arrowhead at the
transition end. Test arcs [1] are drawn with a solid
circle at the transition end. Non-consuming (Reserve
[1]) input arcs are depicted as edges with a hollow
arrow tip at the transition end. Regular input-output
arcs are drawn with a plain arrowhead at the
transition end [9]. The PML notation for arcs is
illustrated in Fig. 2 below.

Fig. 2 PML Arc Notation, indicating whether each type
of arc can be an input and/or an output of a transition.

3.2 Place Proxy and Secure Communication
An essential element of a multiagent architecture is
the communication infrastructure that it provides to
agents. In PML, there are mainly two occurrences
where communication would be beneficial: first, we
have intra-agent communication; second, we have
inter-agent communication. In order to address the
communication problem we have introduced a new
modelling primitive, the Place Proxy, which enables
controlled and secure message passing between Petri
net components in a simple and elegant way. It is
called a proxy because it adds no functionality to its
subject [5], but rather it adds permissions and a level
of indirection when there should not be direct
binding between two nets. It acts as a protection
proxy, a virtual proxy, a remote proxy, a
synchronization proxy, and a smart reference [5].
All of that is possible because a Place Proxy is only
a thin wrapper for a real place (or another proxy).

In a PML model, a Place Proxy is shown as a
dotted, hollow place, with the letter ‘P’ printed in its
centre. It can be used wherever a place could have
been used, but it must eventually be connected to a
place or another proxy by a dotted line segment in
order to be valid; we shall say that it must have a
subject - a term introduced in [5].

3.3 Modular Net Composition
In PML, it is possible to take a modular approach to
agent design, and this is achieved by allowing our
Petri nets to be composite entities, connected using
Place Proxies (see Fig. 3). Subnets can be added to
a net to promote reusability of functional units. In
particular, composition is recursive and thus a single
model is allowed to have multiple nested levels of
subnets. Petri net models that support this feature are
commonly known as Hierarchical Petri Nets [6].
The semantics of composition are flexible, and a
subpage (term borrowed from [8]) can be attached
to a container net in two ways.

The first we shall term conflicting composition,
in which we demand that the transitions of the
subnet are added to the top level net structure, thus
the subpage is always executed as if it was part of
the parent net (it’s supernet). When some of its
transitions are enabled they may execute instead of
one of the enabled supernet’s transitions.

The second way in which we can attach a
subpage is by concurrent composition. When this
takes place, the transitions of the subpage are not
added to the supernet structure; execution must take
place in another thread of control. This feature is
very useful in practical terms because it allows us to
better allocate physical threads of control to various
Petri nets that may constitute an agent’s net.

Fig. 3 Composition example, showing a message parser.

3.4 Inter-Agent Communication
By definition, Place Proxies can be used as tokens
in the places of our nets. Communication between
two or more agents using place proxies is always
asynchronous and can be visualised, with places for
downstream (incoming) messages and tokens for
upstream (outgoing) messages, as shown in Fig. 4.
Thus, multicast communication is also possible, by
using multiple tokens for multiple recipients.

Communication between remote agent-nets
occurs through Remote Place Proxies, as if they

were local. The exchange of Place Proxies in the
form of tokens provides a secure, uniform interface
toward all aspects of agent communication by
providing controlled access to specified places of
their nets. This concludes our PML overview.

Fig. 4 PML and inter-agent communication - simplified.

4 PRAKTOR Execution Layer
PML models are meant to be directly executable,
after arc expressions have been specified in code.
Currently, the IDE for graphical PML development
is at an early stage, but a reference implementation
of a PRAKTOR Runtime Library (PRL) has been
developed in [14], and it includes representations of
all PML elements in a total of approx. 150 classes.
The PRL has been built using the Java 1.5 SDK
(beta 1) which currently supports parametric
polymorphism, and it allows manual, programmatic
creation of executable PML-nets. Also, the PRL
introduces the abstractions of Portals and
Dispatchers, where the first act as gateway servers
for incoming agents and the second encapsulate the
network transport mechanics for the purposes of
migration. Hence, all features we shall advertise
here have been confirmed to work in preliminary
experimentations with real traveller worker-agents,
running in a small local area network. The results in
terms of agent footprint were encouraging, as it was
evident that the size of a PML-net is negligible
compared to the data it would normally be expected
to carry. Hosts have been successfully populated
with thousands of concurrently executing agents and
the general performance of the PRL has been found
to be high and scalable.

4.1 Persistence and Hierarchical Migration
In terms of identified degrees of mobility, we
usually differentiate between strong and weak.

Strong mobility is the type of migration in which an
agent can, at any time during its execution, encode
and dispatch itself to another destination on the
network, in which destination the agent will resume
execution without appearing to have lost any of its
previous state. Weak mobility refers to the same
situation but the requirement on state preservation is
relaxed and only instance variables are preserved.
The latter means that the execution state of an agent
can be lost during the transfer process; for example,
stack frame information and the program counter
may not be captured with the agent’s state.

PRAKTOR supports strong mobility, and also
allows the migration of groups of multi-threaded
agents through the network with full state
reconstitution and resumption upon arrival to the
new host. Exact state preservation is a direct result
of the inherent state representation encoded in the
marking of the constituent PML-net(s) of an agent –
since firing is atomic, we define migration in such a
way that it occurs in between two transition
occurrences (firings), thus preserving the state of the
net(s).

4.2 Agent Encapsulation
Agents should not directly invoke operations or
have any public operations to be invoked by other
agents – instead, Place Proxies are exchanged to
enable dynamic and asynchronous message passing
(see Fig. 5). Commands can be submitted to agents
and have them stop, freeze, persist, or migrate to
remote hosts transparently. Interactions between
agents are governed by protocols, and not by
interfaces. Finally, an agent’s lifecycle management
can be delegated to itself, in contrast to traditional
network-aware component models where distributed
garbage collection is inevitable.

Fig. 5 Agent Encapsulation

4.3 The Scalable Concurrency Layer
The PRL employs a portable concurrency layer that
enables the logical mapping of physical resources to

Petri net components, and is able to condense more
than one agent (it’s PML-net) into a physical thread
of control. This has certain advantages: first, it
allows flexible resource allocation, because agents
can be grouped in an asymmetric way to achieve a
balance in performance and resource consumption;
second, it allows a system to consist of very large
numbers of agents, with only a fraction of physical
threads. Groups of agents may share physical
schedulable resources, and agents are also able to
attach new agents to their current thread of control.

4.4 Hierarchical Execution Contexts
PRAKTOR currently provides rudimentary support
for concrete representations of the computational
environment. Agents exist within Contexts, in which
basic services are being offered to enable dynamic
agent lookup, isolated execution and communication
space, and basic system bookkeeping related to the
arrival and departure of agents. Contexts can be
modelled and implemented using the PML/PRL.
Consequently, PRL supports the migration of a
context together with all agents that are inside it, in a
grouped manner. Also, as Contexts are composite
components, a context may migrate (or, for
example, hibernate to disk) together with all its
subcontexts and their agents, recursively.

5 Conclusion
An agent architecture that is fundamentally based on
Petri Nets has manifold advantages: firstly, it
models explicit concurrency inside the agents
themselves; secondly, it provides an intuitive and at
the same time analysable model of individual agent
behaviour. Petri net based models have already been
researched in [4, 3] for the purposes of design and
simulation, but with limited practical applicability.
PRAKTOR is founded upon PML, a typesafe
modelling language that is concise and precise, with
clearly identified semantics. PML does not enforce
specific agent architectures. However, unlike purely
modelling languages, it provides directly executable
versions of agent models by virtue of its one to one
mapping of PML constructs to a specialised
software library (PRL) that has been already
implemented. PRAKTOR Agents may consist of an
arbitrary number of physical threads of control.
Moreover, agents that are produced by this
architecture are persistent and thus exhibit strong
mobility in a portable way. Analysis of PML models
and their properties has not been attempted yet, but
remains as a future research goal.

References:
[1] Christensen, S., Hansen, N. D. Coloured Petri

Nets Extended with Place Capacities, Test Arcs
and Inhibitor Arcs in Marsan, A. M., LNCS, Vol.
691, pp 186-205, Springer-Verlag, 1993.

[2] Decker, K. et al Distributed Intelligent Agents.
IEEE Expert, Vol.11, No.6, pp 36-46, 1996.

[3] Duvigneau, M., Moldt, D., and Rölke, H.
Concurrent Architecture for a Multi-agent
Platform in Giunchiglia, F., Odell, J., and Weiß,
G. (eds) Agent-Oriented Software Engineering
III, 2002.

[4] Ferber, J. Multi-Agent Systems: An Introduction
to Distributed Artificial Intelligence. Addison-
Wesley, 1999.

[5] Gamma, E., Helm, R., Johnson, R., and
Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison
Wesley, 1995.

[6] Huber, P., Jensen, K., and Shapiro, R.M
Hierarchies in Coloured Petri Nets in Proc. of
the 10th Int. Conference on Application and
Theory of Petri Nets, Bonn, Germany, pp 192-
209, 1989.

[7] ISO/IEC FCD 15909: Information Technology -
High Level Petri Nets – Concepts, Definitions
and Graphical Notation, 21 June 1998, ISO/IEC
JTC1/SC7 N1947.

[8] Jensen, K. An Introduction to the Theoretical
Aspects of Coloured Petri Nets in Bakker J.W.
de, Roever W.-P. de, Rozenberg, G. (eds.) A
Decade of Concurrency. LNCS Vol. 803, pp 230-
272, Springer-Verlag, 1994.

[9] Peterson, J. L., Petri Net Theory and The
Modeling of Systems, Prentice-Hall Inc, 1981.

[10] Petri, C. A., Communication with Automata,
M.I.T. Memorandum MAC-M-212,
Massachusetts Institute of Technology, 1962.

[11] Reisig, W. Petri nets and algebraic
specifications. Theoretical Computer Science,
Vol. 80, No. 1-2, pp 1-34, 1991.

[12] Sycara, K. P. Multiagent Systems. AI
MAGAZINE, pp. 79-92, Summer 1998.

[13] Wooldridge, M. Intelligent Agents in Weiss, G.
(ed) Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. The MIT
Press, 1999.

[14] Mostrous, D. Engineering Multiagent Systems
with PRAKTOR, BSc(Hons) Final Year Project,
UCE Birmingham, 2004.

[15] Object Management Group. UML 2.0 OCL
Final Adopted specification, available online at
http://www.uml.org.

