
Hardware/Software Partitioning and Simulation with SystemC

RICHARD GALLERY, DEEPESH M. SHAKYA
School of Informatics & Engineering

Institute of Technology, Blanchardstown
Blanchardstown Road North, Dublin-15

IRELAND

Abstract: - This paper gives an overview of how the speed of simulation of Video/Graphics subsystem can be
increased with SystemC [1][5][6]. Also, an idea of partitioning hardware and software at instruction level and
the simulation framework to support this partitioning has been introduced. The simulation of each design space
is conducted at the transaction level and the partitioning decision, which is effectively a selection of suitable
design space, is made on the basis of the number of instructions, resource wastage factor and the hardware cost
involved in the design space.

Key Words: - SystemC, Transaction Level Modeling, Codesign, Hardware/Software Partition, Simulation

1 Introduction
SystemC[2][7][8] is an industry led initiative to
provide a modelling platform that promotes and
accelerates system models which can then be proven
using simulation tools before transfer to silicon.
 The simulation of the system at the RTL (Register
Transfer Level) level is very time consuming. In a
very complex design this can be a major obstacle.
There is a need of simulating the system at higher
level of abstraction than the RTL level to boost the
simulation speed and effectively decreasing the
design time. SystemC provides the facility of
simulating the system at the transaction level where
the communication between the design modules
takes place through interface methods. This
significantly increases the simulation speed.
 The design of a graphical subsystem like the video
mixer can have multitude of design space. Each
design space if simulated at the RTL level consumes
significant amount of time. If a complex graphical
subsystem design is considered, the simulation of
large number of design space may easily be
impractical. If each design space is simulated at the

transaction level, it gives the designer drastic
increase in simulation speed and thus makes it easy
to verify the correctness of the design for each design
space the designer chooses. The simulation
framework which has been described in this paper is
used to simulate the design space.
 The suitable design space can then be chosen
based on the instruction analysis, resource wastage
factor analysis and the cost analysis.

2 SystemC Model of the Video Mixer
Typical video/graphics functionality includes video
encoding/decoding, streaming, scaling, scrolling, vertical
and horizontal filtering, multiple video overlays, video
grabbing etc. Within our research we have chosen to
concentrate on the use of SystemC to design, model and
simulate a video overlay or video mixing engine.

The SystemC model of the mixer hardware has been
divided into three major sections-Control Unit (CU), Data
Addressing Unit (DAU) and the Arithmetic Unit (AU).
The CU is microprogrammed i.e. it consist of a set of
instructions, stored in the memory, to perform mixing
operation. The DAU generates the address of the input
data for the mixer and the address of the output data

where the output of the mixer is stored. Finally, the AU
does the mixing operation.

3 RTL Level Simulation of Multiple
Overlay Image Mixer

Initially an RTL based model of an image mixer was
developed. This allowed the generation of composite
images formed from multiple overlay images (the mixer
has the capability of overlaying more than one image on
the primary image) with the addition of the software
layers that controls the mixer hardware. The
communication between the software layers is performed
at the transaction level. The software layers consist of an
application layer (AL), presentation layer (PL) and the
driver layer (DL). The application layer and presentation
are hardware independent. The only software layer that
interacts directly with the mixer hardware is the driver
layer. The inclusion of the application and presentation
layers allows a more complete system level model to be
developed.

 Fig.1 gives an overview of the mixer subsystem
simulation where the mixer hardware has been simulated
at the RTL level.

Fig.1 RTL level simulation of multiple overlay image
mixer

 Although the design constraints are more visible
at RTL simulation but its efficiency soon diminishes due
to high simulation time and difficulty in the design.

4 Transaction Level Simulation of

Multiple Overlay Image Mixer
The communication between the different modules in
the transaction level modelling [3][4] is implemented
using a hierarchical channel. The hierarchical
channel is a module which implements interface
methods. Interface methods are defined in the

interface but do not implement these methods. They
are pure virtual objects without any data in order not
to anticipate implementation details.

In order to improve the speed of simulation, the mixer
hardware is simulated at the transaction level. To simulate
the mixer at the transaction level, we have created a
simulation framework which operates entirely at the
transaction level.

4.1 Simulation Framework in SystemC
Fig.2 gives an overview of the simulation framework we
have created for the simulation of the multiple overlay
image mixer.

Fig.2 Simulation framework in SystemC

 In our simulation framework, we have a control
unit which comprises of program counter (PC),
Instruction Store (IS), and Image Line Counter (ILC). The
IS is where the microprogram is stored. The ILC keeps
count of the number of image lines remaining to be
processed. The other section is the software layer with AL,
PL and DL. The hardware section consists of Register
File (RF), Mixer Arithmetic Simulator (MAS) and the
Hardware Components (HC). All these modules
communicate at the transaction level.
 When the system is run, the first instruction is
executed. The IS passes the instruction ID of the first
instruction to the MAS. The MAS is built of switch
statements depending on the instruction IDs for e.g. if the
first instruction is the initialization of the parameter
registers (for e.g. image width, image height etc.) then the
MAS after receiving this ID from the IS invokes the
corresponding interface method in the RF and initializes
the required parameter registers. If the instruction ID tells
to add two image values then the MAS communicates

Interface
Port

Application
Layer

Presentation
Layer

Driver
Layer

Mixer
Hardware

with the RF (to read input values for addition) through the
interface method. The MAS passes the register ID and the
mode (READ or WRITE) to the interface method in the
RF and the RF returns the value of the register with the ID
sent by the MAS. This is shown in the source code given
below:

reg_img_wd_val=
 reg_file_port->reg_val_rd_wr
 (REG_IMAGE_WD,READ,NULL);

 Having read both the values required for the
addition, the MAS now calls the adder interface method
in the HC. The HC consists of the number of hardware
components (for e.g. 2 adders, 3 multipliers etc.) to be
implemented in the design space under consideration.
While calling the adder interface method, the MAS passes
the two input values read from the RF. The output
obtained after the addition operation is again stored in the
RF. The MAS now passes the register ID where the
output value is to be stored and the mode passed now will
be ‘WRITE’ along with the value to be written instead of
NULL in the code shown above. This is depicted in the
code shown below:

reg_file_port->reg_val_rd_wr
 (REG_MIX_OP, WRITE, temp_3);

 If we intend to use two adders in a design space
then the HC will consists of two adder interface method
emulating the adder module. If two add operations are to
be performed in a single instruction, the MAS calls these
adder interface methods one at a time. As described this
may appear to imply sequential operation, but in practice
all operations within a switch case are intended to execute
in parallel. When the output image value is obtained then
the MAS writes the output image value to the RAM.

5 Hardware/Software Partition
The partitioning decision adopted here is at the instruction
level (instructions in this context are microcode
instructions which then control the hardware directly). In
the conventional hardware/software partitioning approach,
dedicated hardware (for e.g. ASIC) is used for the
hardware portion while the microprocessor is used for the
software portion. But in our implementation software
portion is represented by the microprogram in the control
unit which controls the hardware selected for the mixing
operation.

First an analysis is performed to investigate the design
space topology. As we are processing 8 pixels of image at
a time, we can perform 8 subtractions and 8
multiplications at one time i.e. in a single instruction. This
means may be a maximum of 8 adders and 8 subtractors in
our design selection. The total number of design space
with this configuration will be 64 (for e.g. 1 subtractor & 2
multipliers, 3 subtractors and 3 multipliers and so on)
Thus, in principle, 64 design spaces should be analysed
and the design space which best suits our requirement
selected. All these design spaces are simulated using the
simulation framework described above. Once a design
space has been simulated, the correctness of the design
may be verified through the comparison of the output of
the design (overlay image) with a reference output. The
analysis of the suitability of the design spaces is based
upon three major factors: the number of instructions, the
resource wastage analysis and the cost analysis.

For each element of the design space, an instruction
set is constructed which corresponds to the microprogram
in the IS of the CU. With each set of instruction (and the
appropriate Hardware Components) a simulation of the
subsystem is performed using our simulation framework.
After receiving desired result from the simulation, the
total number of instructions required for that design space
is analysed. Fig.3 shows a graph of the number of
instructions in each of the possible design space. For
simplicity, the design space has been restricted to be the
function of the number of subtractors and the number of
multipliers.

Fig.3 Instruction analysis chart

 In Fig.3, it is clear that the design space with 8
subtractors and 8 multipliers has least number of
instructions. The selection of this design space is not
feasible due to resource wastage and the cost of the
hardware components.
 The resource wastage factor (RWF) is calculated
for subtractor and multiplier for each design space. The
RWF indicates how much the resource (subtractor and
multiplier) is used (or remains idle) during the entire
instruction set execution. We have created a formula to
calculate the RWF as shown below.

 Here, NS is the total number of subtractors used in the
particular design space; NSmax is the maximum number
of subtractor used in the entire design space. NI is the
total number of instructions in the instruction set and NIs
is the total number of instructions with subtraction
operation. Xsi is the number of subtraction in the
instruction i. The same denotation applies for the RWF
calculation of the multiplier as well. The RWF for each
design space are calculated using above equations.
 After RWF analysis, a cost analysis is performed.
The cost analysis is performed by calculating the cost of
the multiplier and the subtractor if implemented in silicon.
It is intended to implement the subsystem using an FPGA,
and the cost it then arrived at by calculating the number of
logic blocks required to implement the subtractor and
multiplier in FPGA. The corresponding cost can then be
easily calculated.
 By making comparative study of all the analysis i.e.
instruction analysis, RWF analysis, cost analysis and the
other factors the most suitable design space is chosen
which will be the compromise of the different factors and
satisfies the requirement of the design.

6 Conclusion

We discussed the implementation of the SystemC
based simulation framework and the partitioning
technique in the mixer but the similar concept can be
implemented for the design of other graphical subsystems
like video encoding/decoding, streaming, scaling etc. The
simulation framework and the partitioning technique we
presented here can be enhanced to develop even the

complex graphical subsystems efficiently at lesser design
time.

References
[1] GrÖtker T Liao S, Martin G and Swan S, System

Design with SystemC, Kluwer Academic Publishers,
2002.

[2] Official web site for Open SystemC,
www.systemc.org.

[3] Parischa S, Transaction level modelling of SoC with
SystemC 2.0, Technical Papers from
www.systemc.org ,2002.

[4] Preeti Ranjan Panda, A modeling platform supporting
multiple design abstractions, Proceedings of the
international symposium on Systems synthesis,
Volume 14, September 2001.

[5] Guido A, SystemC Standard, ASP-DAC’00. Asia and
South Pacific, 2000, pp.573-577.

[6] Mueller W, Ruf J, Hoffmann D, Gerlach J, Kropf
 T and Rosenstiehl W, 2001, The Simulation
Semantics of SystemC, Design, Automation, and Test
in Europe ,DATE '01, 2001, pp.64-70.

[7] Gerlach J and Rosenstiehl W, 2000, System Level
Design Using the SystemC Modelling Platform,
Workshop on System Design Automation, Rathen,
Germany SDA'00, 2000, pp.185-189.

[8] G.Economakos,P.Oikonomakos, I. Panagopoulos, I.
Poulakis, and G. Papakonstantinou, Behavioral
Synthesis with SystemC, Design, Automation, and
Test in Europe (DATE '01),2001.

