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Abstract: - In this paper two methods of designing Balanced Boolean functions for cryptographical 
transformations are presented. The first of them is based on using orthogonal nonlinear components. The 
second method realizes a combinatorial approach. Both methods provide high nonlinearity for the obtained 
functions and both of them operating with Algebraic Normal Form. The advantage of the first method is the 
simplicity and the technological realization and of the second the significant greatest number of the generated 
functions compared to the known methods. 
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1   Introduction 

Every cryptographic transformation is based on 
an unsolved mathematical task. The impossibility to 
analytically solve system of nonlinear Boolean 
equations is considered to be one of these 
mathematical tasks. This is precisely the reason that 
the Boolean functions are used in cryptography. 
Based on the nonlinear Boolean transformations 
they have developed practically all block cipher, the 
stream cipher and the most part of the hash-
algorithms. In a practical level the Boolean 
functions are not being used only in public key 
algorithms that have as mathematical base an 
unsolved task of the number theory. 

The main advantage of the Boolean functions in 
cryptography is considered to be the high efficiency 
at their calculation by software and hardware 
means. So for algorithms with roughly the same 
cryptoresistance, that is based on the Boolean 
functions is executed thousands times faster than 
modern public key algorithms.  

Attacking to the cryptographic algorithms, based 
on Boolean transformations can be considered as an 
effort of solving an equivalent nonlinear Boolean 
functions system.  

The classical types of attacks to block cipher are 

linear and differential cryptanalysis [2,6]. Their 
utilization allows under certain condition to 
decrease enumeration while algorithm breaking. 

The effectiveness of those types of attacks is 
determined definitely by the properties of the 
Boolean functions that are used in cryptographic 
algorithms. In order to provide higher 
cryptoresistance to the linear and differential 
cryptanalysis, the Boolean functions which are used 
in cryptographical transformations should be 
balanced, orthogonal, have high non-linearity and 
maximum differential entropy. 

The high non linearity of the Boolean functional 
transformations makes the linear approximation non 
effective at linear cryptanalysis.  

The high level of differential entropy of the 
Boolean transformations provides smoothing of 
XOR-profile which decreases the effectiveness of 
differential cryptoanalysis.  

From the cryptographycal applications point of 
view, one of the most important properties of 
Boolean function is the Strict Avalanche Criterion – 
SAC. For the Boolean transformations that have this 
criterion, as shown above, the effectiveness of the 
differential cryptanalysis is decrease. Apart from 
this, SAC makes the elimination of the variables not 



effective at linear cryptanalysis [6]. 
The dynamic increase of information technology 

requires on one side the increase of 
cryptoresistance, due to the complexity of 
cryptographic transformations and on the other side 
the more rapid cryptographic processing.  

The solving of these conflicting requirements 
can be achieved using in the cryptographycal 
structures which are reconfigurated by a key 
Boolean functions with high cryptographic 
characteristics of great number of variables.  

 
Under these conditions it’s very important from the 
practical point of view, to develop high technology 
methods of designing Boolean functions that satisfy 
cryptographic criteria and more specific 
reconfigurated Balanced high non linear SAC 
functions.  

 
2 Basic Definitions and Properties of 

SAC-functions 
 

The Boolean function f(x1,…,xn) of n variables can be 
represented in the form of true table or binary 
sequences of length 2n and in algebraic normal form 
(ANF):   
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The Hamming weight W (f(x1,…,xn) of a Boolean 
function f(x1,…,xn) of n variables is the total number 
of the values of “one” that the function attains on the 
2n possible tuples of the variables values that form the 
set Z 
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The Boolean function f(x1,…,xn) satisfies the total 
entropy maximum criterion, i.e., is balanced if it takes 
the values of “zero” and “one” with equal probability: 
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The Boolean function f(x1,…,xn) satisfies the criterion 
of the conditional entropy maximum or Strict 
Avalanche Criterion (SAC), if alterating any of its n 
variables results in changing the value of the function 
with the probability of 0.5. 
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In this case the non-linearity, N (f(x1,…,xn)), of the 
Boolean function f(x1,…,xn) is determined as the 
minimal Hamming's distance to the linear functions: 

))jxja
n,...,1j

...0a()nx,...,1x(f(W
n,...,0k},1,0{ka

min

))nx,...,1x(f(N

⋅⊕
=

⊕⊕
=∈

=

=

 (5) 

 
The theoretical maximum of nonlinearity of Boolean 
functions of n variables is equal to: 
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Boolean functions that have a maximum nonlinearity 
(6) are called bent-functions. But bent-functions are 
not balanced and so they can not be immediately used 
in cryptographical transformations. 
For balanced Boolean functions f(x1,…,xn) of n 
variables the value of nonlinearity N(f) with the 
constraint n>3 has limit superior [3]: 
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 12/)1(1 22)( −−− −≤ nnfN      for odd n 
where х is the maximal integer which is less than or 
equal to х. 
Order of nonlinearity of Boolean functions f(x1,…,xn) 
is maximum terms length in its ANF representation. 
Taking any of the variables xj, j∈{1,…,n} the 
Boolean function f(x1,…,xn) can always be 
represented as f(x1,…,xn)=αj(x1,…,xj-

1,xj+1,…,xn)⊕xj⋅βj(x1,…,xj-1,xj+1,…,xn), where 
αj(x1,…,xj-1,xj+1,…,xn) and βj(x1,…,xj-1,xj+1,…,xn) – 
Boolean functions, independent from variable xj.  If 
function βj is balanced, then function f(x1,…,xn) 
satisfies SAC for the variable xj., since 
f(x1,…,xj,…,xn)⊕f(x1,…,xj⊕1,…,xn)=βj(x1,….xj-

1,xj+1,…,xn). That way, the condition (4) about the 
correspondence of the function f(x1,…,xn) SAC is 
equivalent to:  
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Particularities of balanced Boolean SAC-functions 
manifest themselves in specific properties of their 
spectrum [8]. 
To obtain the spectrum F(w1,…,wn) of the Boolean 
function f(x1,…,xn), the direct Walsh transform 



should be performed according to the following 
formula: 
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The inverse Walsh transform, that obtains the 
Boolean function f(x1,…,xn) by its spectrum 
F(w1,…,wn), is achieved by the formula: 
 

∑
∈

⋅− −⋅⋅=
ZW

WXn WFXf )1()(2)(                (10) 

The Boolean function f(x1,…,xn) correspondence to 
the SAC-criterion may be determined by its spectrum 
properties F(w1,…,wn): a function f(x1,…,xn) is a 
SAC if and only if its spectrum F(w1,…,wn) holds the 
condition: 
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Note that the meaning of the spectrum F(0,…,0) 
equals the number of ones in the truth table of the 
function f(x1,…,xn), i.e. the function f(x1,…,xn) may 
be called balanced if its spectrum on the zero tuple 
F(0,…,0) is equal to 2n-1 . Taking this into account, a 
Boolean function f(x1,…,xn) is balanced and 
corresponds to SAC if its spectrum F(w1,…,wn) holds 
the condition: 
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Thus, if a Boolean function f(x1,…,xn) corresponds to 
the total and conditioned entropy maximum criteria, 
i.e. it is a balanced SAC-function, then the sum of its 
spectrum F(w1,…,wn) squares, which may be 
considered as analogous to the energy spectrum, has 
the maximal value [4]. 

 
3 Contemporary State of Balanced 

SAC functions Design 
 

Due to the importance placed on the automated 
design of balanced SAC-functions for modern 
information processing, a number of approaches have 
been suggested during the last decade. The designing 
methods of balanced SAC-functions can be divided in 
to three groups. 

In the first group, there are the genetic methods. 
These methods are based in designing new balanced 
SAC-functions from functions that are somehow 
previously obtained. More specifically, the Forre 
method [4], which is using the spectrum 
transformations, allows obtaining from one balanced 
SAC-function a certain set of such functions with the 
same number of variables. Analysis of formula (12) 
reveals, that it is possible, in principle, to construct all 
the spectra F(w1,…,wn) for which condition (12) is 

held. All the balanced SAC-functions may be 
obtained through the inverse Walsh transform of each 
constructed spectrum F(w1,…,wn) using (10). 
However, it should be stated [4] that a real Boolean 
function f(x1,…,x2) does not correspond to each 
spectrum F(w1,…,wn) that satisfies condition (12). In 
order to decrease the number of non-productive 
inverse transforms (10) and to assure high degrees of 
nonlinearity, it was suggested in [4] to somehow find 
a balanced SAC-function f(x1,…,xn) and to obtain its 
spectrum F(w1,…,wn) by Walsh transform. It was 
further suggested that the family of the spectra 
F1(w),…,Fh(w), h<2n, for which (12) is held and for 
which the real balanced SAC-functions corresponds, 
should be obtained through alteration of the signs of 
the components F(w1,…,wn) in an arbitrary way on all 
the 2n tuples w1,…,wn . The real balanced SAC-
functions may be obtained by inverse Walsh 
transform. 

From a processing aspect, the Forre method [4] 
does not correspond to the requirements imposed 
above for the design of balanced SAC-functions. 
This, because it operates with a function’s truth tables 
and the spectra’s value tables of whose capacity is 
proportional to 2n. The inversion of the Walsh 
transform to expression (10) demands intensive 
computer time that is also proportional to 2n. 

Balanced SAC-functions of high nonlinearity may 
be obtained by de-concatenation of a bent-function 
[3], however obtaining the bent-functions themselves 
from a large number of variables is a rather difficult 
problem whose solution requires substantial 
computational and memory resources. 

There are also methods that allow obtaining from 
one SAC-function, SAC-function with a higher 
number of variables. Particularly, if the Boolean 
function f(x1,…,xn) with n variables is balanced and 
satisfies SAC, then the Boolean function with n+1 
variables - ψ(x1,…,xn+1)=f(x1,…,xj⊕xn+1,…,xn), 
j∈{1,…,n} also will be balanced and SAC. 

In the second group are the designing methods of 
SAC-functions that are based on different 
transformations with orthogonal systems of Boolean 
functions. Here there is a number of interesting 
approaches proposed. The design method of balanced 
SAC functions that has been suggested by Kurosawa 
K. and Satoh T., is one of the well known [5]. In 
essence, the method’s idea consists of dividing n 
variables into two non-overlapping sets with s and t 
variables (n=s+t). Further on, a linear function 
g(x1,…,xs) of s variables and a binary matrix Q 
dimensionality equal to s × t are formed. In so doing, 
the number of one-components of the product Q⋅γ1 of 
matrix Q by any s-component vector γ1 with one non-



zero component and the product γ2⋅Q of any t-
component vector γ2 with one non-zero component is 
more than or equals one. The vector formed by the 
coefficients of the function g(x1,…,xs) is to be linear-
independent of the vectors formed by the columns of 
matrix Q. A balanced SAC-function is formed 
according to the formula: 
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The disadvantage of this method is the 
technological complexity, which is related to the use 
of matrixes of high dimensions. From the 
cryptography point of view the main disadvantage of 
the method the fact that it is based on superposition of 
linear functions. This allows through the transition to 
the representation of the function via the 
correspondent orthogonal basis to simplify the linear 
cryptanalysis. The advantage of the design methods 
of Boolean functions belonging to special classes 
based on the orthogonal systems is that they allow the 
transition in a more simple way from the design of a 
single function to the design of a system of high 
cryptoresistant Boolean functions. 

The greatest disadvantage of the genetic methods 
and the methods based on orthogonal systems is the 
fact that they only allow to obtain a rather small 
amount of the total balanced SAC-functions. The 
main reason for this is that only a small number of 
balanced SAC-functions can be presented as a 
superposition of an orthogonal system functions. 

In the third group are the combinatorial methods 
of designing balanced SAC-functions. This group of 
methods has the greater number of generated 
functions and is the least studied. 
 
4 Method of designing Balanced SAC 

functions based on orthogonal 
transformations 

 
In the basis of the suggested method of designing 

Balanced SAC functions the properties of orthogonal 
transformations are laid. But on the contrary to the 
known methods [5] it is suggested to use as basis 
nonlinear secondary orthogonal functions. 

The substance of the suggested method is 
presented in the following consecutive steps: 
1. Form an orthogonal linear system of the Boolean 
functions λ1,λ2,…,λn so that λ1 =х1,  λ2 =  x2 ⊕ x3 ⊕ 
…⊕ xn. 
2. Form three secondary nonlinear orthogonal 
Boolean functions ϕ1 ,ϕ2  and ϕ3 in the following 

way: 
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where φ(λ6,…,λn) and ξ(λ6,…,λn) – arbitrary Boolean 
functions from the linear functions λ6,…,λn, 
3. The Balanced SAC function f(x1,…,xn) is formed 
as: 

3211 ),...,( ϕϕϕ ⋅⊕=nxxf                  (15) 
Since this function f(x1,…,xn) is XORed of the 
Balanced function ϕ1 and the conjunction of ϕ2 and 
ϕ3 that are orthogonal to ϕ1, is Balanced.  
We will show that the function f(x1,…,xn) satisfies 
SAC. For the variable х1 the function 
f(x1,x2,…xn)⊕f(x1⊕1,x2,…,xn) = λ2. Since λ2- is 
balanced, then the function f(x1,…,xn) satisfies SAC 
for the variable x1. We examine the variables xj≠x1. 
The functions ϕ1, ϕ2 and ϕ3 can always be presented 
as: 
ϕ1=αj⊕(x1⊕δj)⋅xj(δj=1,  xj λ3),  
ϕ2=βj(x2,…,xj-1,xj+1,…,xn)⊕µj(x2,…,xj-1,xj+1,…,xn)⋅xj  
and  
ϕ3=εj(x2,…,xj-1,xj+1,…,xn)⊕ρj(x2,…,xj-1,xj+1,…,xn)⋅xj, 
where βj, µj , εj, ρj - are Boolean functions, 
independent of the variables x1 and xj.  

Correspondently, the resulting Boolean function 
f(x1,…,xn) can be presented as: 
f(x1,…,xn)=(αj⊕βj⋅εj)⊕(x1⊕δj⊕µj⋅εj⊕βj⋅ρj⊕µj⋅ρj)⋅xj 
thus  
f(x1,….,xj,…xn)⊕f(x1,…,xj⊕1,…,xn)=x1⊕δj⊕µj⋅εj⊕βj⋅
ρj⊕µj⋅ρj. 

This function is balanced since it is the XOR of 
the balanced function х1 and the function 
(δj⊕µj⋅εj⊕βj⋅ρj⊕µj⋅ρj), that is independent from х1. 
That way the function f(x1,…,xn) satisfies SAC and 
for all the others variables xj≠x1, j=1,…,n .   
The suggested method with the use of nonlinear 
functions is suitable for designing functions with 
more than 4 variables.  

An example of designing a balanced SAC function 
of 8 variables (n=8) is shown below. 
Primary system of orthogonal linear functions: 
λ1= x1 ,   λ2 = x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8,    
λ3 = x2,     λ4 = x3,  λ5 = x4,    
λ6 = x5,     λ7 = x5,  λ8 = x7  
Secondary system of thee orthogonal nonlinear 
functions: 
ϕ1=λ3⊕λ1⋅λ2=x2⊕x1⋅(x2⊕x3⊕x4⊕x5⊕x5⊕x6⊕x7⊕x8),  
ϕ2=λ4⊕φ(λ6,λ7,λ8)=x3⊕φ(x5,x6,x7)=x3⊕x5⋅x6⋅x7, 
ϕ3=λ5⊕ξ(λ6,λ7,λ8)=x4⊕ξ(x5,x6,x7)=x4⊕x5⋅x7 
 
Resulting balanced SAC-function: 



f(x1,…x8) = ϕ1 ⊕ ϕ2⋅ϕ3 = x2 ⊕ x1⋅x2 ⊕ x1⋅x3 ⊕ x1⋅x4 ⊕ 
x1⋅x5 ⊕ x1⋅x6 ⊕ x1⋅x7 ⊕ x1⋅x8 ⊕ x3⋅x4 ⊕  x3⋅x5⋅x7 ⊕  
⊕x5⋅x6 ⋅x7  ⊕ x4⋅x5⋅x6⋅x7. 

The resulting function is balanced SAC function 
with nonlinearity equal to 96 and the order of 
nonlinearity is 4. 
 
5 Combinatorial Method for 

Balanced SAC-function Design 
 

The idea of the method proposed for obtaining the 
ANF of a balanced Boolean function f(х1,x2,...,xn) that 
corresponds to the Strict Avalanche Criterion, consists 
of performing the following sequential actions: 
 
1. The set of variables {х1,...,xn} is divided into four 
subsets that do not overlap ϑ={х1,...,xt+1}, Θ 
={хt+2,...,x2t+1}, Υ and Ω so that unite of them is equal 
of all variable set, must be arbitrary select the number 
of variables which compose the set Θ - t. Than 
number of variables which composed the set ϑ must 
be- N(ϑ)=t+1, Number of variables of sets Y and Ω 
may be select arbitrary too, while sets Υ and Ω  may 
be empty, in other case number of elements in set Y 
should be less then number of variables which 
composed the set Ω[омега]. ( N(Υ)<N(Ω) ). 

Resulting Boolean balanced SAC-functions are 
formed as XOR of four intermediate functions, which 
should be constructed such manner. 

2. In the Algebraic Normal Form the first of them - 
ϕ(x1…,x2t+1) is formed as:  
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3. The second intermediate Boolean function 
β(x1,…,xt+1) is formed as the XOR of an odd number 
of arbitrary chosen terms from variables of set ϑ. 

4. If sets Y and Ω  are not empty ( Y≠∅, Ω≠∅), the 
intermediate Boolean function  γ  is formed as the 
XOR of set Ψ of the products of variables that belong 
to set Υ, by the variables that belong to set Ω.  In so 
doing, each variable of sets Υ and Ω is to enter as a 
multiplier at least into one of the products of set Ψ. If 
Υ=∅, then function γ set to 0. 
5. The fourth intermediate Boolean function η (x∈ϑ, 
x∈Ω) is formed as the XOR of set ∆ of the product of 
the variables of first and second sets ( ϑ and Ω). In so 
doing, the variable of set Ω is to enter into an even 
number of the products of set ∆. The formation of 
functions γ and η is done is such a way so that each 

variable of set Ω should enter into the products that 
compose sets Ψ and ∆. 
If set Ω is empty then intermediate functions γ and η 
set to 0. 
6. The ANF of the balanced SAC-function f is formed 
as XOR of all intermediate functions: 
 

)x,x(,)x,...,x(
)x,...,x()x,...,x()x,...,x(f

n2t2

1t11t21n1

Ω∈∈⊕⊕

⊕⊕=

+

++

ϑηγ

βϕ
 (17) 

The properties of the balancedness and SAC of a 
function formed in accordance with the stated method 
do not change if the following functions are XORed 
to it: 
• An arbitrary function δ  determined on variables 

of set Υ; 
• An arbitrary function ρ  determined on variables 

of set Ω; 
The suggested method is illustrated by the following 
example of designing a balanced SAC-function of 
eight variables (n=8) at t=2.  

The number of variables that compose set ϑ is 
N(ϑ)=t+1=3, i.e. ϑ={x1,x2,x3}, the number of 
variables that compose the set Θ is N(Θ)=t=2, and set 
Θ={x4,x5}. On the basis that inequality N(Y)<N(Ω) is 
to be held, sets Υ and Ω are defined as: Y={x6}, 
Ω={x7,x8}:  
ϑ  = { x1, x2, x3 }, Θ ={x4,x5},Υ ={x6},Ω={x7, x8} 
 
Intermediate functions:   
ϕ = x1⋅x4 ⊕ x2⋅x5 ⊕ x3⋅x4 ⊕ x3⋅x5 
β = x1 ⊕ x2 ⊕ x1⋅x2⋅x3 
γ = x6⋅x7 ⊕ x6⋅x8 
η = x1⋅x7 ⊕ x2⋅x7, δ = x6 , ρ = x8 
 
Result function: 
f = ϕ ⊕ β ⊕ γ ⊕ η ⊕ δ ⊕ ρ = 
  = x1⋅x4 ⊕ x2⋅x5 ⊕ x3⋅x4 ⊕ x3⋅x5 ⊕ x1 ⊕ x2 ⊕ x1⋅x2⋅x3⊕ 
⊕x6⋅x7 ⊕ x6⋅x8 ⊕ x1⋅x7 ⊕ x2⋅x7 ⊕ x6 ⊕ x8  

Function f  is balanced and satisfies SAC. 
Nonlinearity N( f ) = 112.   

It can be shown that the nonlinearity N(f) of 
functions f(x1,…,xn) designed according to the 
developed procedure in the following way: 

2/1 22)( nnfN −= −
- even number of variables n              

12/)1(112/)1(1 2222)( −+−−−−− −=−= nnnnnfN -odd n (18) 
For example, at n=8, the nonlinearity of the 

balanced SAC-functions designed by the suggested 
method makes 11222 47 =−  (under that maximum 
is equal 118), and at n=9 

.24022)( 48 =−=fN (that is equal maximum 



possible for odd number of variables). 
Order of nonlinearity of functions, which can be 

formed by suggested method may be equal or less n-1 
that corresponded to theoretic maximum value. 

The developed method for synthesis of balanced 
SAC–functions may be extended to solving the 
problem of obtaining balanced SAC–functions of 
order k. 

The idea of the method suggested for obtaining 
ANF balanced Boolean functions f(х1,x2,...,xn), that 
satisfy the Strict Avalanche Criterion of order k 
consists of performing the following actions: 
1. The set of variables is divided into four subsets that 
do not overlap ϑ={x1,…,xt}, Θ={xt+1,…,x2t+2}, Υ and 
Ω. In this case the number of variables of first set ϑ, 
which we will call t should not be less than k+2 ( t ≥ 
k+2) and the number of variables in second set Θ  
should be 2 more than t: N(Θ)=t+2. 
While choosing sets Υ and Ω, there are three 
possibilities:  

• the first - is that the both sets are empty,  
• the second - is that set Υ is empty, and Ω is 
not empty,  
• the third is that sets Υ and Ω are not empty; 

In the last case the following condition should be 
obey: N(Ω) ≥ k+1. Balanced SAC-function f(x1,…,xn) 
of order k is formed as XOR of four intermediate 
functions. 
2.(t+1) linear Boolean functions λ1(xt+1,…,x2t+2), 
λ2(xt+2,xt+4,…x2t+2),…, λt+1(xt+1,xt+2,…, x2t,x2t+2) from 
variables of second set Θ are formed so that linear 
function λj(j=1,…,t+1) number j be a XORed of all 
the variables of this set except the variable number j : 
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3. The first intermediate functions Boolean function 
ϕ(x1,…,x2t+2) is formed as: 
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4. The ANF of an arbitrary chosen second 
intermediate Boolean function β that was determined 
on variables of first set ϑ is formed. 
5. If both sets Υ and Ω are not empty, then the third 
intermediate Boolean function γ is formed as the XOR 
of set Ψ of the products of variables that belong to the 
set Υ and Ω. In so doing, each of variables of set Υ is 
to enter as a multiplier, not less than k+1 times, into 
products that compose the set Ψ.  If set Υ  is empty, 
then the third intermediate function γ set to 0. 
6. Forth intermediate Balanced function η(x∈ϑ,x∈Ω) 

is formed as the XOR of set ∆ of the products of 
variables of first set ϑ, by variables of set Ω. The 
functions γ(x2t+2,…,xn) and η(x∈ϑ,x∈Ω) should be 
formed in such a way so that each variable of set Ω is 
to enter not less than (k+1) times into products that 
compose sets Ψ and ∆.  If set Ω is empty, then both 
intermediate functions γ and η set to 0. 
7. Resulting balanced SAC-function f of order k is 
formed as XOR of all intermediate functions: 

)x,x()x,...,x(
)x,...,x()x,...,x()x,...,x(f

n2t2

1t11t21n1

Ω∈∈⊕⊕

⊕⊕=

+⋅

++⋅

ϑηγ

βϕ
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The suggested method is illustrated by the 
following example for designing a balanced SAC-
function of the first order (k=1) from 9 variables 
(n=9). 

Reasoning that number t of variables that compose 
first set ϑ should be greater or equal k+2,  so suppose 
that t equal 3. Correspondently first set include 
variables from one to tree.  

The number of variables that compose second 
subset Θ is N(Θ)=t+2=5, correspondently the subset 
Θ itself is {x4, x5, x6, x7, x8}. Let subset Υ is empty, 
and subset Ω include one variable x9. 

In accordance with the presented procedure, linear 
functions from variables of second set Θ formed as: 
 λ1=x5 ⊕ x6 ⊕ x7 ⊕ x8,       λ2=x4 ⊕ x6 ⊕ x7 ⊕ x8,  
 λ3=x4 ⊕ x5 ⊕ x7 ⊕ x8,        λ4=x4 ⊕ x5 ⊕ x6 ⊕ x8. 
Correspondently first intermediate function 
ϕ(x1,…,x8) is formed as:  
ϕ(x1,…,x8)=λ1⊕λ2⋅x1⊕λ3⋅x2⊕λ4⋅x3. 
Arbitrary choosing second intermediate function 
β(х1,х2,х3)= х1⋅х2⋅х3. Third intermediate function γ=0 
because of set Y is empty. Forth intermediate function 
η(x1,x2,x3,x9) is equal  x1⋅x9 ⊕ x2⋅x9. The resulting 
balanced Boolean SAC-function f(x1,…,x9) is formed 
as: 
f(x1,…,x9)= x5 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x1⋅x4 ⊕ x1⋅x6 ⊕ x1⋅x7 
⊕ x1⋅x8 ⊕ x2⋅x4 ⊕ x2⋅x5 ⊕ x2⋅x7⊕ x2⋅x8⊕ ⊕ x3⋅x4 ⊕ 
x3⋅x5 ⊕ x3⋅x6 ⊕  x3⋅x8 ⊕ x1⋅x2⋅x3 ⊕ x1⋅x9 ⊕ x2⋅x9. 
The function that is formed is balanced and 
corresponds to SAC. With fixation of any one 
variable х1,…,х9 the formed function f(x1,…,x9) is 
transformed into balanced SAC-functions from 8 
variables. In particular, it is not difficult to make sure 
that if x1=0 function f is transformed to function 
g(x2,…,x9) = x5 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x2⋅x4 ⊕ x2⋅x5 ⊕ 
x2⋅x7 ⊕ x2⋅x8 ⊕ x3⋅x4 ⊕ x3⋅x5 ⊕ x3⋅x6 ⊕ x3⋅x8 ⊕ x2⋅x9  
which is balanced SAC-function. 

Compared to the known methods for obtaining 
cryptographically strong functions, the suggested one 
requires much less computational resources. More 
specific compared to one of the most effective 



methods suggested by Kurosawa – show that the 
presented one provides performance by about two 
orders higher. 

 
6   Conclusion 

Two methods of designing balanced Boolean 
SAC functions are suggested. The first one is based 
on the orthogonal transformations. In the contrary of 
the known methods [5], the suggested method relies 
on the superposition of non linear function that 
correspondently makes linear cryptanalysis difficult 
through the transition to a different coordinates 
system.  The second method develops the idea of 
the combinatorial approach to design balanced SAC 
functions. 

The suggested methods for the designing of 
balanced Boolean SAC-functions operates only with 
ANF and removes the processing limitation for 
obtaining functions from a large number of 
variables (experiments carried out proved the ability 
to generate balanced SAC-functions from hundreds 
of variables). Also, the methods makes it possible to 
obtain a function in the most appropriate form - the 
method suggested does not require the resource-
intensive stage of Boolean function minimization. 
Compared to other known methods for the design of 
balanced Boolean functions the suggested is much 
more feasible in practice and needs much lower 
resources for its implementation in computers 
because it does not require the time-consuming 
operations of Walsh spectrum transforms or the 
search for linear independent vectors or bent–
functions. Experimental studies proved the 
performance of the second method to be nearly 3 
orders higher compared to [5] for n=128.  

The significant advantage of the second one of 
the proposed methods compared to the known ones 
is that it allows the generation of an appreciably 
larger number of balanced SAC-functions from all 
the possible ones at a given number of n variables. 
For example, for n=4, the suggested method may 
design approximately 200 functions, while the 
method [5] only 72 functions. 
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