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Abstract: - In this paper, a new method to calculate all stabilizing parameters of Lead-Lag type controller for 
a given continuous-time plant is proposed. Lead-Lag controllers are used extensively in industry and there is 
no solution to the problem: can a plant be stabilized by a Lead-Lag controller. Using the earlier results on 
calculation of all stabilizing PID gains, we provide a computationally constructive characterization of all 
stabilizing Lead-Lag parameters. In this approach, a linear programming technique is used that is the main 
advantage of the method. The method is utilized for a numerical example. 
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1   Introduction 
Lead-Lag type controllers have a wide-spread use 
in industry applications [1,2]. So, we need to have 
some efficient methods to determine the stability 
of the system with the controller. For this purpose, 
there are some classical approaches, the root locus 
technique, the Nyquist stability criterion, and the 
Routh-Hurwitz criterion [3], but in many situations 
especially in the case of high order plants, the use 
of these approaches is not straight forward. In 
recent years a linear programming approach is 
developed to calculate all stabilizing PID gains 
based on generalization of Hermite-Biehler 
Theorem [4,5]. We will use the same approach to 
determine the whole set of Lead-Lag parameters 
that can stabilize a given plant. The main 
characteristic of the proposed method is the use of 
linear programming that can be performed using a 
digital computer. 
In the paper, Section 2 presents a generalization of 
Hermite-Biehler Theorem. In Section 2 feedback 
stabilization using a constant gain is considered. 
Section 4 proposed the procedure of determining 
of stabilizing Lead-Lag parameters for a given 
plant. A numerical example shows the method in 
details in section 5. Some concluding remarks are 
pointed out in Section 6. 
 

2   A generalization of Hermit-Behler 
Theorem 
In this section, we present the generalization of the 
Hermite-Biehler Theorem [6]. To do so, we first 

introduce the standard signum function 
}1,0,1{:sgn −→ℜ  defined by 
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the components of )(sδ made up the even and odd 
powers of s respectively. For every 
frequency ℜ∈w , denote )()()( wjqwpjw +=δ  where 
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Define the signature of polynomial )(sδ by 

))(( sδσ , as 
))(( sδσ  :=  number of open left half plan zeros of 

)(sδ - number of open right half plan zeros of )(sδ  
Then, we can state the following [6]: 
Theorem 1  (A Generalization of Hermite-Biehler 
Theorem) Let )(sδ be a given real polynomial of 
degree n with no jw axis roots except for 
possibility one at the origin. Let 

121 ...0 −<<<<= mo wwww be the real, non-



negative, distinct finite zeros of )(wq f with odd 

multiplicities. Also define ∞=mw . Then 
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Remark 1  When the polynomial )(sδ  is Hurwitz, 
Theorem 1 immediately implies the interlacing 
property [7]. That is why Theorem 1 generalizes 
the Hermite-Biehler Theorem to the case of not 
necessarily Hurwitz polynomials. Furthermore, the 
interlacing property of the Hermite-Biehler 
Theorem gives a graphical interpretation of the 
Hermite-Biehler Theorem while Theorem 1 gives 
an analytical characterization to the case of not 
necessarily Hurwitz polynomials. 
 

3   Feedback stabilization using a 
constant gain  
In this section we summarize the results of [4], 
which provide a complete analytical solution to the 
feedback constant gain stabilization problem 
shown in Fig. 1, which is the lowest order 
compensator design problem possible. Here r is the 
command signal, y is the output, N(s) and D(s) are 
coprime polynomials, and C(s) is the controller. 
Here, C(s)=k.   
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Fig. 1. Feedback control system. 

 
The closed loop characteristics polynomial )(sδ  is 
given by 
 )()()( skNsDs +=δ   (2) 
where k is a scalar. 
The objective is to determine those values of k, if 
any, for which the closed loop system is stable, i.e., 

)(sδ is Hurwitz. 
There are several classical approaches for solving 
this problem: the root locus technique, the Nyquist 
stability criterion, and the Routh-Hurwitz criterion. 
Of these approaches, the root locus technique and 
the Nyquist stability criterion solve this problem 

by plotting the root loci of )(sδ and the Nyquist 
plot of )(/)()( sDsNsC = , respectively. Hence, both 
of these methods are graphical in nature and fail to 
provide us with an analytical characterization of all 
stabilizing parameters. The Routh-Hurwitz 
criterion, on the other hand, dose provides us with 
an analytic solution. However, the stabilizing 
parameters must be determined by solving a set of 
polynomial inequalities, a task which is not straight 
forward especially for higher order plants. For this 
porpoise we will use the results of [4] as follows: 
Consider (2) with the even-odd decomposition 
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Suppose that the degree of D(s) is n while the 
degree of N(s) is m and nm ≤ . Let )( 2se be the 
greatest common divisor (gcd) of )( 2sNe  and 

)( 2sNo , we define 
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Let 
                           )()()( 22 sNssNsN oe ′+′=′   (5) 
and define 
              )()()()( 22* sNssNsNsN oe ′−′=−′=   (5) 
Clearly )(sN ′ have no jw axis roots except possibly 
a single root at the origin. Let m′ be the degree 
of )(sN ′ . Now, multiplying )(sδ by )(* sN and 
examining the resulting polynomial, we obtain 
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Substituting s=jw, we obtain 
 )(),()()( * wjqkwpjwNjw +=δ  (7) 
where 
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Also, define 

 

22

22

)1(

)(
)(

,

)1(

),(
),(

nmf

nmf

w

wq
wq

w

kwp
kwp

+′

+′

+

=

+

=

 (9) 

Definition 1 Let 121 ...0 −<<<<= lo wwww be the 
real, non-negative, distinct finite zeros of 



)(wq f with odd multiplicities. Then ιA is the set of 

strings defined as 
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where { }1,0,1−∈oi  and { } .0        1,1 ≠−∈ tforit  

Remark 2 For mn ′+ even, the number of string in 

ιA is l23×  while for mn ′+ odd, the number of 

strings in ιA  is 123 −× l . 
Theorem 2 (Main Results on Constant Gain 
Stabilization) Consider the polynomial 

)()()( skNsDs +=δ  where D(s), N(s) are 

polynomials of degree n, m respectively, mn ≥ and 
k is a scalar gain. Let the integer m and the 
polynomials 

)(),,(),(),(),(),,(),( 21 wqkwpwqwpwpkwpsN ff′ be 

as already defined. Let 121 ...0 −<<<<= lo wwww  
be the real, non-negative, distinct finite zeros of 

)(wq f  with odd multiplicities. Also define ∞=lw . 

Then there exist a k such that )()()( skNsDs +=δ is 
Hurwitz if and only if the following conditions 
hold: 
There exist a string { } ιι Aiio ∈= ,..., 1  such that 

(i) if 0)(2 =twp for some t =1,2,…,l, then 
)](sgn[ 1 tt wpi =  

(ii)        
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Furthermore, If the above three conditions 
are satisfied by string sιιι ,...,, 21 , then the set 

of all k such that )(sδ  is Hurwitz is given by 

U
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4   Calculation of all Stabilizing 
Lead-Lag compensator parameters 
In this section, we make use of results mentioned 
above to provide a complete analytical solution to 
calculate the whole set of stabilizing Lead-Lag 
type controller parameters for the feedback control 
system shown in Fig. 1. The general form of Lead-
Lag compensators is as the following 
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Then, the closed-loop characteristic polynomial 
)(sδ is given by 

                     )()()()()( sDbssNakss +++=δ      (15) 
Our objective is to determine those values of a,b, 
and k, if any, for which the closed-loop system is 
stable, i.e. )(sδ  is Hurwitz. We have  
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Substituting s=jw, we obtain 
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Now for the fix values of obb = , we have 
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Now, we can use the results of [4]. It is remarkable 
that we are no longer able to obtain a closed form 
solution. Instead, a linear programming problem 
has to be solved for each fixed b as the following 
algorithm 
Algorithm: 
 
Step 1  For a fixed value of b at b=bo: 



Step2 for a fixed value of k, determine 
}...0{ 121 −<<<<= lo wwww , the real, distinct 

finite zeros of  )( ocokk δδ ′+ with odd multiplicities 
and let ∞=lw . Also define n := degree of )(sδ and 
m′ := degree of )(sN ′ . 
Step 3   
       (a) if 0)( =tea wδ for some lt  ,...,2,1,0= then set 
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(b) Now choose strings ιι A∈ ( ιA is defined as 
(10)) satisfying (a) above such that  
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where σ := number of open left half plan of the 
system – number of open right half plan of the 
system. 
For each such string, go to Step 3. 
If no such string exists, then there is no solution. 
Step 4 Determine the admissible values of a by 
solving the following linear inequalities: for 

lt   ,...,2,1,0= and 0)( ≠tea wδ  
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Using a linear programming technique:       
If the admissible set of  a  for (23) = Ø, then there 
is no solution. 
Else, for fixed k and fixed b, the admissible values 
of  a  satisfying (23) is the region for which )(sδ is 
Hurwitz.    
Step 5 Sweep ],[ maxmin kkk ∈  and go to Step 2. So, 
the stabilizing set of ),( ka for fixed b can be 
obtained. 
Step 6  Sweep ],[ maxmin bbbo ∈ and go to Step 1. 
Using the above algorithm the whole set of 

),,( kba for which )(sδ is Hurwitz, cab be obtained. 
 
5   Illustrative example 
To clearly understand the algorithm, we now 
present a simple example. 

Example Consider the problem of choosing 
stabilizing Lead-Lag gains for the plant 
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The closed loop characteristic polynomial is 
 )()()()()( 11 sDbssNakss +++=δ           (25) 

We consider the even-odd decompositions for the 
polynomials )(1 sN and )(1 sD , i.e. 
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since 1),gcd( 11 =oe NN , it follows that 
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Now, we can use the proposed algorithm, which 
the stabilizing set of ),,( kba  are shown in Fig. 2. 
 

 
Fig. 2. The stabilizing set of ),,( kba . 



6   Conclusion 
A linear programming approach was proposed for 
calculation of all stabilizing parameters of 
continuous-tome Lead-Lag controllers. The 
procedure was obtained by using the earlier results 
on calculation of all stabilizing PID gains. The 
results obtained in this paper are expected to have a 
significant impact on industrial control applications 
where Lead-Lag controllers find extensive use.  
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