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Abstract: Mobile agents have emerged as an attractive paradigm for the conceptualization and realisation of 
massively distributed and autonomous systems. We describe an original meta-model that can be used to design 
scalable, highly concurrent multiagent system architectures potentially consisting of very large numbers of 
fully mobile, persistent agents of arbitrary granularity and complexity. The model consists of an agent 
modelling language based on High Level Petri Nets and a functional reference implementation that enables the 
direct reification of design artefacts into executable mobile agent automata.  
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1   Introduction 
Systems populated by autonomous mobile agents 
are a prominent example of massively concurrent 
architectures, where computing entities are under 
continuous execution which is frequently in conflict 
and cooperation, and communication is inherently 
asynchronous [12]. Also, individual agent behaviour 
can frequently be thought of as comprising of 
structures that resemble task control workflows, 
given that by definition agents exist with some 
purposeful role, plan or task encoded into their 
structure [4]. Thus, with regard to agent systems 
modelling, it would be highly beneficial if we could 
use a formalism that has the modelling capacity to 
describe all of the above concepts in an intuitive and 
at the same time unambiguous way. High Level 
Petri Nets (HLPNs) lend themselves as such a 
formalism that also seems to have future in terms of 
integration of formal methods for system analysis 
and verification [8]. 

We describe PRAKTOR, an original mobile 
agent meta-architecture introduced in [14], and we 
outline the concrete elements that enable the 
reification of agent design artefacts into equivalent, 
executable Petri net automata. Moreover, we 
describe the proposed inter-agent communication 
mechanisms and explain how PRAKTOR attacks 
the fundamental problem of agent migration 
employing what we will term hierarchical strong 
mobility. The name PRAKTOR originates from the 
homonymous Hellenic noun which directly 
translates to the English noun agent. 

2   Background and Motivation 
An agent can be though of as a situated entity that 
perceives and may act upon its environment in an 
autonomous, goal-driven fashion [13]. In addition, a 
mobile agent is capable of migrating to remote agent 
environments during its execution. More elaborate 
definitions can be found in [4].  

 
 

2.1 Characteristics of Intelligent Agents 
Although there is no global consensus on a single 
definition, a software entity that employs certain 
widely accepted properties would normally be 
pronounced an intelligent agent. In particular, we 
expect that an intelligent agent would exhibit the 
following characteristics [4, 12, 13]: 
(a) Autonomy: an agent is (semi-)autonomous, and 
acts in accordance with its goals, normally without 
user intervention. It should hold a considerable 
degree of control over its execution and its resource 
management.  
(b) Flexibility: An agent should be able to 
dynamically select simple or composite actions to 
perform in reply to the perceived state of the 
external environment. 
(c) Execution independence: Agents should operate 
asynchronously and independently to other agents 
and processes. 
(d) Temporal continuity: an agent is a continuously 
running entity with a medium to wide lifespan - it 
should not be degraded to a mere one-off task. 



(e) Location awareness: Agents are aware of their 
location. However, this does not adversely affect the 
perceived levels of location transparency but rather 
provides with the additional benefits of locality. 
(f) Social ability: Agents may communicate, 
collaborate, and possibly negotiate with other 
agents and humans in pursuit of their goals. 
 
 
2.2 Mobile Agents as High Level Petri Nets 
Petri Nets [10] are mathematical abstractions that 
have emerged as an important tool for the modelling 
and analysis of interacting, concurrent components 
[9]. Therefore, considering their modelling power, 
we have concluded that in order to define an agent 
modelling environment atop, it should be enough to 
utilise extensions that can provide more modelling 
convenience.  

The Petri nets that we will be using as the base 
in PRAKTOR are usually referred to as High Level 
Petri Nets (HLPN), also commonly known as 
Coloured Petri Nets (CP-Nets) [7, 8]. It is assumed 
that the reader is familiar with the basics, thus we 
shall limit ourselves to reminding that in CP-Nets 
tokens are instances of data types, rather than 
indistinguishable markers [8]. CP-Nets are a concise 
modelling language compared to ordinary Petri nets 
with which they still remain equivalent (i.e., 
convertible) in the same way high-level 
programming languages are equivalent to machine 
language but are more suitable for practical systems 
development [8].  

We propose a class of such High Level Petri 
nets as the means by which we can model agents 
that can exhibit the characteristics mentioned in 
§2.1. Petri nets are also executable; it is possible, 
given an initially marked net, to simulate the 
behaviour of that net by applying a set of execution 
rules – the next state function. These rules define the 
number and actual distribution of tokens in a Petri 
net, i.e. the state of the net [9]. Execution occurs in 
atomic steps, which are known as the firing of 
transitions. The rationale behind using the formalism 
of HLPNs is further enforced by three factors: first, 
the inherent ability of Petri nets to explicitly 
represent control flow intermixing parallelism, 
mutual exclusion, iteration, conditionality, and 
sequential behaviour; second, the potential 
analysability (decidability) of Petri nets against 
various dynamic properties such as liveness; thirdly, 
the intuitive graphical nature of Petri nets.  

We define a PRAKTOR Agent as “an 
autonomous software component that has fully 
encapsulated data, methods, and architecture, and 
that has full control of its logical thread(s) of control 

that it uses for the sole purpose of fulfilling its 
embedded logic, which is internally encoded in the 
form of an executable High Level Petri Net 
Automaton. It may communicate only through 
asynchronous message passing.”  
 
 
2.3 The Object Oriented Perspective 
PRAKTOR CP-nets, their constituent elements, and 
the data tokens they hold, are by definition instances 
of appropriate object-oriented abstract data types. 
This allows the possibility of having CP-nets as the 
data tokens of a CP-net’s places. The latter 
capability can be found in the literature wherein 
such nets are usually termed Reference Nets [1]. An 
immediate consequence of the aforesaid property is 
that tokens not only represent values but may also 
have methods that can be invoked upon them during 
execution. 

We further impose that PRAKTOR nets are 
strongly typed and thus, a place can only be eligible 
to hold multisets of instances over its assigned 
object type and its subtypes, rather than data tuples 
as in CP-Nets [8]. An implementation must enforce 
type safety, either by virtue of native parametric 
polymorphism support, or by runtime type 
consistency checks. Ideally, a model can be 
statically verified before being transliterated to 
executable format by the target language compiler. 
PRAKTOR nets can thus be labelled Executable 
Parametric Object Petri nets. 

 
 

3   PRAKTOR Modelling Language 
We have adopted a series of well-studied extensions 
to Petri nets [see 9, 8] in order to achieve the 
necessary level of abstraction required for practical 
agent design. These include inhibitory and test arcs, 
together with transition priorities [9]; reserve arcs 
that do not consume their tokens; and total capacity 
restrictions on places [1]. These will be introduced 
through our description of the PRAKTOR 
Modelling Language (PML). 
 
 
3.1 Basic Agent Net Building Blocks in PML 
We present the main structural elements of the PML, 
along with explanations on notation. The reader 
should note that PML does not use standard CP-Net 
notation, as can be seen in the Bootstrap Scheduler 
of agent nets (Fig. 1). 
 
 
 



3.1.1   Transitions and Transition Guards 
Transitions represent a computation step of arbitrary 
granularity graphically denoted as a solid bar, and 
labelled with a short verb phrase that describes the 
task. Additionally, an extra identifier of the general 
format “(Tn)”, where +ℵ∈n , can prefix the 
description, like e.g. “(T2) Execute scheduler 
command” (see Fig. 1). 

Optionally, a Boolean expression can be 
attached to a transition, and specify that we only 
accept bindings (inputs) for which it evaluates to 
true [8]. The input to that expression is the set of 
multisets produced by evaluating the arc expressions 
(or weights) of all input arcs of the current transition 
(see §3.1.3). Such expressions are commonly termed 
transition guards [8] and in PML, if the result is 
positive, they provide the new bindings (i.e., sub-
bags of the evaluated token multisets) that may be 
used as the enabling tokens (i.e. actual input tokens) 
of the transition, if it fires. An integer ]255,0[∈p  
can be shown inside a transition to denote its 
priority. 

 

 
Fig. 1 PRAKTOR Runtime Library (PRL) scheduler net, 
which may be used to execute any number of agent nets. 

 
3.1.2   Places 
Places act as input and/or output buffers to one or 
more transitions, holding the data tokens of the agent 
being modelled. By convention, places are drawn as 
circles or ellipses, and in PML we annotate them 
with three pieces of information.  

Firstly, places are required to have an 
annotation of the format <T> where the less than 
and greater than symbols always surround a type 
name, abstractly denoted T in this example. Notice 
that we do not define the internal structure of type 
name T, therefore nested type parameterisation is 
possible if the target implementation language 
supports parametric polymorphism.  

The optional parts of information are the total 
capacity [1] and the place name. Total capacity is 
shown in the format {k} where k denotes the upper 
limit, and +ℵ∈k . A special case exists whereby the 
wildcard ‘*’ can be used instead of a positive 
number for k, in which case the interpretation is 
{+∞}. The requirements on names are relaxed and in 
general the guideline is that place names should 
normally consist of a descriptive plural noun 
phrase, and when required, they could be annotated 
with an extra prefix “(Pn)”, where +ℵ∈n , (e.g. 
“(P1) Scheduled nets” – also see Fig. 1). Normally, 
place types and integer capacities are placed next to 
each other adjacent to the first hemisphere of their 
associated place, and place names adjacent to the 
third, for consistency. 
 
3.1.3   Arcs and Arc Expressions 
Transitions, which represent computation, and 
places, which represent data, are connected using 
directed edges (arcs). Arcs enable the modelling of 
input-output functions of each discrete computation 
(i.e., each transition) in the agent being modelled. 
Arcs are normally annotated with an expression that 
evaluates (e.g. using variable unification) to a 
multiset over the type of the arc’s associated place. 
The cardinality of the resulting multiset may be a 
function of the input tokens, thus PML supports 
flexible arcs, as defined in [11].  

In PML, arcs can be annotated with (a) an 
expression in bag notation [8], or (b) an expression 
in Object Constraint Language (OCL) [15], or (c) an 
integer +ℵ∈w , that represents arc weight [9]. A 
short verb phrase may be also added as an extra 
description; only one of (a), (b), or (c) can be used 
on a single arc. When (a) or (b) is used, the 
expression is expected to appear within curly 
brackets. Expressions attached to arcs must always 
evaluate to multisets (i.e. bags), irrespective of the 
actual notation used. OCL also supports the building 
of expressions that evaluate to bags (see [15]), but 
using a different syntax than the one found in CP-
nets literature (see [8]). An alternative to the abstract 
expression formats is the direct use of language-
specific code in place of arc annotations. When code 
is to be used directly as an arc expression, a short 
verb phrase may optionally be shown in the PN 
graph for conciseness, instead of the actual code. 

Arc weights are not always required, and when 
omitted, the interpretation should be that weight = 1. 
Note that an arc can only be annotated with either an 
integer weight or an expression, but never both, as 
arc expressions are always assumed to suppress 
weights in PML.  



Inhibitor arcs [9, 1] are always directed from a 
place to a transition, and are drawn using a small 
hollow circle instead of an arrowhead at the 
transition end. Test arcs [1] are drawn with a solid 
circle at the transition end. Non-consuming (Reserve 
[1]) input arcs are depicted as edges with a hollow 
arrow tip at the transition end. Regular input-output 
arcs are drawn with a plain arrowhead at the 
transition end [9]. The PML notation for arcs is 
illustrated in Fig. 2 below. 

 

 
Fig. 2 PML Arc Notation, indicating whether each type  
of arc can be an input and/or an output of a transition. 

 
 
3.2 Place Proxy and Secure Communication 
An essential element of a multiagent architecture is 
the communication infrastructure that it provides to 
agents. In PML, there are mainly two occurrences 
where communication would be beneficial: first, we 
have intra-agent communication; second, we have 
inter-agent communication. In order to address the 
communication problem we have introduced a new 
modelling primitive, the Place Proxy, which enables 
controlled and secure message passing between Petri 
net components in a simple and elegant way. It is 
called a proxy because it adds no functionality to its 
subject [5], but rather it adds permissions and a level 
of indirection when there should not be direct 
binding between two nets. It acts as a protection 
proxy, a virtual proxy, a remote proxy, a 
synchronization proxy, and a smart reference [5]. 
All of that is possible because a Place Proxy is only 
a thin wrapper for a real place (or another proxy). 

In a PML model, a Place Proxy is shown as a 
dotted, hollow place, with the letter ‘P’ printed in its 
centre. It can be used wherever a place could have 
been used, but it must eventually be connected to a 
place or another proxy by a dotted line segment in 
order to be valid; we shall say that it must have a 
subject - a term introduced in [5]. 
 
 

3.3 Modular Net Composition 
In PML, it is possible to take a modular approach to 
agent design, and this is achieved by allowing our 
Petri nets to be composite entities, connected using 
Place Proxies (see Fig. 3). Subnets can be added to 
a net to promote reusability of functional units. In 
particular, composition is recursive and thus a single 
model is allowed to have multiple nested levels of 
subnets. Petri net models that support this feature are 
commonly known as Hierarchical Petri Nets [6]. 
The semantics of composition are flexible, and a 
subpage (term borrowed from [8]) can be attached 
to a container net in two ways. 

The first we shall term conflicting composition, 
in which we demand that the transitions of the 
subnet are added to the top level net structure, thus 
the subpage is always executed as if it was part of 
the parent net (it’s supernet). When some of its 
transitions are enabled they may execute instead of 
one of the enabled supernet’s transitions. 

The second way in which we can attach a 
subpage is by concurrent composition. When this 
takes place, the transitions of the subpage are not 
added to the supernet structure; execution must take 
place in another thread of control. This feature is 
very useful in practical terms because it allows us to 
better allocate physical threads of control to various 
Petri nets that may constitute an agent’s net. 
 

 
Fig. 3 Composition example, showing a message parser. 

 
 
3.4 Inter-Agent Communication 
By definition, Place Proxies can be used as tokens 
in the places of our nets. Communication between 
two or more agents using place proxies is always 
asynchronous and can be visualised, with places for 
downstream (incoming) messages and tokens for 
upstream (outgoing) messages, as shown in Fig. 4. 
Thus, multicast communication is also possible, by 
using multiple tokens for multiple recipients. 

Communication between remote agent-nets 
occurs through Remote Place Proxies, as if they 



were local. The exchange of Place Proxies in the 
form of tokens provides a secure, uniform interface 
toward all aspects of agent communication by 
providing controlled access to specified places of 
their nets. This concludes our PML overview. 
 

 
Fig. 4 PML and inter-agent communication - simplified. 

 
 

4   PRAKTOR Execution Layer 
PML models are meant to be directly executable, 
after arc expressions have been specified in code. 
Currently, the IDE for graphical PML development 
is at an early stage, but a reference implementation 
of a PRAKTOR Runtime Library (PRL) has been 
developed in [14], and it includes representations of 
all PML elements in a total of approx. 150 classes. 
The PRL has been built using the Java 1.5 SDK 
(beta 1) which currently supports parametric 
polymorphism, and it allows manual, programmatic 
creation of executable PML-nets. Also, the PRL 
introduces the abstractions of Portals and 
Dispatchers, where the first act as gateway servers 
for incoming agents and the second encapsulate the 
network transport mechanics for the purposes of 
migration. Hence, all features we shall advertise 
here have been confirmed to work in preliminary 
experimentations with real traveller worker-agents, 
running in a small local area network. The results in 
terms of agent footprint were encouraging, as it was 
evident that the size of a PML-net is negligible 
compared to the data it would normally be expected 
to carry. Hosts have been successfully populated 
with thousands of concurrently executing agents and 
the general performance of the PRL has been found 
to be high and scalable. 
 
 
4.1 Persistence and Hierarchical Migration 
In terms of identified degrees of mobility, we 
usually differentiate between strong and weak. 

Strong mobility is the type of migration in which an 
agent can, at any time during its execution, encode 
and dispatch itself to another destination on the 
network, in which destination the agent will resume 
execution without appearing to have lost any of its 
previous state. Weak mobility refers to the same 
situation but the requirement on state preservation is 
relaxed and only instance variables are preserved. 
The latter means that the execution state of an agent 
can be lost during the transfer process; for example, 
stack frame information and the program counter 
may not be captured with the agent’s state. 

PRAKTOR supports strong mobility, and also 
allows the migration of groups of multi-threaded 
agents through the network with full state 
reconstitution and resumption upon arrival to the 
new host. Exact state preservation is a direct result 
of the inherent state representation encoded in the 
marking of the constituent PML-net(s) of an agent – 
since firing is atomic, we define migration in such a 
way that it occurs in between two transition 
occurrences (firings), thus preserving the state of the 
net(s).  

 
 

4.2 Agent Encapsulation 
Agents should not directly invoke operations or 
have any public operations to be invoked by other 
agents – instead, Place Proxies are exchanged to 
enable dynamic and asynchronous message passing 
(see Fig. 5). Commands can be submitted to agents 
and have them stop, freeze, persist, or migrate to 
remote hosts transparently. Interactions between 
agents are governed by protocols, and not by 
interfaces. Finally, an agent’s lifecycle management 
can be delegated to itself, in contrast to traditional 
network-aware component models where distributed 
garbage collection is inevitable. 
 

 
Fig. 5 Agent Encapsulation 

 
 

4.3 The Scalable Concurrency Layer 
The PRL employs a portable concurrency layer that 
enables the logical mapping of physical resources to 



Petri net components, and is able to condense more 
than one agent (it’s PML-net) into a physical thread 
of control. This has certain advantages: first, it 
allows flexible resource allocation, because agents 
can be grouped in an asymmetric way to achieve a 
balance in performance and resource consumption; 
second, it allows a system to consist of very large 
numbers of agents, with only a fraction of physical 
threads. Groups of agents may share physical 
schedulable resources, and agents are also able to 
attach new agents to their current thread of control.  
 
 
4.4 Hierarchical Execution Contexts 
PRAKTOR currently provides rudimentary support 
for concrete representations of the computational 
environment. Agents exist within Contexts, in which 
basic services are being offered to enable dynamic 
agent lookup, isolated execution and communication 
space, and basic system bookkeeping related to the 
arrival and departure of agents. Contexts can be 
modelled and implemented using the PML/PRL. 
Consequently, PRL supports the migration of a 
context together with all agents that are inside it, in a 
grouped manner. Also, as Contexts are composite 
components, a context may migrate (or, for 
example, hibernate to disk) together with all its 
subcontexts and their agents, recursively. 
 
 
5   Conclusion 
An agent architecture that is fundamentally based on 
Petri Nets has manifold advantages: firstly, it 
models explicit concurrency inside the agents 
themselves; secondly, it provides an intuitive and at 
the same time analysable model of individual agent 
behaviour. Petri net based models have already been 
researched in [4, 3] for the purposes of design and 
simulation, but with limited practical applicability. 
PRAKTOR is founded upon PML, a typesafe 
modelling language that is concise and precise, with 
clearly identified semantics. PML does not enforce 
specific agent architectures. However, unlike purely 
modelling languages, it provides directly executable 
versions of agent models by virtue of its one to one 
mapping of PML constructs to a specialised 
software library (PRL) that has been already 
implemented. PRAKTOR Agents may consist of an 
arbitrary number of physical threads of control. 
Moreover, agents that are produced by this 
architecture are persistent and thus exhibit strong 
mobility in a portable way. Analysis of PML models 
and their properties has not been attempted yet, but 
remains as a future research goal. 
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