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Abstract: - New paradigm of gene expression regulation has emerged recently with the discovery of microRNAs (miRNAs). Most, if not all, miRNAs are thought to control gene expression, mostly by base pairing with miRNA-recognition elements (MREs) found in their messenger RNA (mRNA) targets. Despite a large number of reported human miRNAs, many of their mRNA targets remain unknown. Here we use a combined bioinformatics and experimental approach to identify important rules governing miRNA-MRE recognition that allow prediction of human miRNA targets. We describe a computational program, "DIANA-microT” that identifies mRNA targets for animal miRNAs and predicts single mRNA targets for human and mouse miRNAs. The execution time of “DIANA-microT” on a database whose size far outweighs that of the miRNA file compared against it requires us to adopt a parallel approach to implementing this task [1]. Here we describe a specific parallelization method which significantly enhances execution time.
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1   Introduction

A new paradigm of gene expression regulation has emerged recently with the discovery of microRNAs (miRNAs). miRNAs are 20-22 nucleotides (nt)  long and control gene expression. MiRNA genes are ~ 70 nucleotides long and form a single stem loop. MiRNAs are processed from the double-stranded RNA stem by the Dicer nuclease and associate with proteins that belong to the Argonaute family. 

The first such tiny regulatory RNA was uncovered through genetic screens in C. elegans as the product of the lin-4 gene [2, 3]. This 21-nt RNA pairs to sites within the 3’ untranslated region (UTR) of its target mRNAs and specifies the translational repression of these mRNAs. A second tiny riboregulator, let-7 RNA, was later discovered [4], and like lin-4 it regulates the timing of the larval development. 

 It has been found that they direct destruction or translational repression of their mRNA targets. Despite a large number of reported human miRNAs many of their mRNA targets remain unknown. The immense potential of small RNAs as controllers of gene networks is just beginning to unfold.

Around 600 miRNAs have now been identified from nematodes, flies, plants, fish, mice and humans.
2  Problem  Formulation
The next challenging problem is the identification of miRNA target sites. Only very recently, bioinformatics approaches have been published to predict miRNA targets for Drosophila [5, 6, 7], Putative miRNA targets for 75 Drosophila miRNAs have been proposed [5]. The computational algorithm used in that study was based on binding energies and required complementarity between the first eight nucleotides of the miRNA with its putative target [5]. The database used for the searches consisted of the conserved D. melanogaster and D. pseudoobscura 3’-UTRs and hits were scored based on the binding energy of the predicted miRNa mRNA interaction, the presence of multiple miRNA sites in the 3’-UTR of putative mRNA targets, and the conservation of the sites in a third genome (i.e Anopheles gambiae) [5]. The presence of multiple miRNA binding hits for the same miRNA in any given target correlated with high scoring hits. However, this approach failed to accurately predict single sites for miRNAs because there was no statistically significant difference between the real miRNAs versus randomized sequences [5].

In another study, Bartel, Burge and colleagues have presented an algorithm that allows prediction of conserved mammalian miRNA targets along with accurate estimates of false positive rates (at 31% for miRNA targets identified in human mouse and rat, and 22% for targets identified in mammals and pufferfish) with experimental validation of 11 out of 15 predicted targets[7]. The targets identified by Lewis et al. also contain multiple miRNA binding sites for the same miRNA or are regulated by more that one miRNA.

All these approaches failed to accurately predict single sites for miRNAs. Therefore despite all of the published work on miRNAs the transcription machinery of miRNA genes and the rules guiding single miRNA:MRE (target mRNA) interactions still have not been investigated. 

3 Problem Solution

3.1 The target prediction algorithm
For the computational identification of miRNA targets we constructed a preliminary database of human 3'-UTRs using the annotated Reference mRNA Sequences (RefSeq) database. We limited our search space only in 3'-UTR sequences because the experimentally identified MREs were found to be present only in 3’-UTRs. We masked all the repetitive elements comprising a total of 12,642,810 bases. In a first approach we used ten miRNAs (let-7b, let-7e, miR-141, miR-24, miR-145, miR-23a, miR-15a, miR-16, miR-199b and miR-103), all of which are conserved between humans and mice, to search for miRNA targets.
We designed an algorithm that allowed us to identify putative miRNA:MRE interactions based on binding energies between two imperfectly paired RNAs. We implemented a modified dynamic programming algorithm, calculating free energies of both canonical (Watson-Crick) and G-U wobbles dinucleotide base pairs for two RNAs paired in trans. To identify putative MREs, we used a window of 38nt that "slides" over the mRNA sequence, and calculates the minimum binding energy between the miRNAs and sequences in the human 3'-UTR database. Mismatches were allowed and binding energies were calculated for every three consecutive nucleotide pairs. 

The dynamic programming algorithm for solving this problem is based on the global alignment algorithm, known as the Needleman-Wunsch algorithm [8].  It is an algorithm that uses previous solutions for the optimal alignment of smaller subsequences. We constructed a matrix F indexed by i and j, one index for each sequence, where the value F(i,j)  is the score of the best alignment between the prefix  x 1…i of x up to x i and the prefix  y1….j  of y up to y j. 

We initialized the matrix  for F(0,0) = 0 and for   F(i,j) i=1….n , j=1…m, with 1 if xi and yj is a possible match. n and m are the length of the sequences (miRNA and mRNA windows). We allow possible matches for all canonical (Watson-Crick: A-T, G-C) matches and G-U wobbles. Otherwise F(i,j) is deemed incompatible and this position in the matrix receives a very high score.  
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Bulges and loops (both symmetric and asymmetric) were allowed and have a defined energy ‘penalty’.  In the case of bulges, all the nucleotides of one sequence are assumed to bind to the nucleotides on the other sequence, but not vice versa. For example if xi xi+1 binds with yj yj+4 we assume a bulge of length 3 at the x sequence.  We designate loops at the alignment regions where a number of nucleotides on both sides do not bind together. Such an example would occur if xi xi+3 binds with yj y j+4. In this case we have a loop with 5 nucleotides, 2 of them located on the x sequence and 3 on the y sequence.
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The score for the binding of a pair of nucleotides with each other is given by the function s(xi, xi+1, yj, y j+1) according to Needleman and Wunsch [5].
The dynamic algorithm is given by the recursion:
     if F(i,j) is a possible match then:
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    else F(i,j) = a maximal score.

MAXL is the maximum allowed length for loops and MAXB is the maximum allowed length for bulges.  The time and space needed for this algorithm is O(n2) since the matrix we have to evaluate is n·m and the length of the loops and bulges is defined (fixed length of sliding window on the mRNA and fixed length of miRNA). However because the length of the sequences is fixed, the algorithm needs constant time and space.  In our first approach for finding the MREs we used 11 as the maximum length of a bulge.

We hypothesized that physiological MREs would be evolutionarily conserved and we determined for each human miRNA all the hits that were conserved in the 3'-UTRs of the corresponding mouse ortholog mRNAs. By visual inspection we collected a number of hypothetical MREs from the list of conserved human/mouse hits for experimentation. 

Our experimental strategy for finding miRNA targets consisted of cloning the putative MREs (as single copies) in the 3'-UTR of a reporter construct. Because MREs are necessary and sufficient to confer mi/siRNA-dependent translational repression, we reasoned that placement of predicted MREs for specific miRNAs in the 3'-UTR of a reporter construct, followed by transfections in cells expressing the miRNAs that recognize the MREs, should lead to a decrease of the reporter protein levels. 
Table 1: Hits between 10 human miRNAs (real) or randomized (shuffled) RNAs of the same length and the 3'-UTR database of annotated human mRNAs or the conserved human/mouse 3'-UTR database, predicted by the miRNA Binding Rules.
We cloned the predicted lin-28 MRE into the 3'-UTR of a Renilla Luciferase (RL) reporter construct. As a positive control, we generated two RL constructs each bearing in the 3’-UTR one of the two reported MREs for let-7, derived from the C. elegans lin-41 mRNA, an experimentally verified let-7 target. As a negative control, the sequence of the lin-28 MRE was scrambled and placed in the 3’-UTR of RL. 

We next wished to investigate further the rules governing miRNA:MRE bindings by generating a series of mutant lin-28 MREs with varying binding properties between them and the human/mouse let-7b miRNA. These MREs were tested as described above, in HeLa and MN-1 cells. 

We subsequently combined our computational algorithm with an "MRE filter" to the computational program “DIANA-microT”. The “MRE filter” includes the binding rules that are derived through the extensive mutational analysis that we describe above. Using a maximum energy cut-off threshold of -30Kcal/mol (which was calculated based on the experimentally verified MREs) the DIANA-microT program predicted 94 human MREs for the 10 miRNAs. Nine of the predicted human MREs are also conserved in the 3'-UTRs of the corresponding mouse ortholog mRNAs. 

To evaluate the statistical significance of our computational algorithm, we created a cohort of “negative control” sequences by randomly shuffling the sequence of each of the ten real miRNAs, ten times. All of the ten randomized sequences for each miRNA (amounting to a total of 100 randomized sequences) were used for the computational searches. 371 "MREs" were predicted for these 100 randomized sequences, 13 of which were also conserved in the mouse. Normalizing the numbers for the 10 miRNAs, the total number of predicted "MREs" for the randomized RNA sequences was 37.1 (human). Thus, the average number of human MREs predicted for each real miRNA is 9.4 versus 3.7 for each shuffled. This difference becomes even greater when the average number of conserved human/mouse MREs predicted for each real miRNA (0.9) is compared to that of each shuffled (0.1) (see Table1). 
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3.2 Parallel Applications on Linux Clusters

A parallel computer is a collection of processing elements that can communicate and cooperate to solve computational problems.  
The goal of parallelizing a program is to reduce the execution time by splitting the work among a number of processors without adding overhead then reconnecting the results in order to achieve a complete solution of the main computational problem [9, 10, 11]. See Fig.1.
A cluster is defined to be a group of independent processors that forms a network and to a node to be a machine that may have multiple processors. In our case, the node has two processors.
The Genomics Liniac Cluster was used for our  parallelization task, this cluster consists of 128 compute nodes, 7 administrative nodes, 4 IO RAID arrays (700GB each), 1 Foundry high performance network switch, 2 3000VA UPSes, 6 serial console servers and 9 remote power management appliances.  The latter two provide remote control, allowing response to most service calls without the need for physical collocation.  All compute nodes are Dual Processor 1.13GHz or 1.26GHz Pentium III, 2GB RAM, 18GB Hard drive. Administrative nodes contain 4GB RAM and 36GB Hard drives.  All hardware is housed within five 42U standard racks.
 3.2.1 Implementation Details
The task to find targets of microRNAs is implemented using two main arguments, a query representing one microRNA or a fasta file containing more than one microRNA, which is run against the second parameter representing a database consisting of genomics sequences.
The traditional way to deal with this parallelization task is to split the microRNA file into sub files to be provided to each node within the whole database, then execute the main program on the microRNA sub files and the database file. The stage of transforming the two files (microRNA file and the database) to each node is time consuming and is influenced by the size of the database. In our case, the size of the database is much larger than the size of the microRNA file. Therefore, we decided to deal with the current problem in a different way, by splitting the   database into sub files and keeping the microRNA file as is.
The communication between the main node (master) and the clusters nodes (slaves) is divided into two main stages as follows, see Fig.2.
1) The splitting stage: the user defines a subtask size, which corresponds to the number of sequences for a given node to handle at one time. Each node is provided with this number of sequences iteratively until all of the sequences in the database have been distributed.
2) Collection and reconnection stage: at the end of the node execution, the output is transferred back to the main node to be reconnected to the main output.
[image: image5.jpg]In order to test the time reduction, we took 15 microRNA sequences (331nt total) and a database with 499 sequences (998000nt total). The time results of using different number of nodes for parallelization and non parallelized version is presented on Fig.3. The results show that the parallelization method speeds up the execution time dramatically.  Prior to parallelization, the program execution on the standard database used for this task and a miRNA file including 190 miRNAs required more than 6 days of computing time on a Pentium4 personal computer; after parallelization was completed, execution time using 50 nodes reduced to 4 hours. 
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4  Conclusion

The biological significance of miRNAs is only beginning to be discovered. Several human diseases have already surfaced in which miRNAs or their machinery may be implicated. One prominent example is Spinal Muscular Atrophy (SMA), a pediatric neurodegenerative disease caused by reduced protein levels or loss-of-function mutations of SMN [12]. Another neurological disease linked to mi/siRNAs is Fragile X mental retardation (FXMR), caused by absence or mutations of the Fragile X mental retardation protein (FMRP). There are additional clues that miRNAs may play a role in other neurological diseases. As yet, these data only indicate the importance of future studies. One intriguing finding is that the miR175 gene locus lies within the minimal candidate region of two different neurological diseases: early-onset Parkinsonism and X-linked mental retardation [13].
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Fig.3. Relationship between number of nodes and speedup.



Fig.1. Descriptions of the parallelization stages consisting of three main steps, splitting the task, execution and reconnecting the outcome.



Fig.2. The communication between the main node and the cluster nodes. The yellow bar represent the microRNA sequences, the blue bar represent the database sequences. The arrows show the data flow.
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