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$EVWUDFW�� �� The paper deals with FPGA implementation of three cryptographic algorithms compliant to IP
Security Protocol (IPSec). The algorithms belong to three different classes of cryptographic primitives: block
cyphers (CAST5 algorithm), stream cyphers (RC4) and hash functions (HMAC SHA-1). The target technology
was FPGA family VirtexII. The different architectures were applied and their analysis is given. The throughput
results for the given technology were 899.8 Mbps for SHA-1, 797.7 Mbps for CAST5 and 155.2 Mbps for RC4.
Lower RC4 throughput was expected since it was particularly designed for software implementation. In
applications with PCI board where PCI bus shares input and output lines, the throughput can be duplicated, thus
reaching Gigabit rates for block cipher CAST5 (1.59 Gbps).
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Applications such as electronic banking, electronic
commerce, and Virtual Private Networks (VPNs)
require an efficient and cost-effective way to protect
the confidental data whose significantly increased
traffic over the Internet have posed serious security
problems. Internet Protocol Security standard (IPSec)
protects the transferred data using cryptographic
algorithms which are generally time-consuming thus
causing a bottleneck in high speed networks. The
implementation of a cryptographic algorithm must
achieve high processing rate to fully utilize the
available network bandwidth. To follow the variety
and the rapid changes in algorithms and standards, a
cryptographic implementation must also support
different algorithms and be upgradeable in field.
     Field Programmable Gate Arrays (FPGAs)
constitute an appealing alternative for the
implementation of encryption algorithms as they
gather advantages from traditional software and
hardware (ASIC) approaches. Software is considered
to provide ease of use, ease of upgrade, portability,
and flexibility. On the other hand, ASICs are
considered more physically secure and have the
potential to provide improved performance by means
of specialized architectures. FPGAs also provide
more physical security than software with the
potential of improved performance, but the design
and development costs are greatly reduced (in
fabrication, ASICs remain cost efficient for high-
volume productions). Besides, FPGAs are
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reconfigurable so they also support some features of
software implementations like ease of upgrade and
flexibility, very important in cryptographic
applications [1].
     In this work, three different types of cryptographic
algorithms complient to IPSec were implemented in
FPGA: stream cipher RC4, block cipher CAST5 and
hash algorithm SHA-1. The algorithms are presented
in Section 2; Section 3 describes the methodology; in
Section 4, the results are given, and the conclusions
are drawn in Section 5.

����&U\SWRJUDSKLF�$OJRULWKPV
The IPSec is a set of protocols that use cryptographic
algorithms within them. Two authentication (HMAC-
MD5 and HMAC-SHA1) and seven encryption
algorithms (DES, Triple DES, CAST-128, RC5,
IDEA, Blowish and ARCFour as public
implementation of RC4) have been specified to date
[2]. The three algorithms implemented in this work
belongs to threee different cryptographic classes:
block ciphers (CAST5), stream ciphers (RC4) and
hash algorithms (SHA-1).
     Stream ciphers encrypt individual characters of a
plaintext message one at a time, using an encryption
transformation which varies with time. By contrast,
block ciphers tend to simultaneously encrypt groups
of characters of a plaintext message using a fixed
encryption transformation. They are the most
prominent and important elements in many
cryptographic systems. Hash functions take a
message as input  and produce an output hash-value,



i.e. a hash function K maps bit-strings of arbitrary
finite length to strings of fixed length, say Q-bits [3].

��� 5&��DOJRULWKP
The alegged RC4 algorithm can be used with a
variety of key lengths [4]. It specifically can be
operated with 40-bit keys and with 128-bit keys. Key
Setup:
1. Allocate an 256 element array of 8 bit bytes to be

used as an S-box, label it S [0] .. S [255].
2. Initialize the S-box.  Fill each entry first with it’s

index: S [0] = 0; S [1] = 1; etc. up to S [255] =
255;

3. Fill another array of the same size (256) with the
key, repeating bytes as necessary:
for (i = 0; i < 256; i = i + 1) S2 [i] = key [i %
keylen];

4. Set j to zero and initialize the S-box like this:
for (i = 0; i < 256; i = i + 1)

                 {
                 j = (j + S [i] + S2 [i]) % 256;
                 temp = S [i];
                 S [i] = S [j];
                 S [j] = temp;
                 }
5. Initialize i and j to zero.
     For either encryption or decryption, the input text
is processed one byte at a time.  A pseudorandom
byte K is generated:
                        i = (i+1) % 256;
                        j = (j + S[i]) % 256;
                        temp = S [i];
                        S [i] = S [j];
                        S [j] = temp;
                        t = (S [i] + S [j]) % 256;
                        K = S [t];
     To encrypt, XOR the value K with the next byte of
the plaintext. To decrypt, XOR the value K with the
next byte of the ciphertext.
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CAST5 belongs to the class of Feistel ciphers thus it
is similar to the Data Encryption Standard (DES).  It
is a 12- or 16-round cipher that has a blocksize of 64
bits and a keysize of up to 128 bits [5].
     There are four encryption steps where plaintext
m1...m64 and key K= k1...k128 are inputs and ciphertext
c1...c64 is output:
1. (Key schedule) Compute 16 pairs of subkeys {Kmi,

Kri} from K
2. (L0,R0) <-- (m1...m64).  Split the plaintext into left

and right 32-bit halves L0 = m1...m32 and R0 =
m33...m64.

3. (16 rounds) for i from 1 to 16, compute Li and Ri

as follows: Li = Ri-1; Ri = Li-1 ^ f(Ri-1,Kmi,Kri).
4. c1...c64 <-- (R16,L16).  Exchange final blocks L16,

R16 and concatenate to form the ciphertext.
     Decryption is identical to encryption as explained
above, except that the rounds are used in reverse
order to compute (L0,R0) from (R16,L16).
     The algorithm allows a key size that can vary from
40 bits to 128 bits in 8-bit increments. For key sizes
greater than 80 bits, the algorithm uses the full 16
rounds, otherwise it uses 12 rounds. For key sizes less
than 128 bits, the key is padded with zero bytes.
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Secure Hash Algorithm (SHA-1) computes a
condensed representation (160 bits) of a message or a
data file of length < 264 [6, 7].
�����First, the message is padded to a multiple of 512
bits in length: append a 1 to the message, then add as
many zeroes as necessary to reach the target length.
This target length is the next possible length that is 64
bits less than a whole multiple of 512 bits. Finally, as
a 64-bit binary number, append the original length of
the message in bits.
     A sequence of functions ft, 0<= t <=79 is used that
operate on three 32-bit words B, C, D and produce a
32-bit word as output:
ft(B,C,D)= (B and C) or ((not B) and D) (0<= t<= 19)
ft(B,C,D) = B xor C xor D (20 <= t <= 39)
ft(B,C,D) =
     (B and C) or (B and D) or (C and D) (40<=t <=59)
ft(B,C,D) = B xor C xor D (60 <= t <= 79).
     A sequence of constant words K(0), K(1), ... ,
K(79) is used: K = 5A827999 (0<= t <=19), Kt =
6ED9EBA1 (20 <= t <= 39), Kt = 8F1BBCDC (40
<= t <= 59), Kt = CA62C1D6 (60 <= t <= 79).
     The digest is computed using the final padded
message. The computation uses two buffers of five
32-bit words A,B,C,D,E and H0,H1,H2,H3,H4, a
sequence of eighty 32-bit words labeled W0, W1,...,
W79 and a single word buffer TEMP.
     To generate the message digest, the 16-word
blocks M1, M2,..., Mn are processed in 80 steps.
Before processing, the {Hi} are initialized: H0 =
67452301, H1 = EFCDAB89, H2 = 98BADCFE, H3 =
10325476, H4 = C3D2E1F0.
1. Divide Mi into 16 words W0, W1, ... , W15, where

W0 is the left-most word.
2. For t = 16 to 79 let Wt = S1(Wt-3 xor Wt-8 xor Wt-

14 xor Wt-16).
3. Let A = H0, B = H1, C = H2, D = H3, E = H4.
4. For t = 0 to 79 do TEMP = S5(A) + ft(B,C,D) + E +

Wt + Kt; E = D; D = C; C = S30(B); B = A; A =
TEMP;



5. Let H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 =
H3 + D, H4 = H4 + E.

     After processing Mn, the digest is the 160-bit
string represented by the 5 words: H0 H1 H2 H3 H4.
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The design methodology starts with an in-depth
analysis of each algorithm to determine the most
appropriate architecture for its implementation. The
different architectural alternatives considered in this
study are explained in a following section. The
analysis includes from a high-level evaluation of the
different alternatives, to low-level timing analysis and
resource allocation aimed to support fully utilized
resources whenever possible, while maintaining
maximum throughput (for example, in pipeline
design or memory design).
     From the result of architectural design, each
algorithm is implemented as an RTL description
using VHDL as specification language. These
descriptions correspond to the iterative part of each
algorithm, where a body of operations is repeated in a
loop a number of times for each input data word. The
goal is to obtain implementations that display the
performance that can be obtained in FPGAs.
Therefore, all circuitry aimed to support key
modification and key scheduling in CAST-5 is left
out of the evaluation (they are assumed to be
preloaded in memory).
     The same target FPGA, the Xilinx Virtex 2V3000,
has been used for the three implementations [8]. The
reason for this selection was to provide enough
resources for the implementations. Therefore,
feasibility, rather than low cost, has been the basis for
the approach taken here. In consequence, it is
expected that refining the current design at a lower
level of abstraction (using the low level resources of
the FPGA) can eventually improve the promising
results presented here. It should be considered that all
the designs only use part of the FPGA, so it is
expected that design refinement will allow smaller
FPGAs and, therefore, reduced cost.
     The design process continues with the synthesis of
the specifications using FPGA Compiler II, version
3.6.1 by Synopsys. The synthesis already provides
estimates that can help to refine the RTL descriptions
for improved performance. In the same vein, the
synthesis tool is configured to optimize the
throughput of the implementation. However, it should
be noted that this tool performs a general
optimization without taking into account the fine
details of the particular FPGA architecture and the
available resources. Therefore, although the
implementations will provide useful results for

evaluating the FPGA behavior with encryption
algorithms, they are not expected to be quasi-optimal,
thus leaving room for further improvements in
perfomance.
     Place and route is performed using ISE 4.1i by
Xilinx. This provides accurate estimates of delays
and FPGA occupation which are the basis of the
results presented later for each implementation.
Finally, timing and functional verification are
performed through simulation.
     As mentioned above, the speed of encryption
(throughput) is the main objective of the designs.
This speed is expressed as encrypted bits per second.
The number of FPGA resources actually used in the
implementation of each algorithm is also of great
interest. This usage is expressed as the number of
CLBs required and describes the occupation of the
FPGA. A partially occupied FPGA can leave room
for the implementation of other algorithms (or copies
of the same algorithm) operating in parallel, thus
allowing increased throughput with the same
dedicated resources (the complete FPGA).

����$UFKLWHFWXUDO�GHVLJQ
In general, these cryptographic algorithms are based
on a loop with a simple function in the body which is
executed multiple times. This is a characteristic
which is common to other algorithms of digital signal
processing [9]. They share a common analysis
methodology which has been applied to the hardware
implementation of a large number of applications
with different optimizations depending of the
characteristics of the particular algorithm [9,10]. The
design based on FPGA’s constitutes a flexible
environment where it is possible to evaluate easily
different architectures and algorithms.
     One of the drawbacks of FPGAs is their limited
clock frequencies, particularly when compared to the
operating frequencies of today’s processors executing
software implementations. In this sense, the potential
for improved performance mainly depends on the
degree of parallelization allowed by the encryption
algorithm. Since each algorithm behaves differently
in software and in hardware, the implementations
presented in this paper not only characterize the
behavior of FPGAs, but also characterize the
algorihtms in terms of their orientation towards
hardware.
     The initial approach is based on an architecture
divided in a data-path and a controller. The data-path
consists of the implementation of a single loop round
and the control logic, which controls a simple counter
to iterate the loop and some multiplexers to select the
input data and the different subkeys or the necessary



data. This basic architecture (also called iterative
looping) minimizes the hardware area but the
controller must iterate several times to perform the
complete loop and it may require a large number of
clock cycles. The performance of this architectures
can be considered low and the advantages of
hardware implementation are wasted.
     To improve the throughput of the architecture the
following two basic options can be applied:

- loop unrolling and parallelization of resources,
- pipelining.

     A loop unrolling architecture implements multiple
rounds as a single combinational logic block. The
number of required clock cycles is divided by the
number of unrolled rounds. On the other hand, the
delay of this combinational block is increased due to
its larger complexity. However, depending on the
operations in the body, this increment can be smaller
than the sum of individual delays of the unrolled
rounds. In this case, the product of the number of
cycles by the delay of the block is reduced and,
therefore the total time of loop execution is also
reduced. That is possible when some of the body
operations can be executed in parallel, and the
improvement of performance  depends on the degree
or parallelization obtained. If parallelism can not be
applied, this methodology does not provide any
performance enhancement. The hardware area is
larger than the non-optimized architecture, since the
resources are replicated according to the number of
unrolled rounds implemented in the combinational
logic block.
     A pipelined architecture is the other option. This
technique is widely used because it is easy to apply
and it offers the advantage of high throughput by
increasing the number of data that are being
simultaneously processed (parallelism in time).  The
implementation of a pipeline consists of a full
unrolled loop divided in stages by register banks.
Every stage can process different data. The hardware
area is the largest of the tree analyzed architectures
because there is a stage for every round of the loop.
     Another important consideration about pipelining
has to be taken into account. The processing of input
data will finish several cycles after data have been put
in the pipeline (depending of the number of stages
used in the pipeline). Two input data must be
independent in order to be processed simultaneously
in the pipeline architecture. This drawback limits the
use of pipelined implementations of a single round in
algorithms where temporal results are fed back to
following iterations, so they can not be executed
independently.  However, this methodology can be
applied to the global loop when the algorithm has

modes of operations which do not require feedback of
the loop outputs, such as Electronic Code Book.
     What follows is an analysis of the three algorithms
which are examples of the architectural approaches
commented in this section.
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This algorithm is probably the simplest but this
simplicity complicates the performance of its
hardware implementation. In short, the algorithm
performes five consecutive S-box accesses (3 Reads
and 2 Writes) and the data obtained in an access are
used to calculate the  index for the next access. There
is no possibility of parallelism and the initial  iterative
looping architecture without optimizations must be
chosen.
     The critical element of the design is the
implementation of the S-box memory array and two
design alternatives have been evaluated. The first
one, is an implementation using a dual-port RAM
block and tree clock cycles per stream generation. In
the second one, a register array allowing one cycle
per stream is implemented. The first alternative needs
an excessive high clock frequency to obtain
acceptable throughput so it was discarded.  The large
registers array used by the second option exceed the
synthesis capacity of the FPGA Compiler II tool. A
bit-slice description  of the array was necessary to
carry out the synthesis process.  A RAM Block was
used to store the key.

��� &$67��LPSOHPHQWDWLRQ
This algorithm is a block cipher and a pipelined
architecture was selected for the implementation. The
decision was made assuming a non-feedback  mode
of operation.   As commented in the previous section,
a classic pipelined architecture requires the
implementation of a resource for  each operation. So
for example, to allow 16 accesses per S-box, 8x4
dual-port ROM blocks are required. In our case, to
get around this disadvantage, a modified pipelined
architecture was used to reduce the number of
required resources, specially the ROM blocks.
     The basic idea is to implement a pipeline where
the number of stages is multiplied by Q and to
introduce a new block data once every Q cycles.
Then, the pipeline is partially empty and their
resources are used only every Q cycles. Therefore, it
is possible to reuse these resources in several pipeline
stages, Q-times at the most. An architecture with Q=8
was implemented.  The resulting number of shared
resources versus the number in the original pipeline is
shown  in Table 1. The number of ROM blocks has



been minimized to one per S-box  and the arithmetic
operator have been reduced but not minimized,
because a greater reduction complicates excessively
the design and the synchronization of the shared
resources.

Table 1. The resources in two architectures

Partially empty Original pipeline
adders 8 22
substracters 8 21
decrementers 4 16
ROM blocks 4 32

��� 6+$���LPSOHPHQWDWLRQ
Since message digest algorithm SHA-1 operates in a
feedback mode, a pipelined structure can not be
applied. Therefore, a partial unrolling architecture
was chosen for the implementation.
     The critical path of the SHA-1 round is the
calculation of the new data A following the next
equation: Anew= S5(A)+Ft(B,C,D)+E+Wt+Kt. The first
operand represents the feedback between the round
and the non-optimizable path of the unrolled rounds.
The other operands are available before and their
addition can be made in parallel with the calculation
of data A of the previous internal round. The cost of
unrolling a new round is only the delay of one
addition and not the four additions of a complete
round.

Figure 1. Structure of two unrolled SHA-1 rounds.

     Figure 1. explains graphically the application of
parallelism in a structure of  two unrolled rounds.We
select a combinational block of 4 rounds for the
implementation.  The design process is similar to the
case shown in the figure.

��6\QWKHVLV�UHVXOWV
The designs were synthesized, placed and routed on
the VirtexII family. The FPGA implementation
results are shown in Table 2, and the obtained
performance in Table 3. These data were obtained
from the report files of the Xilinx tools.

Table 2. Implementation resources

IOB´s Slices RAM
blocks

Equivalent
gates

RC4 46 6591 1 163,406
CAST5 133 5370 4 345,791
SHA-1 72 1550 0 29,900

     The throughput is calculated as [10]:
Throughput = (number of bits processed per loop) x
(Clock Frequency) / (number of cycles per loop)

Table 3. Implementation performances

bits cycles clock freq.
(MHz)

throughput
(Mbps)

RC4 8 1 19.4 155.2
CAST5 64 8 99.7 797.7
SHA-1 512 22 38.6 899.8

     The performance of the implementation of RC4
exhibits lower rates (155.2 Mbps throughput). This
result was expected  because the structure of this
algorithm is not adequate for a hardware  solution.
The critical elements of RC4 are the output selection
multiplexers of the register array. The synthesis
reports show a complex and slower  logic due to the
large number of inputs (256) of the multiplexers.
     Generally, stream ciphers are faster than block
ciphers in hardware and have less complex hardware
circuitry. While LSFR-based stream ciphers are well
suited for hardware implementation, they are not
especially amenable for software implementation.
This has led to several proposals of stream ciphers
(RC4, SEAL) designed particularly for fast software
implementation on general purpose processors, not
for programmable logic [3].
     Therefore, RC4 is not efficient in hardware ie. it is
measurably faster in software [11]. RC4 contains
many structural and data hazards, forcing
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serialization. It also contains many register adds,
which are slow due to carry propagation.
    On the other hand, the results of SHA-1 and
CAST5 are much more promising, reaching 899.8
Mbps and 797.7 Mbps respectively. The CAST5
throughput shown in Table 3. is the bitrate of input
flow. In some applications, for example in PCI-
boards, the sum of the input and the output  flow have
to be considered because the PCI bus shares the input
and output lines. In this case, the total throughput
becomes 1.59 Gbps.
     The critical components of the CAST5
implementation are the 32-bit circular shifters.
Synthesis results show a delay due to logic cells of 4
ns, but after the placement and routing processes, the
global delay nets is increased to 10 ns. This different
are due to routing nets, which represent 60% of the
critical path delay. These elements are not taken into
account by the synthesizer, thus causing the reported
difference.
     The comparison with other implementations can
be based on some reported results of 3.3 MBytes/sec
on a 150 MHz Pentium processor for CAST cipher
[5], and of 87 MB/s at 88 MHz for SHA-256 on a
Xilinx Virtex XCV300E-8 FPGA [13].

����&RQFOXVLRQ
Three cryptographic algorithms compliant to IP
Security Protocol (IPSec) were implemented in
FPGA (Field Programmable Gate Array). The
algorithms belong to three different classes of
cryptographic primitives: block cyphers (CAST5
algorithm), stream cyphers (RC4) and hash functions
(HMAC SHA-1). The target technology was FPGA
family VirtexII which is compliant  with PCI-X 133
and PCI 66 MHz standars allowing the design  of
applications based on coprocessor boards. Different
architectures like loop unrolling with parallel
resources and pipelining were applied and their
analysis has been provided.
     The throughput results for the given technology
were 899.8 Mbps for SHA-1, 797.7 Mbps for CAST5
and 155.2 Mbps for RC4. The lower RC4 throughput
was expected since this algorithm was designed
particularly for fast software implementations, and,
therefore, it is not expected to be efficient in
hardware. In applications with PCI boards where the
PCI bus shares input and output lines, the computed
throughput can be duplicated, thus reaching Gigabit
rates for block cipher CAST5 (1,59 Gbps).
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