
Teaching to computer based on neural network model

BAHRAM. TAFAGHODINIA

Islamic Azad University of Arak, Faculty of Postgraduate studies
Agricultural Entomology Department.

ZOHREH. HEIDARY
Naft-Iran Company. Tehran, Iran.

Abstract: However digit base in computer is binary and their recognition by 1 and 0 is regain able,
but nowadays by using new and advanced programming and pattern’ making can teach computer with an
algorithm [5]. So that from neuron model can be used in Hopfield neural network. Here, through
language of, programming we observe a sample of teaching and as a result. This kind of teaching will
result in new field in optimization of artificial intelligence in robot and humanoids. In this model and
algorithm, computer without using computer base software can certainly recognize language, words and
alphabets.

Key-Words: - Artificial Intelligence, Neural network,

1 Introduction

Artificial Intelligence is a branch of
Science which deals with helping machines find
solutions to complex problems in a more human-
like fashion [1]. This generally involves
borrowing characteristics from human
intelligence, and applying them as algorithms in
a computer friendly way [4] [6]. A more or less
flexible or efficient approach can be taken
depending on the requirements established,
which influences how artificial the intelligent
behavior appears.

Artificial intelligence is generally
associated with Computer Science, but it has
many important links with other fields such as
Mathematics, Psychology, Cognition, Biology
and Philosophy, among many others [2]. Our

ability to combine knowledge from all these
fields will ultimately benefit our progress in the
quest of creating an intelligent artificial being.

However digit base in computer is binary
and their recognition by 1 and 0 is regain able,
but nowadays by using new and advanced
programming and pattern making can teach
computer with an algorithm [5]. So that from
neuron model can be used in Hopfield neural
network [3]. Here, through language of,
programming we observe a sample of teaching
and as a result. This kind of training will result
in new field in optimization of artificial
intelligence in robot and humanoids. In this
model and algorithm, computer without using
computer base software can certainly recognize
language, words and alphabets.

2 Materials and Methods

The algorithm of program includes 4 stages:

1- Based on neurons of brain neural
network, here also is replaced instead of neurons
and specific weight is not considered for them.
Assume in puts aver X0, X1 ,…, Xm+1 and Tij is
weight of function. In this stage the weight of
fasteners is specified. If i!=j → ∑Xis , ∑Xjs
if i=j → (i>=0 , j<=m-1) or i=j=0 s=0, m-1 and j
and I will be the weight of fastener knot of I to
knot of j. Xis, is the sample element of I related
to s group and also. Xjs, is the sample element of
j related to s group. In this case, if inputs are in
the shape of X0,X1,…,Xm+1 , out puts will be
x’0,x’1,…,x’m+1.

2- Second stage is specifying primary
numbers by using unknown input model. Whit
assu1ption µi(0)=Xi that i=0, …,m-1
 network includes m group.
Inputs will be only +1,-1. Here µi(t) is the output
of knot and I is in the time of t. and Xi that can
be +1 to -1 is of i element of input model.

3- Repetition until reaching to permanent.
 µi(t+1)=fh[∑Tij *µi(t)]
that i=0,…,m-1 and t=0,… , j=0,…,m-1
 fh function is one of useable know
function in Hopfield net works and stages are
repeated till outputs of knot express the sample
which are most similar to unknown input.

4- Repeat from step 2

Text of program (C++)

#include <stdlib.h>
#include <stdio.h>

#define FALSE 0
#define TRUE 1

#define LOW 1
#define HIGH +1

#define BINARY(X) ((X)==LOW ? FALSE :
TRUE)
#define TWOWAY(X) ((X)==FALSE ? LOW:
HIGH)

typedef struct {
/*OUR NET:*/
int Units;
/*- number of terms in this net*/
int* Output;
/*- output of term i*/
int* Threshold;
/*-threshold of term j*/
int** Weight;
/*-connection weights to term i*/
}NET;

/****RANDOMS DRAWN FROM
DISTRIBUTIONS ****/

void InitializeRandoms()
{
srand(4711);}
int RandomEquaLINT(int LOW,int HIGH) {
return rand() %(HIGH-LOW+1)+LOW; }

/****SET UP OUR ASSUMPTION ****/
#define NoOfData 7
#define X 10
#define Y 10
#define N (X*Y) /*100*/

char Pattern[NoOfData][Y][X]={
{
" 000000 ",
" 00000000 ",
" 00 ",
" 00 ",
" 000000 ",
" 000000 ",
" 00 ",
" 00 ",
" 00000000 ",
" 000000 "
},

{

" 000000 ",
"00000000 ",
"00 000 ",
" 000 ",
" 000 ",
" 000 ",
" 000 ",
" 000 ",
"000000000 ",
"000000000 "
},

{
"000000000 ",
"000000000 ",
"000 ",
"000 ",
"00000000 ",
" 000000 ",
" 000",
" 000",
"00 000 ",
" 000000 "
},

{
" 000 ",
" 0000 ",
" 000 ",
" 000 ",
" 000 ",
" 000 ",
" 000 ",
" 000 ",
" 000 ",
" 00000 "
},

{
" 00000000 ",
"0000000000",
"00 ",
"00 ",
" 000000000 ",
"0000000000",
"00 00",
"00 00",
"0000000000",
" 00000000 "
},

{

"0000000000",
"0000000000",
"00 000",
" 000 ",
" 000 ",
" 000 ",
" 000 ",
" 000 ",
" 000 ",
" 000 "
},

{
" 00000000 ",
"0000000000",
"00 00",
"00 00",
" 00000000 ",
"0000000000",
"00 00",
"00 00",
"0000000000",
" 00000000 "
}};

int Input[NoOfData][N];
FILE* f;
/**** INITIALISE NETWORK VALUES ****/

void LetsInitialise(NET* Net){
int n,i,j;
for (n=0;n<NoOfData;n++){
for (i=0;i<Y;i++){
for(j=0; j<X; j++){
Input [n][i*X+j]=TWOWAY(Pattern [n][i][j]=='0');
}}}
f=fopen("HOPOUT.txt","W");
}}

/**** WRITE RESULT TO FILE ****/
void WriteNet(NET*Net){
int i,j;
for (i=0;i<Y;i++){
for(j=0;j<X;j++){
fprintf(f,"%c",BINARY(Net->Output[i*X+j]) ? '0' :
'');}
fprintf(f,"\n");}
fprintf(f,"\n");}

/***************************/

void LetsClose(NET*Net){

fclose(f);}

/**** LETS SETUP OUR DATA STRUCTURE
****/

void MakeNet(NET*Net){
int i;
Net->Units=N;
Net->Output=(int*) calloc(N,sizeof(int));
Net->Threshold=(int*) calloc(N,sizeof(int));
Net->Weight=(int**) calloc(N,sizeof(int*));
for(i=0;i<N;i++){
Net->Threshold[i] =0;
Net->Weight[i]=(int*)calloc(N,sizeof(int));}}

/**** CALCULATION OF CONNECTION
WEIGHTS ****/

void CalculateWeights(NET*Net){
int i,j,n;
int Weight;
for(i=0;i<Net->Units;i++){
for(j=0;j<Net->Units;j++){
Weight=0;
if(i!=j){
for(n=0;n<NoOfData;n++){
Weight+=Input[n][i]*Input[n][j];}}
Net->Weight[i][j]=Weight;
}}}

/**** USE OUTPUT AS NEXT INPUT ****/
void SetInput(NET*Net,int*Input){
int i;
for(i=0;i<Net->Units;i++){
Net->Output[i]=Input[i];}
WriteNet(Net);}

/**** GET OUTPUT FROM NETWORK ****/
void GetOutput(NET*Net, int*Output){
int i;
for(i=0; i<Net->Units;i++){
Output[i]=Net->Output[i];}
WriteNet(Net);}

/**** PROCESS OUR SIGNALS ****/
int Sigproc(NET*Net,int i){
int j;
int sum, Out;
int changed;
changed=FALSE;
sum=0;

for(j=0;j<Net->Weight[i][j]* Net->Output[j];{
}
if (sum!=Net->Threshold[i])
{
if (sum < Net->Threshold[i]) Out=LOW;
if (sum > Net->Threshold[i]) Out=HIGH;
if (Out!=Net->Output[i]){
changed=TRUE;
Net->Output[i]=Out;}
return changed;}

/**** PROCESS THE NETWORK ****/
void Netproc(NET*Net){
int Repeat, RepeatOfLastChange;
Repeat=0;
RepeatOfLastChange=0;
do{
Repeat++;
if (Sigproc(Net, RandomEquaLINT(0,Net->Units-
1)))
RepeatOfLastChange=Repeat;}
while(Repeat-RepeatOfLastChange<10*Net-
>Units);}

/**** SIMULATING THE NET ****/
void SimulateNet(NET*Net, int* Input){
int Output[N];
SetInput(Net,Input);
Netproc(Net);
GetOutput(Net,Output);}

/**** MAIN ****/
void main(){
NET Net;
int n;
InitializeRandoms();
MakeNet(&Net);
LetsInitialise(&Net);
CalculateWeights(&Net);
for (n=0;n<NoOfData;n+1){
SimulateNet(&Net, Input[n]);}
LetsClose(&Net);}

3 Results and Conclusion

Program Input:
" 000000 ",
" 00000000 ",
" 00 ",
" 00 ",

" 000000 ",
" 000000 ",
" 00 ",
" 00 ",
" 00000000 ",
" 000000 "

Program Output:
exit:
" 000000 ",
" 00000000 ",
" 00 00 ",
" 00 00 ",
" 000000 ",
" 000000 ",
" 00 ",
" 00 ",
" 00000000 ",
" 000000 "

Numerating of the machine happens with
numbers that have extreme digits and as a result
a lot of calculations are done by approximate
presentation of this number in today’s computer.
In today’s computer for presentation of all the
real numbers only a small relative subset of set
of real number is used. This subset only includes
rational number either positive or negative and
stores a fixed point part by the name (title) of
mantis along with an indicial point part by the
name (title) of specifications for example, a
number with usual care and with a lot of decimal
point which used in the series of 360 or 370 is
compound from a 24 digit binary and a 7 digit
medical binary with standard of 16. Since 24
binary digits are isomorphic of 7 to 8 decimal
number, it is assume that IBM series of 360 or
370 for set with exact decimals have at least 7
decimal digits. Presentation of 7 binary digit
shows range of 0 to 127.
But be cause of

0 1000010 101100110000010000000000
+((1/2)1+(1/2)3+(1/2)4+(1/2)7+(1/2)8+(1/2)24)*16
66=179.015625range of -64 to +63, namely 64
automatically is deducted from positive
presentation mechanical number is the exact
presentation of because the first binary digit is
the presentation of a number. 0 for + and 1 for –
of 7 binary digit after presentation of …. And 24

binary digit of the end of presentation of mantis
in fact is used for in
[179.01561737060546875,179.01563262939453
125] in this presentation the least positive
number is 1663 =1075 and the biggest number is
1063=1075. +/- d1d2…d24*16 the number less
than 16-64 results to under flow and after assume
there zero and number bigger than 1663 results
to over flow and in conclusion stops the 0
calculations. +/- d1d2…dk*10n 1<=d1<=9,
i=2,…,k which is -77<=n<=75 , k=7 ibm and
whenever p* is approximate of p, implicit error
equivalent to |p-p*| and proportional error
equivalent to p-p*/|p| on the condition that p=0
can be considered. The probility of error can be
calculated by idiographic the ory. Whenever p of
idiotrapie compound is from extreme grade of n
with kots in Tn+1, in that case for each max|f(x)-
p(x)|<=1/2n(n+1)! Max|fn+1(x)| that f€cn+1[-1,1] ,
x€[-1,1] of compound of Chipchof can be used
for decreeing the grade of one scant making
compound with the least loss in care.

References:

1. T. S. Bellows, R. G. Vandriesche, and J. S.
Elkinton, Life table analysis construction
and analysis in the evaluation of natural
enemies, Ann. Rev. Entomol. 37: 587-614
(1992)

2. P. Jackson , Introduction to Expert
Systems, Addison-Wesley, (1999)

3. S. Holtzman, Intelligent Decision
Systems, Addison-Wesley,(1989)

4. A. Blum, Neural Networks
Programming in C++: An Object-
Oriented Framework for Building
Connectionist Systems, John Wiley,
(1992)

5. Edward R. Dougherty, Charles Robert
Giardina, Mathematical Methods for
Artificial Intelligence and Autonomous
Systems, Prentice Hall, (1988)

6. James A. Freeman, David M. Skapura,
Neural Networks: Algorithms,
Applications, and Programming
Techniques, Addison-Wesley, (1991)

