

Quality of Service for Web Services

SAEED ARABAN and LEON STERLING
Department of Computer Science and Software Engineering

The University of Melbourne, Melbourne 3010
AUSTRALIA

Abstract: - The World Wide Web is evolving from being a pure information repository to a more functional and
service oriented platform thanks to technologies such as Web Services. This technology offers a homogeneous
representation of Web elements and the ways they are communicating that make it possible to deal with the inherent
structural and behavioural heterogeneities of the Web. A Web service can be seen as an autonomous functional
element that is loosely coupled to other Web services and can be discovered and deployed in Web-based
applications. Autonomity and loose coupling make Web services a viable light weight complementary component-
based approach for design and development of dynamic distributed systems for more heavy weight solutions such as
OMG’s CORBA and Microsoft’ s DCOM. In this paper, we take the position that if Web Services are going to be
considered as reusable commercial of-the-shelf (COTS) components, their Quality of Service (QoS) needs to be
expressed explicitly and measured independently. More specifically, we present and discuss possible quality aspects
that need to be represented and quantified for Web Services.

Keywords: Web Services, Quality of Service, Metrics, Component Reuse.

1. Introduction
The Word Wide Web (WWW) is evolving from its
original role as a pure information repository for
mainly human users to an increasingly functional
platform for cross-platform application-to-application
(A2A) interoperation and business-to-business (B2B)
communication. Web Services technology is a
relatively recent approach aiming at providing a
hemogenous interface layer around fundamentally
distributed, heterogeneous and dynamic functionalities
in the WWW environment. In this model, new Web-
based applications and services are built by mixing and
matching existing services. This means great
opportunities for large-scale black-box Component of
the Shelf (COTS) reuse and a market for value-added
services.

A Web service can be viewed as an abstraction for an
autonomous web-based component that performs a
well defined function. A service is represented by its
interface that encapsulates a collection of network
enabled operations along with all the interaction
details, such as message formats (that details the
operations), communication protocol and location,
using XML based notation. The interface also hides all
the implementation details (e.g. programming
language, software or hardware platform, etc.) of the
service. This model encourages distributed systems
based on loosely coupled and cross-platform reusable
components. However, developing systems with

predictable and measurable level of reliability,
performance and security is not a trivial task in this
model.

Using a Web Service by a client usually means a
longer-term dependency to a Service Provider. Thus, if
the Web Services model is going to be adopted as the
main stream design and development model for web-
based A2A and B2B business critical applications, it
needs to go beyond just specifying and providing
functionalities and address issues related to the quality
of the service. For example:
How can a Service Requestor be sure that a Web
Service that matches his functional requirements will
be available and responsive?
How can a Service Requestor know what to expect
from the service in terms of its performance and
scalability?
How a client can trust that the service is operated in a
secure environment, that the Service Provider guards
his data and does not allow it to be made available
thoughtlessly or maliciously to any third party?
How easy is the service to use?

The issue here is when entering into any form of
relationship or agreement; the parties cannot assume
that the other party is implicitly to be trusted to satisfy
the expectations.
Thus, we need a way of determining beforehand
whether a candidate Web Service can satisfy our

functional and quality requirements. Ideally, this
information should take the form of a specification as
part of the service interface that tells us what the
service provide without entering into the details of
how. Further, the specification should provide
parameters against which the Web Service can be
verified and validated, thus providing a kind of
contract between the Web Service and its clients.

This paper focuses on the quality aspects of the Web
Services. Obviously, the quality of Web Service-based
systems is directly affected by the Quality of Service
(QoS) of their underlaying Web Services. Here, we
take the position that quality attributes of Web
Services (e.g. performance, reliability and security) are
vital factors in making or breaking of a service in a
competitive market of services. Thus, they should be
defined, quantified and represented as part of the
service interface in such a way that they can be
understood by human and/or software requestors
(clients). This way, the quality of the overall system
may be measured and controlled.

The rest of this paper is organised as follow. Section 2
presents a brief introduction to Web Services model
and its elements. Section 3 establishes a metric
framework for quality of Web Services. In section 4
we draw conclusions and future work direction.

2. The Web Services Model
The Web Services architecture covers three elements:
roles, operations and artifacts
[3]. Figure 1 illustrates these elements.

The architecture is based upon the interaction of three
roles: Service Provider, Service Registry and Service
Requestor. The interactions involve the Publish, Find
and Bind operations. Together, these roles and
operations act upon the Web Services artifacts: the
Web Service software module, its description (also
including a description of the Service Provider) and the
Client Application.

The actors in the Web Services model are as follows.
Their roles can be described from a business or an
architectural perspective:
Service Provider:
From a business perspective, this is the owner of the
service.
From an architectural perspective, this is the platform
that provides access to the service.
Service Requestor:

From a business perspective, this is the business that
requires certain functions that are covered by the
corresponding service.
From an architectural perspective, this is the client
application that is looking for and then invoking the
service.
Service Registry:
From a business perspective, this is the owner of a
registry service.
From an architectural perspective, this is a platform
that provides access to registered service information.

The Service Registry is a searchable repository of
service descriptions. Service Providers can publish
their service descriptions, including a description of
the provider's business. Service Requestors can find
services and obtain binding information (from the
service descriptions). This information is used during
development for static binding or during execution for
dynamic binding. Dynamically bound Service
Requestors access the Service Registry on every
execution. For statically bound Service Requestors,
access to the Service Registry is performed only one
time to get the information. On static binding, the role
of the Service Registry is even optional – the Service
Requestor could obtain the service description directly
from the Service Provider or from other sources
besides a Service Registry (e.g. WWW site or FTP
site).

The Web Services model comprises the following
operations:

Publish: To make it possible for a Service Requestor
to find a Web Service and access it, the Service
Provider has to publish it to a Service Registry.

Find: In the find operation, the Service Requestor
retrieves a service description by inquiring the Service
Registry. The find operation can occur in two different
lifecycle phases for the Service Requestor: at design
time to retrieve the service interface description for the
client application development (static binding), or at
runtime to get the service's binding and location
description for invocation (dynamic binding).

Bind: In the bind operation, the Service Requestor
invokes the service at runtime using the binding details
in the service description to locate, contact and invoke
the service.

The artifacts in the Web Services model are the objects
that are produced and dealt with in the context of Web
Services. These are as follows:

Service: This is the implementation of a software
module deployed on a network accessible platform
provided by the Service Provider to be invoked by a
Service Requestor.

Service Description: The service description contains
the details of the interface and implementation of the
service. The service interface description comprises
information about the operations provided by a service,
as well as their parameters. It can be compared with
the signature of a method. Additionally, the protocol
used for communication with the Web Service is
described. The service implementation description
contains information about the location where the
service is exposed, i.e. the network address of the
endpoint providing the service. The complete service
description is published to a Service Registry by the
Service Provider to make the service accessible to
Service Requestors. It includes the service's data types,
operations, binding information and network location,
as provided by the service interface and
implementation descriptions. It could also include
information about the Service Provider, service and
provider categorization and other metadata to facilitate
discovery and utilization by the Service Requestor.

Client Application: This is the application
implemented by the Service Requestor that uses the
functionality of the Web Service and invokes it at
runtime.

The Web Services framework relies on emerging
XML-based technologies, such as Web Services
Definition Language (WSDL), Simple Object Access
Protocol (SOAP) and Universal Description,

Discovery and Integration (UDDI), to provide an open,
flexible and extensible environment for representation,
communication and integration of the Web Services.

Web Services allow applications to be integrated at a
higher level in the protocol stack, based more on
service semantics and less on network protocol
semantics, thus enabling loose integration of business
functions [3]. These characteristics are ideal for
connecting business functions across the Web both
between enterprises and within enterprises. They
provide a unifying programming model so that
application integration inside and outside the
enterprise can be done with a common approach,
leveraging a common infrastructure.

The integration and application of Web Services can
be done in an incremental manner, using existing
languages and platforms and by adopting existing
legacy applications. Moreover, Web Services
compliment Java2 Enterprise Edition (J2EE), Common
Object Request Broker Architecture (CORBA) and
other standards for integration with more tightly
coupled distributed and non-distributed applications.
Web Services are a technology for deploying and
providing access to business functions over the Web;
J2EE, CORBA and other standards are technologies
for implementing Web Services.
2.1 Contract Aware Web Services
As mentioned in the introduction, explicit contracts
between the service requestors and the service
providers can clarify the obligations and benefits of
each party; this is the principle of design by contract
[4]. Beugnard et al. [2] defins four levels of contract in
a component-based software development

Service
Registry

Service
Provider

Service
Requestor

Service
Description

Service
Description

Client
Application

Provider
Description

Service

Publish
(WSDL, UDDI)

Find
(WSDL, UDDI)

Bind

Figure 1: The Web Services Model.

environment, which we believe are also valid in the

context of Web Services model.

The four contract levels are: basic or syntactic,
behavioral, synchronization, and quantitative (see
Figure 2). At the basic level, the input and output
parameters of a service and their types are defined and
may be verified. At the behavioral level, behavior of a
service may be specified using pre- and post-
conditions. A synchronization contract specifies the
dependencies between services of a component, such
as sequence, parallelism, or shuffle. A QoS contract
may be negotiated statically or dynamically between a
service provider and service requestor.

We believe that Web Services must be made contract
aware. In other words, they must be able to support
contracts at all levels. However, to the best of
knowledge, there is no XML standard for supporting
contracts above the basic level. Thus, there is a need
for such standard if XML-based technologies, such as
Web Services, are going to be more effective.

3. Quality of Service Model and
Measures
In this section we discuss quality attributes relevant to
the QoS of a Web Service. We also provide definitions

and explore possible metrics for those quality

attributes.

Before defining any QoS metrics, we need to identify
their application context. One of the measurement
pitfalls is rushing to measure what is convenient or
easy to measure rather than measuring what is needed
or relevant. Such metrics often fail because the
resulting data is not useful or relevant to their audience
and what they need [5]. A measurement can be more
relevant and successful if it is designed with the goals
of its target audience in mind.

The Goal Question Metrics (GQM) is a framework for
deriving relevant metrics according to the goals of our
measurement [6, 7]. We use this framework to set out
a context for our quality metrics. In order to apply this
framework, we need to explicitly define our goals first.
Then, we should ask questions about what do we need
to know in order to achieve our goal. Finally, we need
to decide about the metrics that may answer our
questions.

There are templates for the GQM that can help to
identify the goals and ask the right questions [7].
Applying some of those templates, we identified the
following goals for our measurement program:
Ability to compare QoS for different Web Services
that provide similar service (requestor’s point of view).

Nonnegotiable

Negotiable

Level 1: Syntactic level

Level 2: Behavioral level

Level 3: Synchronization level

Level 4: QoS level

Figure 2: The four contract levels.

Ability to improve the QoS (provider’s point of view).
Ability to search and match Web Services based on
QoS requirements (requestor and discovery
mechanism point of view).

All the above goals can be summarised to just one
simple goal:
 Evaluating Quality of Service for Web Services

Having this goal in mind, we ask the following
questions that may lead us to relevant quality factors:
What are the quality factors for a Web Service?
How can the quality of a Web Service be improved?
To what degree does a Web Service match the quality
requirements?

In order to answer the above questions, both internal
and external attributes of Web Services must be
considered. Internal attributes of a service are those
that can be measured purely based on the service itself
regardless of its environment (e.g. time complexity of
the algorithm used and coupling to other services). On
the other hand, external attributes can only be
measured with regards to the service environment and
its behaviour (e.g. throughput, response time). Table 1
summarises the quality factors and attributes for Web
Services relevant to QoS.

Generally, Service Requestors are more interested in
external attributes of Web Services. However, external
attributes are more difficult to measure than internal
ones. A connection between internal attribute values
and external attribute values is widely assumed by the
software engineers [Brooks and Yourdon]. There are
few models for relating higher-level external qualities
to lower-level and usually easier to understand and
measure internal attributes [8, 9]. Here, we use
McCall’s Factor Criteria Metric (FCM) like quality
model. Figure 3 is a hierarchy of these quality
attributes based on the FCM quality model.

QoS Factors Internal
Attributes

External
Attributes

Reliability Correctness

(Accuracy,
Precision)

Availability
Consistency

Performance Efficiency
Time
Complexity
Space
Complexity

Load
Management
Response Time,
Waiting Time,
Throughput

Integrity Security
Usability Inputs and

Output

Table 1: Quality of Service factors and attributes for the
Web Services.

Now, we need to define the above quality factors and
attributes:
Reliability: The ability of a Web Service to perform its
required function for a given period of time. A simple
measure of reliability is mean-time-between-failure
(MTBF): MTBF = MTTF + MTTR, where MTTF is
the mean-time-to-failure and MTTR is the mean-time-
to-recovery [10]. However, a more sophisticated view
may include the following attributes:
Correctness: A Web Service must satisfy its
specification and fulfils the requestor's mission
objectives. This is an internal attribute of a service,
which in turn may depend on:
Accuracy: The difference between the service’s result
and the actual value. Accuracy of a result may be
affected by the algorithm used to implement the
service and/or by the temporal characteristics of the
service. For example, accuracy of a foreign exchange
calculator service may be affected by temporal factors
such as sampling frequency and/or volatility of the
foreign exchange market.
Precision: The mathematical precision (number of
decimal places) of the result.
Availability: The probability that a Web Service being
available for operating according to requirements at a
given point in time. It can be measured as: (MTTF/

Performance Reliability

Correctness

Availability AccuracyPrecision

Load
Management

Efficiency

QoS

Response
Time

Throughput
Time

Complexity
Space

Complexity

Integrity

Security

Usability

InputsOutputs
Waiting
Time

Figure 3: FCM hierarchy for QoS of the Web Services.

MTTF + MTTR)*100%, in this form, availability
measure is somewhat more sensitive to MTTR [10,
11].
Consistency: The results of different implementations
of a Web Service (specification) should not be very
different in value or effect.
Performance: It may be measured in terms of internal
efficiency of a service implementation and/or the
efficiency of its environment:
Internal Efficiency: The amount of computing
resources required by a service implementation to
perform its function. This can be measured as time and
space complexity using bigO notation.
Environment Efficiency: Ability of the provider
platform to balance the load on the computing
resources () according to resource requirements and/or
demand for services offered, in such a way that
maximises the overall performance of the system,
which may be measured in terms of Response Time,
Waiting Time and Throughput.
Integrity: Extent to which access to Web Service or
data by unauthorized persons is controlled. Threat is
the probability (which can be estimated or derived
from empirical evidence) that an attack of a specific
type will occur within a given time. Security is the
probability (which can be estimated or derived from
empirical evidence) that the attack of a specific type
will be repelled. The integrity of a system can then be
defined as:
 integrity = [1 - (threat x (1 - security))]
where threat and security are summed over each type
of attack [12].
Usability: Effort required for learning, operating,
preparing input, and interpreting output of a Web
service [13].

Some of the above metrics may be subjective;
however, having subjective metrics is better than no
metrics at all, as long as they are measured
consistently.

4. Conclusions and Future work
.In this paper we argued that if Web Services is going
to be the preferred model for A2A and B2B interaction
and collaboration, it should be able to support all levels
of software contracts. That means, quantifiable quality
attributes of the services must be visible to the Service
Requestor from the service interface. We also
presented a quality of service model that defines
quality criteria and related metrics and their relation to
higher level quality factors.

The next step is to develop and evaluate actual metrics
for measuring the quality attributes within the quality
of the service model. Also, the actual XML design
needs to be defined for representing the metrics as part
of the service description language (WSDL). Another
possible research direction is exploring ways of
discovering and matching Web services according to
the QoS requirements.

References:
1. Snell, J., Implementing Web Services, IBM
Web Services: IBM Web Services Toolkit V2.3,
Documentation.
2. Beugnard, A.J., J.-M.; Plouzeau, N.; Watkins,
D., Making components contract aware. IEEE
Computer, July 1999. 32(7): p. 38-45.
3. Kreger, H., Web Services Conceptual
Architecture (WSCA 1.0). 2001, IBM Software Group:
IBM Web Services.
4. Meyer, B., Object-Oriented Software
Construction. 1997: Prentice-Hall.
5. Fenton, N.F. and S.L. Pfleeger, Software
Metrics: A Regorous & Practical Approach. 2nd ed.
1996: International Thomson Computer Press.
6. Basili, V.R. and D.Weiss, A methodology for
collecting valid software engineering data. IEEE
Transactions on Software Engineering, 1984. 10(6): p.
728-738.
7. Basili, V.R. and H.D. Rombach, The TAME
project: Towards improvement-oriented software
environments. IEEE Transactions on Software
Engineering, 1988. 14(6): p. 758-773.
8. McCall, J.A., P.K. Richards, and G.F. Walters,
Factors in Software Quality. 1977, US Rome Air
Development Centre.
9. Boehm, B.W., et al., Characteristics of
Software Quality. Software Technology. 1978,
Amsterdam: TRW.
10. Littlewood, B., Forecasting Software
Reliability, in Software Reliability: Modelling and
Identification, S. Bittanti, Editor. 1989, Springer-
Verlag. p. 141-209.
11. Rook, J., Software Reliability Handbook.
1990: Elsevier.
12. Gilb, T., Principles of Software Project
Management. 1988: Addison-Wesley.
13. Pressman, R.S., Software Engineering: A
Practitioner's Approach. 5th ed. 2001: McGraw-Hill.

