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Abstract: - In this paper, a new method to calculate al stabilizing parameters of Lead-Lag type controller for
a given continuous-time plant is proposed. Lead-Lag controllers are used extensively in industry and there is
no solution to the problem: can a plant be stabilized by a Lead-Lag controller. Using the earlier results on
calculation of al stabilizing PID gains, we provide a computationally constructive characterization of all
stabilizing Lead-Lag parameters. In this approach, a linear programming technique is used that is the main
advantage of the method. The method is utilized for anumerical example.

Key-Words: - Lead-lag type compensator, all stabilizing parameters, continuous-time systems, linear

programming.

1 Introduction

Lead-Lag type controllers have a wide-spread use
in industry applications [1,2]. So, we need to have
some efficient methods to determine the stability
of the system with the controller. For this purpose,
there are some classical approaches, the root locus
technique, the Nyquist stability criterion, and the
Routh-Hurwitz criterion [3], but in many situations
especialy in the case of high order plants, the use
of these approaches is not straight forward. In
recent years a linear programming approach is
developed to calculate all stabilizing PID gains
based on generalization of Hermite-Biehler
Theorem [4,5]. We will use the same approach to
determine the whole set of Lead-Lag parameters
that can stabilize a given plant. The main
characteristic of the proposed method is the use of
linear programming that can be performed using a
digital computer.

In the paper, Section 2 presents a generalization of
Hermite-Biehler Theorem. In Section 2 feedback
stabilization using a constant gain is considered.
Section 4 proposed the procedure of determining
of stabilizing Lead-Lag parameters for a given
plant. A numerical example shows the method in
details in section 5. Some concluding remarks are
pointed out in Section 6.

2 A generalization of Hermit-Behler

Theorem
In this section, we present the generalization of the
Hermite-Biehler Theorem [6]. To do so, we first

introduce the standard signum  function
sgn: R —{-1,01 defined by
-1 if x<0O
sgn( x) =<0 if x=0
1 if x>0
Let &(s)=6,+ds+..+5,s" be a given readl
polynomial of degree n. write

5(s) = 6,(s?) + 56, (s*) Wwheres,(s?) and s, (s?) are
the components of §(s) made up the even and odd
powers of s respectively. For every
frequency we R, denote 5(jw) = p(w) + jg(w) Where
P(W) = 5 (—W?), q(W) = WS, (-W?) .
Furthermore, define

6 (jw)=ps(wW)+ jay (jw)
where

Pr(w)=———=-,0¢ (W) =——=;

p(w) g(w)
f(w) f (w)

and

f(w)=(1+w?2)2
Define the signature of polynomia &(s) by
o(6(s)), as
o(5(s)) := number of open left half plan zeros of
4(s) - number of open right half plan zeros of §(s)
Then, we can state the following [6]:
Theorem 1 (A Generalization of Hermite-Biehler
Theorem) Let &(s)be a given real polynomial of
degree n with no jw axis roots except for
possibility one at the origin. Let
O=wW, <W, <W, <..<Wp,be the real, non-



negative, distinct finite zeros of q; (w)with odd
multiplicities. Also define w,,, =« . Then
{sgn[ ps (W,)] - 2sgn[ ps ()]
+2sgn[ py (W2)] + (- 2sgn[ Py (Wi 1]
+(=D)™sgn[ ps (W)T} (D)™ *sgn[q()]

if n iseven D
{sgn[ ps (W,)] —2sgn ps ()]
+25gn[ py (W2)] + (-)™*2sgn[ py (Wiyo)1}
(=)™ sgn[q(e)]

if n isodd
Remark 1 When the polynomial §(s) is Hurwitz,
Theorem 1 immediately implies the interlacing
property [7]. That is why Theorem 1 generalizes
the Hermite-Biehler Theorem to the case of not
necessarily Hurwitz polynomials. Furthermore, the
interlacing property of the Hermite-Biehler
Theorem gives a graphical interpretation of the
Hermite-Biehler Theorem while Theorem 1 gives

an analytical characterization to the case of not
necessarily Hurwitz polynomials.

o(9) =

3 Feedback stabilization using a

constant gain

In this section we summarize the results of [4],
which provide a complete analytical solution to the
feedback constant gain stabilization problem
shown in Fig. 1, which is the lowest order
compensator design problem possible. Herer isthe
command signal, y is the output, N(s) and D(s) are
coprime polynomials, and C(s) is the controller.
Here, C(s)=k.

N(s)

r—i_©—> C(s) —» () gy

Fig. 1. Feedback control system.

The closed loop characteristics polynomial &(s) is
given by

O(s) = D(s) + kN(s) 2
wherek isascalar.
The objective is to determine those values of k, if
any, for which the closed loop system is stable, i.e.,
4(s) is Hurwitz.
There are several classical approaches for solving
this problem: the root locus technique, the Nyquist
stability criterion, and the Routh-Hurwitz criterion.
Of these approaches, the root locus technique and
the Nyquist stability criterion solve this problem

by plotting the root loci of &(s)and the Nyquist
plot of C(s) = N(s)/ D(s), respectively. Hence, both
of these methods are graphical in nature and fail to
provide us with an analytical characterization of all
stabilizing parameters. The Routh-Hurwitz
criterion, on the other hand, dose provides us with
an analytic solution. However, the stabilizing
parameters must be determined by solving a set of
polynomial inequalities, atask which is not straight
forward especialy for higher order plants. For this
porpoise we will use the results of [4] asfollows:
Consider (2) with the even-odd decomposition

N(S) = Ne(s?) + N, (s%)

D(s) = De(s%) + D, (s%) ©
Suppose that the degree of D(s) is n while the
degree of N(s) is m and m<n. Let ¢s?) be the
greatest common divisor (gcd) of N,(s?) and
N, (s?) , we define

Ne(s?)
s?)

2
Ne(s®) = No(s%) = Ne‘ES'))

(4)

Let
N’(s) = N (s%) +sNg(s?) ©)
and define
N"(8) = N'(=5) = Ng(s?) - N (s?) )
Clearly N’(s) have no jw axis roots except possibly
a single root at the origin. Let m’be the degree
of N’(s). Now, multiplying &(s)by N (s)and
examining the resulting polynomial, we obtain
AN (9)=0(5(9)+0(N'(9) ©6)
=0(8(9)+ (N (-9)=0(5(9)) - o(N(9)
Substituting s=jw, we obtain
S(WN™ (jw) = p(w, k) + ja(w) (7
where
p(w, k) = py (W) +kp, (W)
P1(W) =[De (-W?)Ng (-W?) + WD, (-W?)Ng (—w?)]
P2 (W) =[Ne (-W?)NZ (-w?) + W N, (-w?)Ng (-w?)]
(W) = WD, (~W?)N g (-W?) — D (-W?)Ng (-w?)]
)

Also, define
py (k) =— P
a+w?) 2
Qf(W)=q(—W)mr+n ®
1+w?) 2

Definition 1 Let 0=w, <w, <w, <...<w,_, be the
real, non-negative, distinct finite zeros of



g; (w) with odd multiplicities. Then A is the set of
strings defined as
{iosigsmniy} for n+m’ even}
A _{{{io,il ..... ii,} for n+m odd
where i, e {~-1,01} and i, e {~11} for t=0.
Remark 2 For n+m’even, the number of string in
Ajis 3x2' while for n+m’odd, the number of
stringsin A is 3x2'™t.
Theorem 2 (Main Results on Constant Gain
Sabilization) Consider the polynomial
6(s)=D(s)+kN(s) where D(s), N(s) are
polynomials of degree n, m respectively,n>mand

k is a scalar gain. Let the integer m and the
polynomials

N’(s), p(w, k), py(W), p2 (W), a(w), p¢ (w, k), d (w) be
as already defined. Let 0=w, <w; <W, <..<W_;
be the real, non-negative, distinct finite zeros of
g (w) with odd multiplicities. Also define w, = .
Then there exist a k such that &(s) = D(s)+kN(s)is
Hurwitz if and only if the following conditions
hold:
Thereexist astring t={i,,i;,..;e A such that

() if p,(w)=0for somet=1.2,...l, then

i =sgn[ py(wW;)]

! (10)

(i)
{i,— 2y + 2ip +..+ (=172, 4
+ (=DM} (D)™ sonfo()]
fon
o@={ TS g
{ip—2i+2,+..+(-D 2}

(=1 *sgn[g(e>)]
if n isodd

1
max. _, |l -——]<
'tElv't-SQ”[pz(Wt)]—1|: G(]Wt):|
ive,ic.sgnf pp (W )]=-1 G(JWt)
Furthermore, If the above three conditions
are satisfied by string ¢,,1,,...,.5, then the set
of all k such that §(s) is Hurwitz is given by

K=U,K, where

r=1"°r

1
K = (maxtet,it-sgn[pz(w)ld[_m}

(iii) (12)

min

1 (13)
mi nlel,it,sgn[pz(vq )]—1|:_ m})rlz...s

4 Calculation of all Stabilizing

L ead-L ag compensator parameters

In this section, we make use of results mentioned
above to provide a complete analytical solution to
calculate the whole set of stabilizing Lead-Lag
type controller parameters for the feedback control
system shown in Fig. 1. The general form of Lead-
Lag compensatorsis as the following

C(s) = ks+a
s+b

Then, the closed-loop characteristic polynomial
o(s)isgiven by

O(s) = (ks+a)N(s)+(s+b)D(s) (15)
Our objective is to determine those values of a,b,
and k, if any, for which the closed-loop system is
stable, i.e. §(s) isHurwitz. We have

5 (5) = 8(s°)N'(s9) =
a[Ne(s*)Ne(s?) — 8Ny (s*) N (s)]
+b[Dg(s%) Ne(s?) — $°Dy (S°)Ng (s2)]
— 2(Dy(sY)Ng(s) - De(ANG(s?)]  (16)
+ ke[ Ng(s*)Ng(s%) - $°No (s*) N (s7)]
+bg D, (s*)Ng(s%) — De(s*)Ng(s7)]
S De(s%)Ng(s%) — °Dy (s°)Ng (s7)]
Substituting s=jw, we obtain
8 (jW) = 6(jWN' (jw)
= A0y + D0y, + I + JWKI + Dy + Ic]
where
= NN +WNNG, G
= eNé+V\’2D0N<;'5ec=V\’2(Dol\l:e_DeN<,))
ok = NN +WN,NG, &y
= oNé_ DeN;’é;)cz DeNé""V\FDoN;
Now for the fix values of b=b,, we have
8" (jW) = @0g, + O + WK + Orc] (19)

(14)

(17)

(18)

where

o = NN +WN NS, &L

= Wz(DoNé - DeNc,)) + bo(DeNt,a + WzDoNc,))

50k = NeN:e'i'WzNoNc,J'é:Jc

= DeN:e +\N2D0Né +Q)(D0N(; - DeNc’J)
Now, we can use the results of [4]. It isremarkable
that we are no longer able to obtain a closed form
solution. Instead, a linear programming problem
has to be solved for each fixed b as the following

algorithm
Algorithm:

(20)

Step 1 For afixed value of b at b=b,:



Step2 for a fixed value of k, determine
{0=w, <w, <w, <..<w_}, the rea, distinct
finite zeros of  (kdy, +J,.) with odd multiplicities
and let w; = . Also define n := degree of §(s) and
m’:= degree of N’(s).
Step 3

(@) if dg(w,)=0for some t=012,...,1 then set
i =sgn[ 5% (w)] , where

1 if x>0
sgn(x) =40 if x=0 (21)
-1 if x<O

(b) Now choose strings 1€ A (A is defined as
(10)) satisfying (a) above such that

{ig—21+2i,+...
+(-1'72i
+(=1)' 2} (=D sgn[a(ee, k)]
for m'+n even
{ig—21+2i,+...
+ (=120} (<) sgn[q(eo k)]
for m +n odd

n—o(N'(s)) = (22)

where o := number of open left half plan of the
system — number of open right half plan of the
system.
For each such string, go to Step 3.
If no such string exists, then there is no solution.
Step 4 Determine the admissible values of a by
solving the following linear inequalities. for
t=012,.., land 5 (w)#0
Sl (W) +adg(W)>0  if i, =1

{5,;0(wt)+adea(wt)<0 if ip=-
Using alinear programming technique:
If the admissible set of a for (23) = &, then there
is no solution.
Else, for fixed k and fixed b, the admissible values
of a satisfying (23) isthe region for which &(s)is
Hurwitz.
Step 5 Sweep ke [Kpin » Kmax ] @010 go to Step 2. So,
the stabilizing set of (ak)for fixed b can be
obtained.
Step 6 Sweep b, € [byi, » brex ] @1d go to Step 1.
Using the above agorithm the whole set of
(a,b, k) for which §(s) is Hurwitz, cab be obtained.

@

5 Illustrative example
To clearly understand the algorithm, we now
present a simple example.

Example Consider the problem of choosing
stabilizing Lead-Lag gains for the plant

~ Ny(9)
=59

Dy(s) = ° + 45> + 85" + 325 + 465° + 465+17,
Ny(s) =s* +25° - 45° +54 2
The closed loop characteristic polynomial is
6(s) = (ks+a)N,(s)+(s+b)D,(s) (25)
We consider the even-odd decompositions for the
polynomials N, (s)and D,(s), i.e.

D,(s) = Dle(52)+SD10 (32), N, (s)

where

(24)

(26)
= Nye (8%) + Ny (s7)
where
Do (s%) = s® +8s* +465% +17, D, (5?)
=4s* +325% + 46 (27)
Ny (s?) =s* —4s? +2,N,, (s?) = 2s% +1
since gcd(Ny, N,,) =1, it follows that
* _ Q) — 2y _ 2
N (S) = N(=5) = Nyg(57) = SNy, (%) (28)

=(s*-45% +2) - 5(25° +1)
Therefore, from (6) we obtain
O = (W + 402 + 2)2 + WP (—202 +1)?
Oy = [(—WP +8wW* — 46w7 +17)
+ W2 (AW — 3202 + 46)] = (W* + 4w + 2)
O = WA(-207 + D[ (AW — 320 + 46)
— (P +8w* — 46w +17)] (29)
Ok = W+ 4n2 +2)2 + WP (—2wP +1)?
Oy, = (AW* — 3207 + 46)(W* + AW + 2)
— (-WP +8w* — 46w +17)(—2w? +1)
Ooe = (WP + 80 — 4602 +17)(W* + 402 + 2)
+ WA (AW — 3202 + 46)(-2wA +1)

Now, we can use the proposed algorithm, which
the stabilizing set of (a,b,k) areshowninFig. 2.

Fig. 2. The stahilizing set of (a,b,k) .



6 Conclusion

A linear programming approach was proposed for
caculation of all stabilizing parameters of
continuous-tome Lead-Lag controllers. The
procedure was obtained by using the earlier results
on calculation of all stabilizing PID gains. The
results obtained in this paper are expected to have a
significant impact on industrial control applications
where Lead-L ag controllers find extensive use.
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