
Efficient Computer Architecture Design Using Hardware Descriptive
Language

M. Riaz Moghal, M. S. Ahmad, N. Hussain, M. S. Mirza, M. W. Mirza

University College of Engineering and Technology, Mirpur AJK, Pakistan-10250

Abstract: - We have developed an approach which allows to designing hardware components using Verilog
HDL, a hardware description language. We have developed Verilog-based computational model and discussed
how to realize the model in digital circuits. This work also provides computer architecture instructors the
ability to teach design of architectural concepts as well the flexibility and freedom to modify the approach to
integrate with their current instructional needs. Over a dozen of website have available the materials and hand
out to get benefit from.

Key-Words: - Hardware Descriptive Language, Computer Architecture, VLSI design, Verilog HDL

1 Introduction
Undergraduate students in computer architecture
courses need to design computer components in
order to gain an in-depth understanding of
architectural concepts. To get maximum benefit,
students must be active learners, engage the material
and design, i. e., produce components to meet a
specific need. Miserably, computers have become so
sophisticated that designing architectural
components, e. g., a cache memory, in hardware is
not practicable in a one semester course. This work
presents an approach where students use a hardware
description language (HDL), Verilog HDL and an
associated simulator, to design components of
computer systems and investigate architectural
concepts [3-6]. To support this approach, we
recommend that, student should access web-based
materials including manual on Verilog HDL,
literature on how to realize his Verilog-based
computational model in digital circuits and perform
laboratory exercises [7-9].

Engineering mentors have used hardware
description languages in their courses before, but at
a lower level, e. g., digital circuit design or VLSI
design [5]. What is distinctive about our approach is
the use of an industrial standard HDL in a computer
architecture course.

Students, who consider themselves software-
types, are able to design and test hardware, for
example, a CPU with instruction look ahead or a
floating point adder. Further, they gain valuable
insight into the power of computer-aided-design
tools used by hardware designers in industry.

We here stress that our objective is to formulate a
computational model in the Verilog notation so we
no longer need to think in digital circuits. That is,
we develop a higher level of abstraction to think

about digital systems that is much shorter than
digital circuits, e. g., sequential machines. A few
lines of Verilog code may translate into hundreds of
Flip Flops, AND, OR and NOT gates. This Verilog
model is precise and short -- the Verilog notation
supplies the information for both the data unit and
the control unit associated with the control
sequence. This technique is basically the one used in
industry to design digital integrated circuits, such as
microprocessor chips. The students are informed
that with automated tools, the Verilog code could be
translated to the integrated circuit masks, say, for
CMOS.

The remaining organization of the paper is as
follows: Section 2 presents Institutional Context.
Section 3 presents Hardware Descriptive Languages.
Section 4 discusses Verilog HDL. Section 5 presents
Use of Verilog. Section 6 presents Computational
Model. Section 7 presents Understanding of Verilog
Code in Digital Logic. Section 8 discusses “Why we
use Verilog for Modeling Hardware. Section 9
presents Laboratory Work. Section 10 concludes the
paper. Section 11 presents Appendix for code
listing.

2 Institutional Context
We have course tested this technique at university
for few semesters. The technique is used in an
undergraduate computer architecture course taken
primarily by both electrical engineering and
computer science seniors. The prerequisite for the
course is a traditional computer organization course.
The architecture course is organized as two one-hour
lectures and a two-hour structured laboratory session
per week. During the laboratory, the students access
the Verilog HDL simulator on their workstations.

The course uses the popular text Computer
System Architecture, by M. Morris Mano and
reference book Computer Architecture: A
Quantitative Approach, second edition, by John L.
Hennessy and David A. Patterson [1-2]. Whereas the
books focus on analyzing a design, our approach
complements the books by having the student learn
and do designs as well. This design aspect is
especially important to educational programs in the
world seeking accreditation by the Accreditation
Board of Engineering and Technology (ABET).

3 Hardware Descriptive Languages
The complex digital systems at their most detailed
level may consist of millions of elements, e. g.,
transistors or logic gates. For many decades, logic
schematics served as the language of logic design,
but not any more. At present, hardware complexity
has grown to such a degree that a schematic with
logic gates is almost inadequate, as it shows only a
web of connectivity and not the functionality of
design. Since the 1970s, computer engineers and
electrical engineers have moved toward hardware
description languages (HDLs). The most famous
HDLs in industry are Verilog and VHDL. Verilog is
the top HDL used by thousands of designers at such
hardware vendors as Sun Microsystems, Apple
Computer and Motorola. Industrial designers prefer
Verilog. The syntax of Verilog is based on the C
language, while the syntax of VHDL is based on
Ada. Since the students know C or C++, Verilog
was the obvious choice. For Windows 95/NT,
Windows 3.1, Macintosh, SunOS and Linux
platforms, FREE versions of the VeriWell product,
is available. The free versions are the same as the
industrial versions except, they are restricted to a
maximum of 1000 lines of HDL code.

4 Verilog Hardware Descriptive
Language
The Verilog language provides the digital designer
with an approach of describing a digital system at a
wide range of levels of abstraction, and, at the same
time, provides access to computer-aided design tools
to aid in the design process at these levels.

Verilog permits hardware designers to express
their design with behavioral constructs, putting off
the details of implementation to a later stage of
design in the design. An abstract demonstration
helps the designer investigate architectural
alternatives through simulations and detect design
bottlenecks before detailed design begins.

Although the behavioral level of Verilog is a
high level description of a digital system, it is still a

precise notation. Computer aided design tools exist
which will “compile” the Verilog notation to the
level of circuits consisting of logic gates and Flip
Flops. Verilog also permits the designer to specify
designs at the logical gate level using gate constructs
and at the transistor level using switch constructs. A
primary use of HDLs in industry is the simulation of
designs before the designer must commit to
fabrication.

5 The Use of Verilog Hardware
Descriptive Language
Our objective in the computer architecture course is
not to create VLSI chips but to use Verilog to
precisely describe the functionality of any digital
system, for example, a computer.

In the course, a tiny subset of the Verilog
language is used to describe and develop computer
architectural concepts using a register transfer level
model of computation. The course also uses the
structural and gate levels of Verilog to design such
things as registers from D-flip flops and adders from
gates. To illustrate, we explain a simple computer in
the Verilog-based model.

Assume we have a very simple computer, with
1024 words of memory (MEM) each 32-bits wide, a
memory address register (AR), a memory data
register (DR), an accumulator (AC), an instruction
register (IR) and a program counter (PC). Since we
have 1024 words of memory, the PC and AR need
to be 10-bits wide. We can declare the registers and
memory in Verilog as the following:
reg [0:31] AC, DR, IR;
reg [0:9] AR, PC;
reg [0:31] MEM [0:1023];

We suppose a digital system can be considered as
moving vectors of bits between registers. This level
of abstraction is called the register transfer
level(RTL). For example, we may illustrate in
Verilog an instruction fetch by four register
transfers:
// instruction fetch
#1 AR <= PC;
#1 DR <= MEM[AR]; // memory read
#1 IR <= DR;
#1 PC <= PC + 1;
The first line means to transfer the 10 bits of the PC
into the AR register after waiting one clock period
(the #1). Note that it is important that we use
Verilog’s blocking assignment operator (<=) rather
than the non-blocking assignment (=). In our
computational model, we suppose that trailing edge
triggered D-flip flops are used for the registers.
Therefore, our Verilog notation models the situation
because the blocking assignment operator (<=)
means to block the assignment until the end of the

current unit in simulation time.
Suppose the operation code for a LOAD

instruction is 0000 in binary and is in the first four
bits of IR, we could design the decode and execute
part of a LOAD instruction as follows:
// decode and execute code for a LOAD
#1 if (IR[0:3] == 4’b0000) begin
#1 AR<=IR[22:31];//last 10 bits
are address
#1 DR <= MEM[AR]; // memory read
#1 AC <= DR;
End
The students use Verilog to illustrate their digital
systems but also to test their designs by a simulator
running on workstations. Please, see the Appendix
for the complete Verilog program list of this simple
computer. The above mentioned design is very slow!
A LOAD instruction would take eight clock periods.
The students at later stage of the course learn to
carefully analyze the Verilog code as well as
introduce concurrency to improve the speed. By this
means, the students learn the significance of fine
tuning the hardware for maximum performance.

6 Computational Model
Register transfers are general. In reality, we can
consider a computation as a specific class of register
transfer.
Definition: A computation consists of placing some
Boolean function of the contents of argument
registers into a destination register.

In the course we consider, a computation is a
register transfer. In computer design, register
transfers are very important. Register transfers are
everywhere -- in arithmetic logic units (ALU),
control units (CU), memory subsystems, I/O devices
and interconnection networks.

Students learn that we need only Boolean
functions. We don’t need arithmetic or higher order
functions. To understand the Boolean functions, we
design combinational logic circuits, for example, an
adder, from AND, OR and NOT gates.

Though, Boolean functions have no concept of
time. To include the passage of time in our model,
we define computing as a sequence of several
register transfers where each transfer takes one or
more clock periods.

Definition: Computing is a sequence of
computations.
Thus, the above Verilog code for the LOAD
instruction has seven computations or register
transfers. We would say that performing a LOAD
instruction is computing because we do seven
computations one after the other, in sequential order.

A major part of the description of a computer is a

plan defining each register transfer, or computation,
and specifying the order and timing in which these
register transfers will take place.

In the course, students learn that the Verilog-
based model describes both the data unit which
contains the digital circuits for each register transfer
and the control unit which sequences these register
transfers at the proper times.

One of the smart parts of the Verilog language
design was making register transfers look like
assignment statements in other programming
languages. Since many designers are pleased with a
language like C or Pascal, Verilog has had a large
degree of success.

7 Understanding Verilog HDL Code in
Digital Logic
In the present course work we demonstrate that our
subset of Verilog code can be realized in digital
logic circuits. Verilog is a structured language like
C++ with sequence, if-then-else, case, while,
repeat and for constructs. We also show how each
control flow construct can be easily “compiled” to a
digital circuit as part of the control unit (a finite state
machine). Also, we show that this translation from
Verilog code to digital circuit can be automated.

8 Why We Use Verilog For Modeling
Hardware
Verilog has characteristics used to model digital
circuits that are not available in traditional
procedural languages like C or C++. One
characteristic is the continuous assignment
statement which is active for the lifetime of the
program. Whenever the arguments of the expression
on the right-hand side change, the outputs change,
possibly after a specified time delay. This statement
is used to model combinational circuits such as an
adder or a subtractor.

Another characteristic not found in C or C++ is
the modeling of concurrency. For example, several
register transfers can be performed in the same clock
period, or concurrently. Given the following register
transfers without any data dependencies:
#1 A <= B;
#1 C <= D;
We can replace these two lines with the one below
and have the transfers done in the same clock period.
#1 A <= B; C <= D;
The semantics of the Verilog blocking assignment
says to evaluate all the right-hand sides and block
the assignments to left-hand sides until the end of
the current unit of simulation time. This models our
assumption that the registers are composed of

trailing edge D-flip flops where the information is
clocked into the flip flops at the end of the clock
period.

Verilog has other language characteristics for
handling concurrency. For example, a digital system
with its own control unit is modeled by the initial
(and always) construct. Several initial constructs are
executed concurrently. Within an initial construct, a
structured fork and join allows multiple threads of
control within a control unit.

Also, another characteristic not found in C or
C++, Verilog permits the execution of a procedural
statement when triggered by a value change on a
wire or a register or the occurrence of a named
event. For example, this is useful to model interrupts
as follows:
@(posedge I) Intr = line&mask;
// controlled by positive edge of I

9 Laboratory Experiments
The students finish a series of laboratory exercises
that build on a simple four instruction computer by
adding addressing modes, integer multiply,
instruction lookahead, cache and floating point add.
Along the way, the students explore Verilog’s
structural modeling to construct a carry ripple adder
from AND, OR and EXCLUSIVE OR gates, and
explore concurrency with fork and join constructs
and multiple digital systems and signaling.

The students find this technique using the
Verilog notation easy to relate to the Hennessy and
Patterson text and their previous course work [2].
We find using a major industrial HDL is highly
motivating to the students. The hardware-types see
learning Verilog as a significant mark on their
resumes for job opportunities. The software-types
are also motivated, as they see Verilog as another
programming language to learn.

10 Conclusions
We have developed a technique which permits
students to design hardware components using
Verilog HDL, a hardware description language. We
have developed a Verilog-based computational
model and discussed how to realize the model in
digital circuits. Free Verilog simulator and the web-
based materials supply to computer architecture
instructors the ability to teach design of architectural
concepts as well the flexibility and freedom to
modify the approach to integrate with their current
instructional needs. Dozen of websites have
available the materials and hand out to get benefit
from.

References:
[1] M. Morris Mano, Computer System Architecture,
 McGraw Hill, USA, 1999.
[2] John L. Hennessy and David A. Patterson,Computer
 Architecture: A Quantitative Approach, second
 edition, 1998.
[3] Cadence Design Systems, Inc., Verilog-XL Reference
 Manual
[4] Open Verilog International (OVI), Verilog HDL
 Language Reference Manual (LRM), 15466 Los Gatos
 Boulevard, Suite 109-071, Los Gatos, CA 95032; Tel:
 (408)353-8899, Fax: (408) 353-8869, Email:
 OVI@netcom.com
[5] Sternheim, E. , R. Singh, Y. Trivedi, R. Madhaven and
 W. Stapleton, Digital Design and Synthesis with
 Verilog HDL, published by Automata Publishing Co.,
 Cupertino, CA, 1993, ISBN 0-9627488-2-X
[6] Thomas, Donald E., and Philip R. Moorby, The
 Verilog Hardware Description Language, second
 edition, published by Kluwer Academic Publishers,
 Norwell MA, 1994, ISBN 0-7923-9523-9, includes
 DOS version of VeriWell simulator and programs on
 diskette.
[7] Bhasker, J., A Verilog HDL Primer, Star Galaxy
 Press, 1058 Treeline Drive, Allentown, PA 18103,
 1997, ISBN 0-9656277-4-8.
[8] Wellspring Solutions, Inc., VeriWell User’s Guide
 1.2, August, 1994, part of free distribution of
 VeriWell, available online.
[9] World Wide Web Pages: FAQ for comp.lang.verilog

11 Appendix
//Simple Computer in Verilog HDL
module simple;
//simple computer with 4-bit op odes in
//first four bits and 10 bit address in
//last ten bits of 32-bit instructions
//0000load M;Load contents at address M
//into AC
//0001 store M; Store contents of AC
//into address M
//0010 add M;Add contents at address Mto AC
//0011 jump M; Jump to instruction at
//address M
parameter clock = 1;
//declare registers and flip flops
reg [0:31] AC, IR, DR;
reg [0:9] PC, AR;
reg [0:31] MEM[0:1023];//1024 words of 32-
//bit memory
//The two "initial" and the "always"
//constructs run concurrently Will stop
//the execution after 80 simulation units.
initial begin: stop_at
 #(100*clock) $stop;
end
//Initialize the PC register and
//memory MEM with test program
initial begin: init
PC=10;//start of machine lang program
MEM[3]=
32'b00000000000000000000000000000010; // Data 2
MEM[4]=
32'b00000000000000000000000000000001; // Data 1
MEM[10]=
32'b00000000000000000000000000000011; // Load 3
MEM[11]=

32'b00100000000000000000000000000100; // Add 4
MEM[12]=
32'b00010000000000000000000000000101; // Store 5
MEM[13]=
32'b00110000000000000000000000001011; // Jump 11
$display("Time PC IR AR DR AC MEM[5]");
//monitor following registers and //memory
location and print when any //change
$monitor(" %0d %h %h %h %h %h %h",
$time, PC, IR, AR, DR, AC, MEM[5]);
end
//main_process will loop until
//simulation is over
always begin: main_process
// Instruction Fetch
#clock AR <= PC;
#clock DR <= MEM[AR]; // memory read
#clock IR <= DR; AR <= DR[22:31];
//last ten bits are address
#clock PC <= PC + 1;
//decode and execute instruction
if(IR[0:3] == 4'b0000) begin // load
#clock DR <= MEM[AR];
#clock AC <= DR;
end
if(IR[0:3] == 4'b0001) begin // store
#clock DR <= AC;
#clock MEM[AR] <= DR;
end
if(IR[0:3] == 4'b0010) begin //
add
#clock DR <= MEM[AR];
#clock AC <= AC + DR;
end
if(IR[0:3] == 4'b0011)
begin // jump
#clock PC <= AR;
end
end
endmodule

Output
Time PC IR AR DR AC MEM[5]
0 00a xxxxxxxx xxx xxxxxxxx xxxxxxxx xxxxxxxx
1 00a xxxxxxxx 00a xxxxxxxx xxxxxxxx xxxxxxxx
2 00a xxxxxxxx 00a 00000003 xxxxxxxx xxxxxxxx
3 00a 00000003 003 00000003 xxxxxxxx xxxxxxxx
4 00b 00000003 003 00000003 xxxxxxxx xxxxxxxx
5 00b 00000003 003 00000002 xxxxxxxx xxxxxxxx
6 00b 00000003 003 00000002 00000002 xxxxxxxx
7 00b 00000003 00b 00000002 00000002 xxxxxxxx
8 00b 00000003 00b 20000004 00000002 xxxxxxxx
9 00b 20000004 004 20000004 00000002 xxxxxxxx
10 00c 20000004 004 20000004 00000002 xxxxxxxx
11 00c 20000004 004 00000001 00000002 xxxxxxxx
12 00c 20000004 004 00000001 00000003 xxxxxxxx
13 00c 20000004 00c 00000001 00000003 xxxxxxxx
14 00c 20000004 00c 10000005 00000003 xxxxxxxx
15 00c 10000005 005 10000005 00000003 xxxxxxxx
16 00d 10000005 005 10000005 00000003 xxxxxxxx
17 00d 10000005 005 00000003 00000003 xxxxxxxx
18 00d 10000005 005 00000003 00000003 00000003
19 00d 10000005 00d 00000003 00000003 00000003
20 00d 10000005 00d 3000000b 00000003 00000003
21 00d 3000000b 00b 3000000b 00000003 00000003
22 00e 3000000b 00b 3000000b 00000003 00000003
23 00b 3000000b 00b 3000000b 00000003 00000003

25 00b 3000000b 00b 20000004 00000003 00000003
26 00b 20000004 004 20000004 00000003 00000003
27 00c 20000004 004 20000004 00000003 00000003
28 00c 20000004 004 00000001 00000003 00000003
29 00c 20000004 004 00000001 00000004 00000003
30 00c 20000004 00c 00000001 00000004 00000003
31 00c 20000004 00c 10000005 00000004 00000003
32 00c 10000005 005 10000005 00000004 00000003
33 00d 10000005 005 10000005 00000004 00000003
34 00d 10000005 005 00000004 00000004 00000003
35 00d 10000005 005 00000004 00000004 00000004
36 00d 10000005 00d 00000004 00000004 00000004
37 00d 10000005 00d 3000000b 00000004 00000004
38 00d 3000000b 00b 3000000b 00000004 00000004
39 00e 3000000b 00b 3000000b 00000004 00000004
40 00b 3000000b 00b 3000000b 00000004 00000004
42 00b 3000000b 00b 20000004 00000004 00000004
43 00b 20000004 004 20000004 00000004 00000004
44 00c 20000004 004 20000004 00000004 00000004
45 00c 20000004 004 00000001 00000004 00000004
46 00c 20000004 004 00000001 00000005 00000004
47 00c 20000004 00c 00000001 00000005 00000004
48 00c 20000004 00c 10000005 00000005 00000004
49 00c 10000005 005 10000005 00000005 00000004
50 00d 10000005 005 10000005 00000005 00000004
51 00d 10000005 005 00000005 00000005 00000004
52 00d 10000005 005 00000005 00000005 00000005
53 00d 10000005 00d 00000005 00000005 00000005
54 00d 10000005 00d 3000000b 00000005 00000005
55 00d 3000000b 00b 3000000b 00000005 00000005
56 00e 3000000b 00b 3000000b 00000005 00000005
57 00b 3000000b 00b 3000000b 00000005 00000005
59 00b 3000000b 00b 20000004 00000005 00000005
60 00b 20000004 004 20000004 00000005 00000005
61 00c 20000004 004 20000004 00000005 00000005
62 00c 20000004 004 00000001 00000005 00000005
63 00c 20000004 004 00000001 00000006 00000005
64 00c 20000004 00c 00000001 00000006 00000005
65 00c 20000004 00c 10000005 00000006 00000005
66 00c 10000005 005 10000005 00000006 00000005
67 00d 10000005 005 10000005 00000006 00000005
68 00d 10000005 005 00000006 00000006 00000005
69 00d 10000005 005 00000006 00000006 00000006
70 00d 10000005 00d 00000006 00000006 00000006
71 00d 10000005 00d 3000000b 00000006 00000006
72 00d 3000000b 00b 3000000b 00000006 00000006
73 00e 3000000b 00b 3000000b 00000006 00000006
74 00b 3000000b 00b 3000000b 00000006 00000006
76 00b 3000000b 00b 20000004 00000006 00000006
77 00b 20000004 004 20000004 00000006 00000006
78 00c 20000004 004 20000004 00000006 00000006
79 00c 20000004 004 00000001 00000006 00000006
Stop at simulation time 80

