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Abstract: - We have developed an approach which allows to designing hardware components using Verilog 
HDL, a hardware description language. We have developed Verilog-based computational model and discussed 
how to realize the model in digital circuits. This work also provides computer architecture instructors the 
ability to teach design of architectural concepts as well the flexibility and freedom to modify the approach to 
integrate with their current instructional needs. Over a dozen of website have available the materials and hand 
out to get benefit from. 
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1 Introduction 
Undergraduate students in computer architecture 
courses need to design computer components in 
order to gain an in-depth understanding of 
architectural concepts. To get maximum benefit, 
students must be active learners, engage the material 
and design, i. e., produce components to meet a 
specific need. Miserably, computers have become so 
sophisticated that designing architectural 
components, e. g., a cache memory, in hardware is 
not practicable in a one semester course. This work 
presents an approach where students use a hardware 
description language (HDL), Verilog HDL and an 
associated simulator, to design components of 
computer systems and investigate architectural 
concepts [3-6]. To support this approach, we 
recommend that, student should access web-based 
materials including manual on Verilog HDL, 
literature on how to realize his Verilog-based 
computational model in digital circuits and perform 
laboratory exercises [7-9].  

Engineering mentors have used hardware 
description languages in their courses before, but at 
a lower level, e. g., digital circuit design or VLSI 
design [5]. What is distinctive about our approach is 
the use of an industrial standard HDL in a computer 
architecture course. 

Students, who consider themselves software-
types, are able to design and test hardware, for 
example, a CPU with instruction look ahead or a 
floating point adder. Further, they gain valuable 
insight into the power of computer-aided-design 
tools used by hardware designers in industry. 

We here stress that our objective is to formulate a 
computational model in the Verilog notation so we 
no longer need to think in digital circuits. That is, 
we develop a higher level of abstraction to think 

about digital systems that is much shorter than 
digital circuits, e. g., sequential machines. A few 
lines of Verilog code may translate into hundreds of 
Flip Flops, AND, OR and NOT gates. This Verilog 
model is precise and short -- the Verilog notation 
supplies the information for both the data unit and 
the control unit associated with the control 
sequence. This technique is basically the one used in 
industry to design digital integrated circuits, such as 
microprocessor chips. The students are informed 
that with automated tools, the Verilog code could be 
translated to the integrated circuit masks, say, for 
CMOS.  

The remaining organization of the paper is as 
follows: Section 2 presents Institutional Context. 
Section 3 presents Hardware Descriptive Languages.   
Section 4 discusses Verilog HDL. Section 5 presents 
Use of Verilog. Section 6 presents Computational 
Model. Section 7 presents Understanding of Verilog 
Code in Digital Logic. Section 8 discusses “Why we 
use Verilog for Modeling Hardware. Section 9 
presents Laboratory Work. Section 10 concludes the 
paper. Section 11 presents Appendix for code 
listing. 
 
2 Institutional Context  
We have course tested this technique at university 
for few semesters. The technique is used in an 
undergraduate computer architecture course taken 
primarily by both electrical engineering and 
computer science seniors. The prerequisite for the 
course is a traditional computer organization course. 
The architecture course is organized as two one-hour 
lectures and a two-hour structured laboratory session 
per week. During the laboratory, the students access 
the Verilog HDL simulator on their workstations. 



The course uses the popular text Computer 
System Architecture, by M. Morris Mano and 
reference book Computer Architecture: A 
Quantitative Approach, second edition, by John L. 
Hennessy and David A. Patterson [1-2]. Whereas the 
books focus on analyzing a design, our approach 
complements the books by having the student learn 
and do designs as well. This design aspect is 
especially important to educational programs in the 
world seeking accreditation by the Accreditation 
Board of Engineering and Technology (ABET).  
 
3   Hardware Descriptive Languages 
The complex digital systems at their most detailed 
level may consist of millions of elements, e. g., 
transistors or logic gates. For many decades, logic 
schematics served as the language of logic design, 
but not any more. At present, hardware complexity 
has grown to such a degree that a schematic with 
logic gates is almost inadequate, as it shows only a 
web of connectivity and not the functionality of 
design. Since the 1970s, computer engineers and 
electrical engineers have moved toward hardware 
description languages (HDLs). The most famous 
HDLs in industry are Verilog and VHDL. Verilog is 
the top HDL used by thousands of designers at such 
hardware vendors as Sun Microsystems, Apple 
Computer and Motorola. Industrial designers prefer 
Verilog. The syntax of Verilog is based on the C 
language, while the syntax of VHDL is based on 
Ada. Since the students know C or C++, Verilog 
was the obvious choice. For Windows 95/NT, 
Windows 3.1, Macintosh, SunOS and Linux 
platforms, FREE versions of the VeriWell product, 
is available. The free versions are the same as the 
industrial versions except, they are restricted to a 
maximum of 1000 lines of HDL code.  
 
4 Verilog Hardware Descriptive 
Language 
The Verilog language provides the digital designer 
with an approach of describing a digital system at a 
wide range of levels of abstraction, and, at the same 
time, provides access to computer-aided design tools 
to aid in the design process at these levels.  

Verilog permits hardware designers to express 
their design with behavioral constructs, putting off 
the details of implementation to a later stage of 
design in the design. An abstract demonstration 
helps the designer investigate architectural 
alternatives through simulations and detect design 
bottlenecks before detailed design begins. 

Although the behavioral level of Verilog is a 
high level description of a digital system, it is still a 

precise notation. Computer aided design tools exist 
which will “compile” the Verilog notation to the 
level of circuits consisting of logic gates and Flip 
Flops. Verilog also permits the designer to specify 
designs at the logical gate level using gate constructs 
and at the transistor level using switch constructs. A 
primary use of HDLs in industry is the simulation of 
designs before the designer must commit to 
fabrication. 
 
5 The Use of Verilog Hardware 
Descriptive Language 
Our objective in the computer architecture course is 
not to create VLSI chips but to use Verilog to 
precisely describe the functionality of any digital 
system, for example, a computer. 

In the course, a tiny subset of the Verilog 
language is used to describe and develop computer 
architectural concepts using a register transfer level 
model of computation. The course also uses the 
structural and gate levels of Verilog to design such 
things as registers from D-flip flops and adders from 
gates. To illustrate, we explain a simple computer in 
the Verilog-based model. 

Assume we have a very simple computer, with 
1024 words of memory (MEM) each 32-bits wide, a 
memory address register (AR), a memory data 
register (DR), an accumulator (AC), an instruction 
register (IR) and a program counter (PC). Since we 
have 1024 words of memory, the PC and AR need 
to be 10-bits wide. We can declare the registers and 
memory in Verilog as the following: 
reg [0:31] AC, DR, IR; 
reg [0:9] AR, PC; 
reg [0:31] MEM [0:1023]; 

We suppose a digital system can be considered as 
moving vectors of bits between registers. This level 
of abstraction is called the register transfer 
level(RTL). For example, we may illustrate in 
Verilog an instruction fetch by four register 
transfers: 
// instruction fetch 
#1 AR <= PC; 
#1 DR <= MEM[AR]; // memory read 
#1 IR <= DR; 
#1 PC <= PC + 1; 
The first line means to transfer the 10 bits of the PC 
into the AR register after waiting one clock period 
(the #1). Note that it is important that we use 
Verilog’s blocking assignment operator (<=) rather 
than the non-blocking assignment (=). In our 
computational model, we suppose that trailing edge 
triggered D-flip flops are used for the registers. 
Therefore, our Verilog notation models the situation 
because the blocking assignment operator (<=) 
means to block the assignment until the end of the 



current unit in simulation time. 
Suppose the operation code for a LOAD 

instruction is 0000 in binary and is in the first four 
bits of IR, we could design the decode and execute 
part of a LOAD instruction as follows: 
// decode and execute code for a LOAD 
#1 if (IR[0:3] == 4’b0000) begin 
#1 AR<=IR[22:31];//last 10 bits 
are address 
#1 DR <= MEM[AR]; // memory read 
#1 AC <= DR; 
End 
The students use Verilog to illustrate their digital 
systems but also to test their designs by a simulator 
running on workstations. Please, see the Appendix 
for the complete Verilog program list of this simple 
computer. The above mentioned design is very slow! 
A LOAD instruction would take eight clock periods. 
The students at later stage of the course learn to 
carefully analyze the Verilog code as well as 
introduce concurrency to improve the speed. By this 
means, the students learn the significance of fine 
tuning the hardware for maximum performance. 
 
6 Computational Model 
Register transfers are general. In reality, we can 
consider a computation as a specific class of register 
transfer. 
Definition: A computation consists of placing some 
Boolean function of the contents of argument 
registers into a destination register. 

In the course we consider, a computation is a 
register transfer. In computer design, register 
transfers are very important. Register transfers are 
everywhere -- in arithmetic logic units (ALU), 
control units (CU), memory subsystems, I/O devices 
and interconnection networks.  

Students learn that we need only Boolean 
functions. We don’t need arithmetic or higher order 
functions. To understand the Boolean functions, we 
design combinational logic circuits, for example, an 
adder, from AND, OR and NOT gates. 

Though, Boolean functions have no concept of 
time. To include the passage of time in our model, 
we define computing as a sequence of several 
register transfers where each transfer takes one or 
more clock periods. 
 
Definition: Computing is a sequence of 
computations. 
Thus, the above Verilog code for the LOAD 
instruction has seven computations or register 
transfers. We would say that performing a LOAD 
instruction is computing because we do seven 
computations one after the other, in sequential order.  

A major part of the description of a computer is a 

plan defining each register transfer, or computation, 
and specifying the order and timing in which these 
register transfers will take place.  

In the course, students learn that the Verilog-
based model describes both the data unit which 
contains the digital circuits for each register transfer 
and the control unit which sequences these register 
transfers at the proper times. 

One of the smart parts of the Verilog language 
design was making register transfers look like 
assignment statements in other programming 
languages. Since many designers are pleased with a 
language like C or Pascal, Verilog has had a large 
degree of success. 
 
7 Understanding Verilog HDL Code in 
Digital Logic  
In the present course work we demonstrate that our 
subset of Verilog code can be realized in digital 
logic circuits. Verilog is a structured language like 
C++ with sequence, if-then-else, case, while, 
repeat and for constructs. We also show how each 
control flow construct can be easily “compiled” to a 
digital circuit as part of the control unit (a finite state 
machine). Also, we show that this translation from 
Verilog code to digital circuit can be automated. 
 
8 Why We Use Verilog For Modeling 
Hardware 
Verilog has characteristics used to model digital 
circuits that are not available in traditional 
procedural languages like C or C++. One 
characteristic is the continuous assignment 
statement which is active for the lifetime of the 
program. Whenever the arguments of the expression 
on the right-hand side change, the outputs change, 
possibly after a specified time delay. This statement 
is used to model combinational circuits such as an 
adder or a subtractor.  

Another characteristic not found in C or C++ is 
the modeling of concurrency. For example, several 
register transfers can be performed in the same clock 
period, or concurrently. Given the following register 
transfers without any data dependencies: 
#1 A <= B; 
#1 C <= D; 
We can replace these two lines with the one below 
and have the transfers done in the same clock period. 
#1 A <= B; C <= D; 
The semantics of the Verilog blocking assignment 
says to evaluate all the right-hand sides and block 
the assignments to left-hand sides until the end of 
the current unit of simulation time. This models our 
assumption that the registers are composed of 



trailing edge D-flip flops where the information is 
clocked into the flip flops at the end of the clock 
period.  

Verilog has other language characteristics for 
handling concurrency. For example, a digital system 
with its own control unit is modeled by the initial 
(and always) construct. Several initial constructs are 
executed concurrently. Within an initial construct, a 
structured fork and join allows multiple threads of 
control within a control unit.  

Also, another characteristic not found in C or 
C++, Verilog permits the execution of a procedural 
statement when triggered by a value change on a 
wire or a register or the occurrence of a named 
event. For example, this is useful to model interrupts 
as follows: 
@(posedge I) Intr = line&mask; 
// controlled by positive edge of I 

 
9 Laboratory Experiments  
The students finish a series of laboratory exercises 
that build on a simple four instruction computer by 
adding addressing modes, integer multiply, 
instruction lookahead, cache and floating point add. 
Along the way, the students explore Verilog’s 
structural modeling to construct a carry ripple adder 
from AND, OR and EXCLUSIVE OR gates, and 
explore concurrency with fork and join constructs 
and multiple digital systems and signaling.  

The students find this technique using the 
Verilog notation easy to relate to the Hennessy and 
Patterson text and their previous course work [2]. 
We find using a major industrial HDL is highly 
motivating to the students. The hardware-types see 
learning Verilog as a significant mark on their 
resumes for job opportunities. The software-types 
are also motivated, as they see Verilog as another 
programming language to learn. 
 
10 Conclusions 
We have developed a technique which permits 
students to design hardware components using 
Verilog HDL, a hardware description language. We 
have developed a Verilog-based computational 
model and discussed how to realize the model in 
digital circuits. Free Verilog simulator and the web-
based materials supply to computer architecture 
instructors the ability to teach design of architectural 
concepts as well the flexibility and freedom to 
modify the approach to integrate with their current 
instructional needs. Dozen of websites have 
available the materials and hand out to get benefit 
from.  
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11 Appendix 
//Simple Computer in Verilog HDL  
module simple; 
//simple computer with 4-bit op odes in 
//first four bits and 10 bit address in 
//last ten bits of 32-bit instructions  
//0000load M;Load contents at address M 
//into AC 
//0001 store M; Store contents of  AC 
//into address M 
//0010 add M;Add contents at address Mto AC 
//0011 jump M; Jump to instruction at 
//address M  
parameter clock = 1; 
//declare registers and flip flops 
reg [0:31] AC, IR, DR; 
reg [0:9] PC, AR; 
reg [0:31] MEM[0:1023];//1024 words of 32-
//bit memory 
//The two "initial" and the "always" 
//constructs run concurrently Will stop 
//the execution after 80 simulation units. 
initial begin: stop_at 
 #(100*clock) $stop; 
end 
//Initialize the PC register and 
//memory MEM with test program 
initial begin: init 
PC=10;//start of machine lang program 
MEM[3]= 
32'b00000000000000000000000000000010; // Data 2 
MEM[4]=  
32'b00000000000000000000000000000001; // Data 1 
MEM[10]=  
32'b00000000000000000000000000000011; // Load 3 
MEM[11]=  



32'b00100000000000000000000000000100; // Add 4 
MEM[12]=  
32'b00010000000000000000000000000101; // Store 5 
MEM[13]=  
32'b00110000000000000000000000001011; // Jump 11 
$display("Time PC IR AR DR AC MEM[5]"); 
//monitor following registers and //memory 
location and print when any //change 
$monitor(" %0d %h %h %h %h %h %h", 
$time, PC, IR, AR, DR, AC, MEM[5]); 
end 
//main_process will loop until 
//simulation is over 
always begin: main_process 
// Instruction Fetch 
#clock AR <= PC; 
#clock DR <= MEM[AR]; // memory read 
#clock IR <= DR; AR <= DR[22:31];  
//last ten bits are address 
#clock PC <= PC + 1; 
//decode and execute instruction 
if(IR[0:3] == 4'b0000) begin // load 
#clock DR <= MEM[AR]; 
#clock AC <= DR; 
end 
if(IR[0:3] == 4'b0001) begin // store 
#clock DR <= AC; 
#clock MEM[AR] <= DR; 
end 
if(IR[0:3] == 4'b0010) begin // 
add 
#clock DR <= MEM[AR]; 
#clock AC <= AC + DR; 
end 
if(IR[0:3] == 4'b0011)  
begin // jump 
#clock PC <= AR; 
end 
end 
endmodule 
 
Output  
Time  PC     IR          AR         DR               AC             MEM[5] 
0 00a xxxxxxxx xxx xxxxxxxx xxxxxxxx xxxxxxxx 
1 00a xxxxxxxx 00a xxxxxxxx xxxxxxxx xxxxxxxx 
2 00a xxxxxxxx 00a 00000003 xxxxxxxx xxxxxxxx 
3 00a 00000003 003 00000003 xxxxxxxx xxxxxxxx 
4 00b 00000003 003 00000003 xxxxxxxx xxxxxxxx 
5 00b 00000003 003 00000002 xxxxxxxx xxxxxxxx 
6 00b 00000003 003 00000002 00000002 xxxxxxxx 
7 00b 00000003 00b 00000002 00000002 xxxxxxxx 
8 00b 00000003 00b 20000004 00000002 xxxxxxxx 
9 00b 20000004 004 20000004 00000002 xxxxxxxx 
10 00c 20000004 004 20000004 00000002 xxxxxxxx 
11 00c 20000004 004 00000001 00000002 xxxxxxxx 
12 00c 20000004 004 00000001 00000003 xxxxxxxx 
13 00c 20000004 00c 00000001 00000003 xxxxxxxx 
14 00c 20000004 00c 10000005 00000003 xxxxxxxx 
15 00c 10000005 005 10000005 00000003 xxxxxxxx  
16 00d 10000005 005 10000005 00000003 xxxxxxxx 
17 00d 10000005 005 00000003 00000003 xxxxxxxx 
18 00d 10000005 005 00000003 00000003 00000003 
19 00d 10000005 00d 00000003 00000003 00000003 
20 00d 10000005 00d 3000000b 00000003 00000003 
21 00d 3000000b 00b 3000000b 00000003 00000003 
22 00e 3000000b 00b 3000000b 00000003 00000003 
23 00b 3000000b 00b 3000000b 00000003 00000003 

25 00b 3000000b 00b 20000004 00000003 00000003 
26 00b 20000004 004 20000004 00000003 00000003 
27 00c 20000004 004 20000004 00000003 00000003 
28 00c 20000004 004 00000001 00000003 00000003 
29 00c 20000004 004 00000001 00000004 00000003 
30 00c 20000004 00c 00000001 00000004 00000003 
31 00c 20000004 00c 10000005 00000004 00000003 
32 00c 10000005 005 10000005 00000004 00000003 
33 00d 10000005 005 10000005 00000004 00000003 
34 00d 10000005 005 00000004 00000004 00000003 
35 00d 10000005 005 00000004 00000004 00000004 
36 00d 10000005 00d 00000004 00000004 00000004 
37 00d 10000005 00d 3000000b 00000004 00000004 
38 00d 3000000b 00b 3000000b 00000004 00000004 
39 00e 3000000b 00b 3000000b 00000004 00000004 
40 00b 3000000b 00b 3000000b 00000004 00000004 
42 00b 3000000b 00b 20000004 00000004 00000004 
43 00b 20000004 004 20000004 00000004 00000004 
44 00c 20000004 004 20000004 00000004 00000004 
45 00c 20000004 004 00000001 00000004 00000004 
46 00c 20000004 004 00000001 00000005 00000004 
47 00c 20000004 00c 00000001 00000005 00000004 
48 00c 20000004 00c 10000005 00000005 00000004 
49 00c 10000005 005 10000005 00000005 00000004 
50 00d 10000005 005 10000005 00000005 00000004 
51 00d 10000005 005 00000005 00000005 00000004 
52 00d 10000005 005 00000005 00000005 00000005 
53 00d 10000005 00d 00000005 00000005 00000005 
54 00d 10000005 00d 3000000b 00000005 00000005 
55 00d 3000000b 00b 3000000b 00000005 00000005 
56 00e 3000000b 00b 3000000b 00000005 00000005 
57 00b 3000000b 00b 3000000b 00000005 00000005 
59 00b 3000000b 00b 20000004 00000005 00000005 
60 00b 20000004 004 20000004 00000005 00000005 
61 00c 20000004 004 20000004 00000005 00000005 
62 00c 20000004 004 00000001 00000005 00000005 
63 00c 20000004 004 00000001 00000006 00000005 
64 00c 20000004 00c 00000001 00000006 00000005 
65 00c 20000004 00c 10000005 00000006 00000005 
66 00c 10000005 005 10000005 00000006 00000005 
67 00d 10000005 005 10000005 00000006 00000005 
68 00d 10000005 005 00000006 00000006 00000005 
69 00d 10000005 005 00000006 00000006 00000006 
70 00d 10000005 00d 00000006 00000006 00000006 
71 00d 10000005 00d 3000000b 00000006 00000006 
72 00d 3000000b 00b 3000000b 00000006 00000006 
73 00e 3000000b 00b 3000000b 00000006 00000006 
74 00b 3000000b 00b 3000000b 00000006 00000006 
76 00b 3000000b 00b 20000004 00000006 00000006 
77 00b 20000004 004 20000004 00000006 00000006 
78 00c 20000004 004 20000004 00000006 00000006 
79 00c 20000004 004 00000001 00000006 00000006 
Stop at simulation time 80 
 


