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Abstract: - This paper gives an overview of how the speed of simulation of Video/Graphics subsystem can be 
increased with SystemC [1][5][6].  Also, an idea of partitioning hardware and software at instruction level and 
the simulation framework to support this partitioning has been introduced. The simulation of each design space 
is conducted at the transaction level and the partitioning decision, which is effectively a selection of suitable 
design space, is made on the basis of the number of instructions, resource wastage factor and the hardware cost 
involved in the design space.  
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1 Introduction 
SystemC[2][7][8] is an industry led initiative to 
provide a modelling platform that promotes and 
accelerates system models which can then be proven 
using simulation tools before transfer to silicon.  
 The simulation of the system at the RTL (Register 
Transfer Level) level is very time consuming. In a 
very complex design this can be a major obstacle. 
There is a need of simulating the system at higher 
level of abstraction than the RTL level to boost the 
simulation speed and effectively decreasing the 
design time. SystemC provides the facility of 
simulating the system at the transaction level where 
the communication between the design modules 
takes place through interface methods. This 
significantly increases the simulation speed.  
 The design of a graphical subsystem like the video 
mixer can have multitude of design space. Each 
design space if simulated at the RTL level consumes 
significant amount of time. If a complex graphical 
subsystem design is considered, the simulation of 
large number of design space may easily be 
impractical. If each design space is simulated at the 

transaction level, it gives the designer drastic 
increase in simulation speed and thus makes it easy 
to verify the correctness of the design for each design 
space the designer chooses. The simulation 
framework which has been described in this paper is 
used to simulate the design space.  
 The suitable design space can then be chosen 
based on the instruction analysis, resource wastage 
factor analysis and the cost analysis.  
 
 
2 SystemC Model of the Video Mixer 
Typical video/graphics functionality includes video 
encoding/decoding, streaming, scaling, scrolling, vertical 
and horizontal filtering, multiple video overlays, video 
grabbing etc. Within our research we have chosen to 
concentrate on the use of SystemC to design, model and 
simulate a video overlay or video mixing engine.  

The SystemC model of the mixer hardware has been 
divided into three major sections-Control Unit (CU), Data 
Addressing Unit (DAU) and the Arithmetic Unit (AU). 
The CU is microprogrammed i.e. it consist of a set of 
instructions, stored in the memory, to perform mixing 
operation. The DAU generates the address of the input 
data for the mixer and the address of the output data 



where the output of the mixer is stored. Finally, the AU 
does the mixing operation. 

 
  

3 RTL Level Simulation of Multiple 
Overlay Image Mixer 

Initially an RTL based model of an image mixer was 
developed. This allowed the generation of composite 
images formed from multiple overlay images (the mixer 
has the capability of overlaying more than one image on 
the primary image) with the addition of the software 
layers that controls the mixer hardware. The 
communication between the software layers is performed 
at the transaction level. The software layers consist of an 
application layer (AL), presentation layer (PL) and the 
driver layer (DL). The application layer and presentation 
are hardware independent. The only software layer that 
interacts directly with the mixer hardware is the driver 
layer. The inclusion of the application and presentation 
layers allows a more complete system level model to be 
developed.  

 Fig.1 gives an overview of the mixer subsystem 
simulation where the mixer hardware has been simulated 
at the RTL level.  
 
 
 
 
 
 
 
 
 

Fig.1 RTL level simulation of multiple overlay image 
mixer 

 Although the design constraints are more visible 
at RTL simulation but its efficiency soon diminishes due 
to high simulation time and difficulty in the design. 
 
 
4 Transaction Level Simulation of 

Multiple Overlay Image Mixer  
The communication between the different modules in 
the transaction level modelling [3][4] is implemented 
using a hierarchical channel. The hierarchical 
channel is a module which implements interface 
methods. Interface methods are defined in the 

interface but do not implement these methods. They 
are pure virtual objects without any data in order not 
to anticipate implementation details.  
 
In order to improve the speed of simulation, the mixer 
hardware is simulated at the transaction level. To simulate 
the mixer at the transaction level, we have created a 
simulation framework which operates entirely at the 
transaction level. 
 
4.1 Simulation Framework in SystemC 
Fig.2 gives an overview of the simulation framework we 
have created for the simulation of the multiple overlay 
image mixer. 

 
Fig.2 Simulation framework in SystemC 

 In our simulation framework, we have a control 
unit which comprises of program counter (PC), 
Instruction Store (IS), and Image Line Counter (ILC). The 
IS is where the microprogram is stored. The ILC keeps 
count of the number of image lines remaining to be 
processed. The other section is the software layer with AL, 
PL and DL. The hardware section consists of Register 
File (RF), Mixer Arithmetic Simulator (MAS) and the 
Hardware Components (HC). All these modules 
communicate at the transaction level. 
 When the system is run, the first instruction is 
executed. The IS passes the instruction ID of the first 
instruction to the MAS. The MAS is built of switch 
statements depending on the instruction IDs for e.g. if the 
first instruction is the initialization of the parameter 
registers (for e.g. image width, image height etc.) then the 
MAS after receiving this ID from the IS invokes the 
corresponding interface method in the RF and initializes 
the required parameter registers. If the instruction ID tells 
to add two image values then the MAS communicates 
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with the RF (to read input values for addition) through the 
interface method. The MAS passes the register ID and the 
mode (READ or WRITE) to the interface method in the 
RF and the RF returns the value of the register with the ID 
sent by the MAS. This is shown in the source code given 
below: 
 
reg_img_wd_val= 
    reg_file_port->reg_val_rd_wr 
             (REG_IMAGE_WD,READ,NULL); 
 

 Having read both the values required for the 
addition, the MAS now calls the adder interface method 
in the HC. The HC consists of the number of hardware 
components (for e.g. 2 adders, 3 multipliers etc.) to be 
implemented in the design space under consideration. 
While calling the adder interface method, the MAS passes 
the two input values read from the RF. The output 
obtained after the addition operation is again stored in the 
RF. The MAS now passes the register ID where the 
output value is to be stored and the mode passed now will 
be ‘WRITE’ along with the value to be written instead of 
NULL in the code shown above. This is depicted in the 
code shown below: 
 
reg_file_port->reg_val_rd_wr 
   (REG_MIX_OP, WRITE, temp_3);  
 
 If we intend to use two adders in a design space 
then the HC will consists of two adder interface method 
emulating the adder module. If two add operations are to 
be performed in a single instruction, the MAS calls these 
adder interface methods one at a time. As described this 
may appear to imply sequential operation, but in practice 
all operations within a switch case are intended to execute 
in parallel. When the output image value is obtained then 
the MAS writes the output image value to the RAM.  
 
 
5 Hardware/Software Partition 
The partitioning decision adopted here is at the instruction 
level (instructions in this context are microcode 
instructions which then control the hardware directly). In 
the conventional hardware/software partitioning approach, 
dedicated hardware (for e.g. ASIC) is used for the 
hardware portion while the microprocessor is used for the 
software portion. But in our implementation software 
portion is represented by the microprogram in the control 
unit which controls the hardware selected for the mixing 
operation. 

First an analysis is performed to investigate the design 
space topology. As we are processing 8 pixels of image at 
a time, we can perform 8 subtractions and 8 
multiplications at one time i.e. in a single instruction. This 
means may be a maximum of 8 adders and 8 subtractors in 
our design selection. The total number of design space 
with this configuration will be 64 (for e.g. 1 subtractor & 2 
multipliers, 3 subtractors and 3 multipliers and so on) 
Thus, in principle, 64 design spaces should be analysed   
and the design space which best suits our requirement 
selected. All these design spaces are simulated using the 
simulation framework described above. Once a design 
space has been simulated, the correctness of the design 
may be verified through the comparison of the output of 
the design (overlay image) with a reference output. The 
analysis of the suitability of the design spaces is based 
upon three major factors: the number of instructions, the 
resource wastage analysis and the cost analysis.  

For each element of the design space, an instruction 
set is constructed which corresponds to the microprogram 
in the IS of the CU. With each set of instruction (and the 
appropriate Hardware Components) a simulation of the 
subsystem is performed using our simulation framework. 
After receiving desired result from the simulation, the 
total number of instructions required for that design space 
is analysed. Fig.3 shows a graph of the number of 
instructions in each of the possible design space. For 
simplicity, the design space has been restricted to be the 
function of the number of subtractors and the number of 
multipliers. 

 

 
 

Fig.3 Instruction analysis chart 

 
 



 In Fig.3, it is clear that the design space with 8 
subtractors and 8 multipliers has least number of 
instructions. The selection of this design space is not 
feasible due to resource wastage and the cost of the 
hardware components. 
 The resource wastage factor (RWF) is calculated 
for subtractor and multiplier for each design space. The 
RWF indicates how much the resource (subtractor and 
multiplier) is used (or remains idle) during the entire 
instruction set execution.  We have created a formula to 
calculate the RWF as shown below.   
 

 
  Here, NS is the total number of subtractors used in the 
particular design space; NSmax is the maximum number 
of subtractor used in the entire design space. NI is the 
total number of instructions in the instruction set and NIs 
is the total number of instructions with subtraction 
operation. Xsi is the number of subtraction in the 
instruction i. The same denotation applies for the RWF 
calculation of the multiplier as well. The RWF for each 
design space are calculated using above equations.  
 After RWF analysis, a cost analysis is performed. 
The cost analysis is performed by calculating the cost of 
the multiplier and the subtractor if implemented in silicon. 
It is intended to implement the subsystem using an FPGA, 
and the cost it then arrived at by calculating the number of 
logic blocks required to implement the subtractor and 
multiplier in FPGA. The corresponding cost can then be 
easily calculated.  
 By making comparative study of all the analysis i.e. 
instruction analysis, RWF analysis, cost analysis and the 
other factors the most suitable design space is chosen 
which will be the compromise of the different factors and 
satisfies the requirement of the design.  
 
 
6 Conclusion 

We discussed the implementation of the SystemC 
based simulation framework and the partitioning 
technique in the mixer but the similar concept can be 
implemented for the design of other graphical subsystems 
like video encoding/decoding, streaming, scaling etc. The 
simulation framework and the partitioning technique we 
presented here can be enhanced to develop even the 

complex graphical subsystems efficiently at lesser design 
time. 
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