
An Integrated Testing and Debugging Environment for Java Card

JIN-HEE HAN*, SUNG-IK JUN*, SI-KWAN KIM**, KYO-IL JUNG***
IC Card Research Team, ETRI*, KUMOH national university of technology**

Dept. of Information Security Basic, ETRI***
ETRI, 161, Gajeong-Dong, Yuseong-Gu, Daejon, 305-350

KOREA
hanjh@etri.re.kr, sijun@etri.re.kr, sgkim99@naver.com, kyoil@etri.re.kr, http://www.etri.re.kr

Abstract: - This paper describes integrated testing and debugging environment for Java Card. An integrated testing
and debugging environment is based on J-JCRE (Java Card Runtime Environment) and Java Card APIs
(Application Programming Interface). And also, developed tool supports two kinds of cryptographic algorithms,
automatic generation of client/server applet stub/skeleton, script execution, and source level debugging of system
class etc. Therefore, by using development environment, application can be debugged and tested before being
downloaded onto the Java Card.

Key-Words: - Java Card, Simulator, Testing, Debugging, Development tool

1 Introduction
To achieve a certain degree of confidence that a given
program follows its specification, a testing phase must
be included in the program development process, and
also a complementary debugging phase is needed for
locating the program's bugs.

There have been also commercial Java Card
development kits, for instance Odyssey lab™ form
Bull, Cyberflex™ form Schlumberger, GemXpresso
RAD™ from Gemplus, Sm@rtCafé Professional™
from Gieseke & Devrient, GalatIC™ from Oberthur
Card Systems. Most of these kits contain a card reader,
cards and software tools [1].

Generally, simulation environment is slower than a
real environment. However, in the view of a smart
card, this characteristic is the exact opposite. It means
that majority functins of application can be simulated
and tested by using simulation environment because
execution time of a real card is much slower than that
of a simulator. Therefore, application developers can
use a simulator as a real card and check whether their
application is error-free state before downloading it
onto a real card. However, like as general simulation
environment, time-dependent functions of a real card
should be considered .

In this paper, we introduce our integrated testing
and debugging tool, but our aim is not to compete with
conventional smart card manufacturers, but to propose
new methods for creating development environments
with beneficial functionality. The rest of this paper is
organizaed as follows. In Section 2, we discuss Java
Card. Then we present the architecture of our testing

and debugging tool and explain how it operates. The
following sections illustrate simulation process in
relation to applet using message digest algorithms,
debugging, and simulation results. Finally, we present
conclusions.

2 Java Card

2.1 Overview
Starting in 1996, Schlumberger, a smart card manu-
facturer, demonstrated a Java-based smart card by
adding a light-weight Java bytecode interpreter to a
smart card’s OS (Operating System) and downloading
Java class files, which were converted to a smaller,
proprietary format.

In October 1996, Sun Microsystems issued a first
Java card specification. The specification limited its
description to the Java card’s general goals and
architecture. Afterwards, Sun issued Java Card 2.0
specification, which is more essential and concrete, in
1997, and Java Card 2.1 specification in 1999. In
addition, Java Card 2.2 specification in 2002.

If you want to write a Java application that should
run on a smart card, you can use a smart card that is
compliant to the Java card API specification. A Java
card, as all common smart cards, has a Central
Processing Unit (CPU), Read Only Memory (ROM)
and Electrically Erasable and Programmable ROM
(EEPROM). The card operating system consists of a

Java Card Virtual Machine (JCVM), a piece of
software that can execute programs (applets) written
in the Java language. These Java card applets are
written in a similar way to the “normal” Java applets,
but due to the limited memory and computing power
of the smart card, only a small subset of the language
features are supported.

Fig.1 Java Card architecture

For the communication between smart cards and
the outside world, the client–server model is used. The
messages are transferred by Application Protocol Data
Units (APDU), which is the communication protocol,
specified in ISO 7816. The card always waits for a
command APDU from a terminal, executes the
requested command, and replies with an adequate
response APDU. The header is always present in the
command APDU. If there are no errors, a response
APDU should always be returned, even if they contain
no data (status words are always present). Command
and response APDU’s are built as shown in Table 1.

Table 1. Command and response APDU

Command APDU

Command APDU Header
CLA INS P1 P2

Lc Data Le

CLA: Class byte (command-ID), INS: Instruction,
P1, P2: Parameter, Lc: Length of command data,
Data: Command data, Le: Length of expected data

Response APDU

Data SW1 SW2
Data: Response data, SW1, SW2: Status Word

Java card applications are called applets. Applets

are identified and selected by an AID (Application
IDentifier), and multiple applets can reside on one
card. Because applet objects exist for the life of the
card, once installed an applet lives on the card forever
[2][3].

2.2 Applet development process
Development of a Java Card applet begins as with any
other Java program: a developer writes one or more
Java classes and compiles the source code with a Java
compiler. Next, the applet is run, tested and debugged
in a simulation environment. The simulator simulates
the Java Card runtime environment on a PC or a
workstation. In the simulation environment, the applet
runs on a Java virtual machine, and thus the class files
of the applet are executed. Then the class files of the
applet that make up a Java package are converted to a
CAP (Converted APplet) file by using the Java Card
converter. If an applet comprises several packages, a
CAP file and an export file are created for each
package. Finally, the CAP file(s) that represent the
applet are loaded and tested in an emulation
environment. Fig.2 demonstrates the applet develop-
ment process [3].

Fig.2 Applet development process

3 Testing and debugging tool
Our Java Card development environment is made up
of two parts: a structure editor and a simulator for
testing applets. And simulator again is composed of
five parts. Fig.3 illustrates system architecture of our
simulator.

Fig.3 System architecture of simulator

3.1 Overview
As you see in Fig.3, system architecture of a

simulator consists of GUI (Graphic User Interface),
interpreter (On-card JCVM), JDWP (Java Debug Wire
Protocol) manager, APDU (Application Protocol Data
Unit) manager, and event manager.

JDWP are used for communication between a
debugger and the JCVM (Java Card Virtual Machine),
which it debugs. And JDWP define additional data
types, constants, and commands that can be used to
debug applets developed for and executed in the JCRE.
JDWP manager changes debugging command into
JDWP packet and processes an applicable command.
Also, JDWP extracts various kinds of debugging
information from CAP file [4][5][6].

Interpreter executes instructions of bytecode,
which are generated by Java Card applet and APIs.
And event manager processes events that are
generated according to user’s command. Finally,
APDU manager processes command and response
APDU.

3.2 Features of integrated simulation tool
Integrated simulation tool supports following features:

♦ Source level debugging for system classes
♦ Automatic generation of client/server applet stub/

skeleton
♦ Generation of cross-reference tree
♦ Message tracing between terminal application and

card applet
♦ Script execution
♦ Variable watch and value change trace
♦ Monitoring and reporting resource used for each

applet
♦ Support various cryptographic algorithms
♦ Applet compiling, converting, and mask generation

Tool bar is composed of various functions: new java
file, open java file, save java file, start new project,
open project, save project files, add file to project,
remove file from project, abruptly terminate the target
VM, suspend, resume, set breakpoint, set trace, step by
line into methods, step by line over methods, step out
of current frame, and start APDU toolkit. And utility
item of a simulator consists of convert classes, gene-
rate CAP, dump CAP, script generation, view byte-
code usages, view profile, and connect APDU tool. In
addition, project item is composed of complie files,
convert files, maskgen files, make all, project proper-

ties, and mask options. Fig.4 describes tool bar of our
simulator.

Fig.4 Tool bar of simulator

To develop and test applet, applet developer can

use tool bar, project and utility item. In the next
section, we will show simulation process and results of
test applet using message digest cryptographic algo-
rithms (MD5, RIPEMD160, SHA-1) [7][8].

4 Simulations
Our simulator supports two kinds of cryptographic
algorithms up to now: such as MD5, RIPEMD160,
SHA-1 as hash function, and SEED as secret key
(which is proposed for standardization in KOREA). It
indicates that we implement MD5, RIPEMD160,
SHA-1, and SEED cryptographic APIs.

In order to simulate test applet, at first, we wrote
test applet to utilize message digest cryptographic
algorithm. Contents of test applet are described below:

package com.sun.javacard.samples.Md;

import javacard.framework.*;
import javacard.security.*;
import javacardx.crypto.*;

public class Md extends Applet
{
final static byte MD_CLA = (byte)0xC0;
final static byte RECEIVE = (byte) 0x10;
final static byte SEND16 = (byte) 0x20;
final static byte SEND20 = (byte) 0x30;
final static byte MD5 = (byte) 0x40;
final static byte RIPEMD160 = (byte) 0x50;
final static byte SHA1 = (byte) 0x70;

static byte[] orMessage = new byte[3];
static byte[] mdMessage_16 = new byte[16];
static byte[] mdMessage = new byte[20];

static byte mesLeng;
MessageDigest md5;

private Md (byte[] bArray,short bOffset,byte bLength){
 pin = new OwnerPIN(PIN_TRY_LIMIT, MAX_PIN_SIZE);
pin.update(bArray, bOffset, bLength);
register();
}

public static void install(byte[] bArray, short bOffset, byte bLength){
 new Md(bArray, bOffset, bLength);
}

public boolean select(){
 if (pin.getTriesRemaining() == 0)

 return false;
 return true;
}

public void deselect(){
 pin.reset();
}

public void process(APDU apdu) {
byte[] buffer = apdu.getBuffer();
if ((buffer[ISO7816.OFFSET_CLA] == 0) &&
 (buffer[ISO7816.OFFSET_INS] == (byte)(0xA4)))
 return;
if (buffer[ISO7816.OFFSET_CLA] != MD_CLA)
 ISOException.throwIt(ISO7816.SW_CLA_NOT_SUPPORTED);

switch (buffer[ISO7816.OFFSET_INS]) {
case MD5: md5(apdu); return;
case RIPEMD160: ripemd160(apdu); return;
case SHA1: sha1(apdu); return;
case RECEIVE: receive(apdu); return;
case SEND16: send16(apdu); return;
case SEND20: send20(apdu); return;
default: ISOException.throwIt
 (ISO7816.SW_INS_NOT_SUPPORTED);
 }
}

private void receive(APDU apdu){

byte[] buffer = apdu.getBuffer();
short re = apdu.setIncomingAndReceive();
mesLeng = buffer[ISO7816.OFFSET_LC];

 for(byte i=0; i<orMessage.length; i++){
 orMessage[i] = buffer[(byte)(ISO7816.OFFSET_CDATA+i)];

 }
}

 private void md5(APDU apdu) {
 md5 = MessageDigest.getInstance(MessageDigest.ALG_MD5,true);
 md5.doFinal(orMessage,(short)0,(short)orMessage.length,

mdMessage_16,(short)0);
}

private void ripemd160(APDU apdu) {
 MessageDigest ripemd160 =
MessageDigest.getInstance(MessageDigest.ALG_RIPEMD160,true);
ripemd160.doFinal(orMessage, (short)0,(short)orMessage.length,

mdMessage,(short)0);
}

private void sha1(APDU apdu) {
 MessageDigest sha1 =
MessageDigest.getInstance(MessageDigest.ALG_SHA,true);
sha1.doFinal(orMessage, (short)0,(short)orMessage.length,

mdMessage,(short)0);
}

private void send16(APDU apdu){
 byte[] buffer = apdu.getBuffer();
 short le = apdu.setOutgoing();
 apdu.setOutgoingLength((byte)16);
 for (byte i=0; i < 16; i++){
 buffer[i] = mdMessage_16[i];
 }
 apdu.sendBytes((short)0, (short)16);
}
private void send20(APDU apdu){
 byte[] buffer = apdu.getBuffer();

short le = apdu.setOutgoing();
 apdu.setOutgoingLength((byte)20);
 for (byte i=0; i < 20; i++){

 buffer[i] = mdMessage[i];
 }
 apdu.sendBytes((short)0, (short)20);
}

And then, applet was compiled, converted. After

mask generation is completed, we can use various
functions to test and debug developed applet. Fig.5
illustrates simulation process of message digest applet
and various debugging functions.

As you see in Fig.5, simulation tool supports seve-
ral beneficial functions such as view profile, view
bytecode usages, message trace, and APDU monitor.

5 Results
Fig.6 shows simulation results of message digest
applet. In this figure, we can see that script execution
starts after receiving ATR (Answer To Reset) and
applet operates very well.

Script file used for simulation is organized as
follows:

♦ Select Installer applet
♦ Begin Installer
♦ Create test applet
♦ End Installer
♦ Select test applet
♦ Send input message
♦ Run MD5 algorithm
♦ Receive hash value of MD5 algorithm
♦ Run RIPEMD160 algorithm
♦ Receive hash value of RIPEMD160 algorithm
♦ Run SHA-1 algorithm
♦ Receive hash value of SHA-1 algorithm

Input and output data of each message digest

algorithms is summarized in Table 2.

Table 2. Input and ouput data of hash functions

 Input Output
MD5 abc 900150983cd24fb0d6963f7d28e17f72

RIPEMD
160 abc 8eb208f7e05d987a9b044a8e98c6b087f15a0bfc

SHA-1 abc a9993e364706816aba3e25717850c26c9cd0d89d

6 Conclusions and future work
As mentioned before, in order to achieve a certain
degree of confidence that a given program follows its
specification, a testing phase must be included in the

program development process, and also a debugging
phase to help locating the program's bugs. Therefore,
we introduce our simulation tool developed for Java
Card in this paper and briefly show its simulation
process.
Our integrated testing and debugging tool now
supports two kinds of cryptographic algorithms and
provides various kinds of debug functions such as
script execution, APDU message monitoring, source
level debugging for system classes, and monitoring
and reporting resource used for each applet and so on.

In the near future, we will add various kinds of
cryptographic algorithms, such as RSA, ECC as public
key algorithms, to our simulator and also Open Plat-
form 2.1 specification will be implemented later.

References:

[1] Isabelle, A. Et al., An integrated development
environment for Java Card, Computer Networks,
 2001, pp. 391-405.

 [2] Michael Caentsch, Java Card-From Hype to
Reality, IEEE Concurrency, 1999, pp. 36-43.

 [3] Chen, Zhiqun, Java Card Technology for Smart
Cards, Addison-wesley, 2000

 [4] Sun Microsystems Inc., Java CardTM 2.1.2
Development Kit User's Guide, 2001

[5] Sun Microsystems Inc., Java™ Debug Wire
 Protocol Java Card™ Extensions, 2001

[6] Sun Microsystems Inc., Java Card™ 2.1.1
Runtime Environment Specification, 2000

 [7] Sun Microsystems Inc., Java Card™ 2.1.1
Application Programming Interface Specification,
2000

[8] Menezed, A., van Oorschot, P., Vanstone, S.,
 Handbook of Applied Cryptography, CRC Press,

1997

Fig.5. Various debugging tool for applet simulation

Fig.6. Simulation results of message digest applet

JCA file of applet

APDU monitor

Bytecode usages

View profile

Message trace

