
KDS-transformation for data compression

IONUŢ POPA
Faculty of Computer Science,
“Al.I.Cuza” University of Iaşi,

700483 Iaşi,
ROMANIA

Abstract:- In this paper we present a new simple method to rewrite a given input string into another
one which can be efficiently compressed (in some cases) by traditional compression methods.

Key-Words:- Data compression, Reversible transformation

1. Introduction

It is an well known observation in data compres-
sion theory that, given an input source, symbols
with low probabilities are responsible for the
high entropy of the input source. Lets call those
symbols rare symbols and the others dominant
symbols.

At least empirically, an input source with
rare symbols would be more efficiently com-
pressed if those symbols can be encoded some-
how using dominant symbols. Obviously, this
encoding should be completely reversible. We
present here such a method, similar somehow
with difference encoding and other transforma-
tion techniques used in image or sound com-
pression.The fundamentals of this method can
also be found in Huffman compression algo-
rithm.

The paper is structured as follows: in the
next section the basic idea of our transforma-
tion is presented. In Section 3, an analysis of
this technique is presented. In the last sections
some conclusions and remarks are also given.

2. KDS - transformation

KDS -transformation stands for Keep the Dom-
inant Symbols - transformation. The advantage
of this method is that those statistical proper-
ties of the input stream that can be efficiently

used by any compression algorithm are not dra-
matically changed.

Consider the following procedure to build a
Huffman code for an alphabet V , where pa is
the probability of appearance of symbol a in an
input source:

• if |V | = 2 then V = {a, b} and code(a) = 0
and code(b) = 1.

• if |V | > 2 then select from V two symbols
with smallest probabilities (call them a and
b). Then code(a) = code(#)0, code(b) =
code(#)1, where # is a new symbol with
p# = pa + pb, and code(#) is computed
applying the same procedure with the al-
phabet V \ {a, b} ∪ {#}.

The same is the essence of our transforma-
tion, to replace symbols with low probabilities
with a new symbol.

Further we present formally this transforma-
tion.

Consider A is an alphabet and w is a word
over the alphabet A. Consider A = R∪D with
|R| = |D|, where R is a subset of the alphabet
A containing the ”rare” symbols and D a subset
containing the ”dominant” symbols in the word
w.

Is is easy to see that there is an unique de-
composition of w:

w = r1d1r2d2 . . . rkdk,

where:

• ri ∈ R+ , 1 < i ≤ k ;

• r1 ∈ R∗ ;

• di ∈ D+ , 1 ≤ i < k ;

• dk ∈ D∗ .

The first step of our transformation is rewrit-
ing w in w′, where:

w′ = #|r1|d1#
|r2|d2 . . .#|rk|dk,

where # is a new symbol, # ∈/A.
Consider now a bijective mapping f : R →

D. In the second step of the transformation the
string w′′ is obtained in the following way:

w′′ = f(r1)f(r2) . . . f(rk)#w′.

In the final step the new symbol # and an
explicit representation of the mapping f are
added at the beginning of string w′′. This way
the string w′′′ is obtained:

w′′′ = #ri1f(ri1) . . . ri|R|f(ri|R|)#w′′,

where R = {ri1 . . . ri|R|}.
The reverse transformation works in the fol-

lowing way: given a string w′′′(obtained as
above) consider the first symbol of w′′′, the sep-
arator #. Consider now the following factoriza-
tion of w′′′:

w′′′ = #w1#w2#w3,

where w1 ∈ A+, w2 ∈ R and w3 ∈ D ∪ {#}. It
is easy to observe that there is an unique such
a factorization of w′′′.

3. A Case Study

In this section we study the effect of this trans-
formation combined with some traditional com-
pression methods.

The length (in bits) of the Lampel-Ziv[2]
code of a word w ∈ V ∗ is:

LZw =
b∑

i=1

�log2(ki)�,

where b is the number of blocks resulting from
LZ-parsing and k is the size of the alphabet of
the string w.

Consider now the case of the alphabet A
where |A| = 2p, p > 1. Let u and v be two
words, u ∈ A∗ and v ∈ (A ∪ {#})∗, v is ob-
tained form u using the above transformation.

LZu =
b∑

i=1

�log2(2
pi)�

= bp +
b∑

i=1

�log2(i)�

which telescope[1] into

LZu = bp+b(�log2 b�+1)+b21−log2 b+�log2 b�−2,

where b is the number of blocks resulting from
LZ parsing of the string u.

LZv = b′(p − 1) + b′(�log2 b′� + 1)+

+b′21−log2 b′+�log2 b′� − 2,

where b′ is the number of blocks resulting from
LZ parsing of the string v.

If LZv

LZu
> 1 compression is improved by trans-

formation presented above.

In Figure 1 the dark spot represent values for
b and b′ when compression can be improved

Moreover consider A = R ∪ D, where |R| =
|D|, and the probabilities of appearance of sym-
bols form R in u is p1, and the probabilities of
appearance of symbols from D in u is p2. In
this case we can estimate the number b′ using
b, p1 and p2 and determinate the cases when
LZv ≤ LZu.

Fig. 1: Compression gain

4. Conclusion

The idea of this transformation can be also
used to encode pointers/references in dictionary
compression schemes.

An implementation of this algorithms im-
prove compression from 5% up to 10% in combi-
nation with software products like gzip or Win-
RAR 3.30. In the following table some experi-
mental results are presented:

Original size WinRAR KDS+WinRAR
104448 19926 19756
263680 68084 68527
285696 62008 60657
829440 211659 202124
913755 293157 287293

1016320 244126 232476
1150976 229790 229350
1691136 424372 407384
2156032 511538 489263
3259904 597233 579094
5751296 1321138 1278913
6125056 1168909 1126271

28844032 6409980 6228254

Table 1: Experimental results

The first column of Table 1 contains the size

(in bytes) of original files. Test were performed
using Java bytecode files. The second file con-
tains the size of the files compressed using Win-
RAR 3.30. Finally, the last column contains
files encoded first using KDS transformation
and then WinRAR 3.30.

In most of the cases KDS transformation im-
proved compression efficiency. It also works
well on images, sounds or others files containing
”rare” symbols.

References

[1] D. Knuth The Art of Com-
puter Programming: Fundamen-
tal Algorithms, Vol. 1, Addison-
Wesley, 1973

[2] J. Ziv, A. Lempel - Compres-
sion of individual sequences
via variable-rate coding. IEEE
Transactions on Information
Theory 24, 1978. 530536.

