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Abstract:- Firstly, a multi-objective genetic algorithm (GAs) is used for Pareto based optimization of thermodynamic cycle of ideal turbojet engines considering four important conflicting thermodynamic objectives, namely, specific thrust (ST), specific fuel consumption (SFC), propulsive efficiency ((p), and thermal efficiency ((t). This provides the best Pareto front of such four-objective optimization from the space of design variables, which are Mach number and pressure ratio, to the space of the above-mentioned four thermo-mechanical objective functions. Secondly, genetic algorithms (GA) with a new encoding scheme are used for optimal design of both connectivity configuration and the values of coefficients, respectively, involved in GMDH-type neural networks for the inverse modelling of the input-output data table obtained as the best Pareto front. 
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1 Introduction
In the optimization of complex real-world problems, there are several objective functions or cost functions (a vector of objectives) to be optimized (minimized or maximized) simultaneously. These objectives often conflict each other so that improving one of them will deteriorate another objective function. Therefore, there is no single optimal solution as the best with the respect to all the objective functions. Instead, there is a set of optimal solutions, well known as Pareto optimal solutions or Pareto front [1], which distinguishes significantly the inherent natures between single-objective and multi-objective optimization problems. The concept of Pareto front or set of optimal solutions in the space of objective functions in multi-objective optimization problems (MOPs) stands for a set of solutions that are non-dominated to each other but are superior to the rest of solutions in search space. It must be noted that this non-dominancy does exist in different levels, forming different ranked Pareto fronts, although the first Pareto front is the most important and will be the ultimate solution. The inherent parallelism in evolutionary algorithms makes them suitably eligible for solving MOPs. Among these methods, the Vector Evaluated Genetic Algorithm (VEGA) proposed by Schaffer [2], Fonseca and Fleming’s Genetic Algorithm (FFGA) [2], Non-dominated Sorting Genetic Algorithm (NSGA) by Srinivas and Deb [1], and Strength Pareto Evolutionary Algorithm (SPEA) by Zitzler and Thiele [2], and the Pareto archived evolution strategy (PEAS) by Knowles and Corne [2] are the most important ones. A very good and comprehensive survey of these methods has been presented in [2]. Basically, both NSGA and FFGA as Pareto-based approaches use the revolutionary non-dominated sorting procedure originally proposed by Goldberg [3]. Besides, the diversity issue and the lack of elitism was also a motivation for modification of that algorithm to NSGA-II [4] in which a direct elitist mechanism, instead of sharing mechanism, has been introduced to enhance the population diversity. This modified algorithm has been known as the state-of-the-art in evolutionary MOPs.

System identification techniques are applied in many fields in order to model and predict the behaviors of unknown and/or very complex systems based on given input-output data [5]. The Group Method of Data Handling (GMDH) algorithm is a self-organizing approach by which gradually complicated models are generated based on the evaluation of their performances on a set of multi-input-single-output data pairs   (i=1, 2, …, M). The GMDH was firstly developed by Ivakhnenko [6] as a multivariate analysis method for complex systems modelling and identification. The main idea of GMDH is to build an analytical function in a feedforward network based on a quadratic node transfer function [7] whose coefficients are obtained using regression technique. In fact, real GMDH algorithm in which model coefficients are estimated by means of the least squares method has been classified into complete induction and incomplete induction, which represent the combinatorial (COMBI) and multilayered iterative algorithms (MIA), respectively [7]. In

 recent years, the use of such self-organizing network leads to successful application of the GMDH-type algorithm in a broad range area in engineering, science, and economics [7, 8].

In this paper, firstly, an optimal set of design variables in turbojet engines, namely, the input Mach number Mo and the pressure ratio of compressor (c are found using Pareto approach to multi-objective optimization. In this study, four conflicting objectives in ideal subsonic turbojet engines are selected for optimization. These include thermal efficiency ((t) and propulsive efficiency ((p) together with specific fuel consumption (SFC) and specific thrust (ST). Secondly, GAs are deployed in a new approach to design the whole architecture of the GMDH-type neural networks, i.e., the number of neurons in each hidden layer and their connectivity configuration, for modelling of the four-input-two-output data table obtained in the first part of the study. The connectivity configuration is not limited to the adjacent layers, as have already proposed in [8], so that general structure GMDH-type neural networks, in which neurons in any layers can be connected to each other, are evolved.

2  Multi-objective Optimization
Multi-objective optimization which is also called multicriteria optimization or vector optimization has been defined as finding a vector of decision variables satisfying constraints to give acceptable values to all objective functions [2, 4]. In general, it can be mathematically defined as:

find the vector 
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where 
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 is the vector of objective functions which each of them be either minimized or maximized. However, without loss of generality, it is assumed that all objective functions are to be minimized. Such multi-objective minimization based on Pareto approach can be conducted using some definitions:

Definition of Pareto dominance
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Definition of Pareto optimality

A point 
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Definition of Pareto Set

For a given MOP, a Pareto set Ƥ٭ is a set in the decision variable space consisting of all the Pareto optimal vectors Ƥ٭
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DEFINITION OF PARETO FRONT

For a given MOP, the Pareto front ƤŦ٭ is a set of vector of objective functions which are obtained using the vectors of decision variables in the Pareto set Ƥ٭, that is ƤŦ٭
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Ƥ٭}. In other words, the Pareto front ƤŦ٭ is a set of the vectors of objective functions mapped from Ƥ٭.
3
Modelling Using GMDH-Type Neural Networks

By means of GMDH algorithm a model can be represented as set of neurons in which different pairs of them in each layer are connected through a quadratic polynomial and thus produce new neurons in the next layer. Such representation can be used in modelling to map inputs to outputs. The formal definition of the identification problem is to find a

function 
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it is now possible to train a GMDH-type neural network to predict the output values 
[image: image41.wmf]i

y

ˆ

for any given input vector 
[image: image42.wmf])

,...,

,

,

(

3

2

1

in

i

i

i

x

x

x

x

X

=

, that is


[image: image43.wmf])

,...,

3

,

2

,

1

(

ˆ

ˆ

in

x

i

x

i

x

i

x

f

i

y

=


(i=1,2,…,M).      (5)      
The problem is now to determine a GMDH-type neural network so that the square of difference between the actual output and the predicted one is minimised, that is
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General connection between inputs and output variables can be expressed by a complicated discrete form of the Volterra functional series in the form of
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which is known as the Kolmogorov-Gabor polynomial [7]. This full form of mathematical description can be represented by a system of partial quadratic polynomials consisting of only two variables (neurons) in the form of
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In this way, such partial quadratic description is recursively used in a network of connected neurons to build the general mathematical relation of inputs and output variables given in equation (7). The coefficient 
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 in equation (8) are calculated using regression techniques [7] so that the difference between actual output, y, and the calculated one, 
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as input variables is minimized. Indeed, it can be seen that a tree of polynomials is constructed using the quadratic form given in equation (8) whose coefficients are obtained in a least-squares sense. In this way, the coefficients of each quadratic function 
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In the basic form of the GMDH algorithm, all the possibilities of two independent variables out of total  n  input variables are taken in order to construct the regression polynomial in the form of equation (8) that best fits the dependent observations 
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 neurons will be built up in the first hidden layer of the feedforward network from the observations {
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Using the quadratic sub-expression in the form of equation (8) for each row of  M  data triples, the following matrix equation can be readily obtained as
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where  
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  is the vector of unknown coefficients of the quadratic polynomial in equation (8)
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and
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is the vector of output’s value from observation. It can be readily seen that
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The least-squares technique from multiple-regression analysis leads to the solution of the normal equations in the form of
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which determines the vector of the best coefficients of the quadratic equation (8) for the whole set of  M  data triples. It should be noted that this procedure is repeated for each neuron of the next hidden layer according to the connectivity topology of the network. 

4
Application of Genetic Algorithm in the Topology Design of GMDH-type Neural Networks

Evolutionary methods such as genetic algorithms have been widely used in different aspects of design in neural networks because of their unique

capabilities of finding a global optimum in highly multi-modal and/or non-differentiable search space [8-9]. Such stochastic methods are commonly used in the training of neural networks in terms of associated weights or coefficients which have successfully performed better than traditional gradient-based techniques [9]. The literature shows that a wide range of evolutionary design approaches either for architectures or for connection weights separately, in addition to efforts for them simultaneously [9]. In the most GMDH-type neural network, neurons in each layer are only connected to neuron in its adjacent layer as it was the case in Methods I and II previously reported in [8]. Taking this advantage, it was possible to present a simple encoding scheme for the genotype of each individual in the population as already proposed by authors [8]. 

However, in order to make it more general, it is necessary to remove such restriction. In such representation, neurons in different layers including the input layer can be connected to others far away, not only in the very adjacent layers. The encoding schemes in generalized GMDH neural networks must demonstrate the ability of representing different length and size of such neural networks. Moreover, the ability of changing building blocks of information using crossover and mutation operators must be preserved in such coding representation. In the next sections, the encoding scheme of the newly developed generalized GMDH neural networks is discussed.

4.1
The Genome Representation of Generalized GMDH Neural Networks 
In the generalized GMDH neural networks, neurons connections can occur between different layers which are not necessarily very adjacent ones, unlike the conventional structure GMDH neural networks in which such connections only occur between adjacent layers. For example, a network structure which depicted in figure (1) shows such connection of neuron ad directly to the output layer. Consequently, this generalisation of network's structure can evidently extend the performance of generalized GMDH neural networks in modelling of real-world complex processes. Such generalization is accomplished by repeating the name of the neuron which directly passing the next layers. In figure (1), neuron ad in the first hidden layer is connected to the output layer by directly going through the second hidden layer. Therefore, it is now very easy to notice that the name of output neuron ( network's output) includes ad twice as abbcadad. In other words, a virtual neuron named adad has been constructed in the second hidden layer and used with abbc in the same layer to make the output neuron abbcadad as shown in the figure (1). It should be noted that such repetition occurs whenever a neuron passes some adjacent hidden layers and connects to another neuron in the next 2nd, or 3rd,or 4th,or … following hidden layer. In this encoding scheme, the number of repetition of that neuron depends on the number of passed hidden layers, ñ, and is calculated as
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. It is easy to realize that a chromosome such as abab bcbc, unlike chromosome abab acbc for example, is not a valid one in GS-GMDH networks and has to be simply re-written as abbc .
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Figure 1: A Generalized GMDH network structure of a chromosome

4.2
Genetic Operators for Generalized GMDH Network Reproduction
The genetic operators of crossover and mutation can now be implemented to produce two offsprings from two parents. The natural roulette wheel selection method is used for choosing two parents producing two offsprings. The crossover operator for two selected individuals is simply accomplished by exchanging the tails of two chromosomes from a randomly chosen point as shown in figure (2). It should be noted, however, such a point could only be chosen randomly from the set
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 where nl is the number of hidden layers of the chromosome with the smaller length. It is very evident from figures (2) and (3) that the crossover operation can certainly exchange the building blocks information of such generalized GMDH neural networks so that the two type of generalized GMDH and conventional GMDH-type neural networks can be converted to
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Figure 2: Crossover operation for two individuals in generalized GMDH networks
each other, as can be seen from figure (3). In addition, such crossover operation can also produce different length of chromosomes which in turn leads to different size of either generalized GMDH or conventional GMDH network structures. Similarly, the mutation operation can contribute effectively to

 the diversity of the population. This operation is simply accomplished by changing one or more symbolic digits as genes in a chromosome to another possible symbols, for example, abbcadad to abbccdad. It is very evident that mutation operation can also convert a generalized GMDH network to a conventional GMDH network or vice versa. It should be noted that such evolutionary operations are acceptable provided a valid chromosome is produced. Otherwise, these operations are simply repeated until a valid chromosome is constructed.
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Figure 3: Crossover operation on two generalized GMDH networks

The incorporation of genetic algorithm into the design of such GMDH-type neural networks starts by representing each network as a string of concatenated sub-strings of alphabetical digits. The fitness, (
[image: image70.wmf]F

), of each entire string of symbolic digits which represents a GMDH-type neural network to model the Pareto optimized data pairs is evaluated in the form

Φ=1/E                                     ,                             (15)
where E, is the mean square of error given by equation (9), is minimized through the evolutionary process by maximizing the fitness 
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. The evolutionary process starts by randomly generating an initial population of symbolic strings each as a

candidate solution. Then, using the aforementioned genetic operations of roulette wheel selection, crossover, and mutation, the entire populations of symbolic strings to improve gradually. In this way, GMDH-type neural network models with progressively increasing fitness, (, are produced until no further significant improvement is achievable.

5 Multi-Objective Thermodynamic Optimization and Modelling of Turbojet Engines
Turbojet engines use air as the working fluid and produce thrust based on the variation of kinetic energy of burnt gases after combustion. The study of thermodynamic cycle of a turbojet engine involves different thermo-mechanical aspects such as developed specific thrust, thermal and propulsive efficiencies, and specific fuel consumption. A detailed description of the thermodynamic analysis and equations of ideal turbojet engines are given in [10]. Input parameters involved in such thermodynamic analysis in an ideal turbojet engine given in Appendix A are Mach number (M0), input air temperature (T0, K), specific heat ratio (
[image: image72.wmf]g

), heating value of fuel (hpr, kj/kg), exit burner total temperature (Tt4, K), and pressure ratio, (c. Output parameters involved in the thermodynamic analysis in the ideal turbojet engine are, specific thrust, (ST, N/kg/sec), fuel-to-air ratio (f), specific fuel consumption (SFC, kg/sec/N), thermal efficiency ((t), and propulsive efficiency ((p). However, in multi-objective optimization study, some input parameters are already known or assumed as, T0 = 216.6 K, 
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=1.4, hpr =48000 kj/kg, and Tt4 = 1666 K. The input Mach number 0 < M0 ≤ 1 and the compressor pressure ratio 1 ≤ (c ≤ 40 are considered as design variables to be optimally found based on multi-objective optimization of 4 output parameters, namely, ST, SFC, ηt, and ηp. Consequently, four objectives, namely, SFC, ST, (p, and (t, are chosen for multi-objective optimization in which ST, (p, and (t are maximized whilst SFC is minimized simultaneously. A population size of 200 has been chosen with crossover probability Pc and mutation probability Pm as 0.8 and 0.02, respectively. The result of such multi-objective optimization in the plane of (p and (t is shown in figure (4). It should be noted that such result could also be shown in different plane; but such plane would be of the most 
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Figure 4: Non-dominated Pareto points in the plane of efficiencies

important one in terms of modelling. Consequently, the input-output data pairs used in the modelling

 involve two different data tables which have been just optimally found using multi-objective GAs for thermodynamic Pareto optimisation of ideal turbojet engines. The first table consists of four variables as inputs, namely, SFC, ST, (p, and (t and one output which is the Mach number. The second table consists of the same four variables as inputs and another output which is pressure ratio. It can be readily seen that the results of a Pareto-based four-objective optimization process for two design variables, Mach number and pressure ratio, are inversely deployed for a polynomial-type neural network modelling so that the values of such design variables can now be mathematically represented for the corresponding combination values of four parameters, SFC, ST, (p, and (t. In order to demonstrate the generalization property of the evolved polynomial neural network, data samples have been divided randomly for both training and testing purposes, as shown in figure (4). The unforeseen data samples during training process or the test data have been merely used for testing purpose. The structure of the evolved 1-hidden layer GMDH-type neural network obtained for both design variables is shown in figure (5). 



(a)


    (b)


Figure 5: Evolved GMDH-type neural networks for modelling: (a) Mach No.
(b) Pressure ratio

The very good behaviours of such GMDH-type network models are also depicted in scattered figure (6) for both Mach number and pressure ratio, respectively. It can be clearly seen that both models have very good generalization ability in terms of predicting unforeseen test data during training process. 
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Figure 6: Modelling behaviours of the evolved GMDH-type neural networks in both training and testing data: 

(a) Pressure ratio
(b) Mach No.
Therefore, GMDH-type neural models shown in figure (5) simply represent the optimal design variables from a multi-objective optimisation point of view for SFC, ST, (p, and (t. 

6
Conclusion

Evolutionary methods for designing generalized GMDH-type networks have been proposed and successfully used for the modelling of input-output data table obtained as the best Pareto front of thermodynamic cycle of ideal turbojet engines. Such Pareto front has been already found by a multi-objective optimization GA for the turbojet engine. Such combination of modelling of non-dominated Pareto optimized data pairs is very promising in discovering useful and interesting design relationships.
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