
Testing the efficacy of an intrusion signature representation model

EURÍPEDES L. L. JÚNIOR, LUCIANO B. DE PAULA, ADRIANO M. CANSIAN
UNESP – Universidade Estadual Paulista
ACME! Computer Security Research Lab.

15055-000, São José do Rio Preto, SP
BRAZIL

{euripedes, luciano, adriano}@acme-ids.org – http://www.acme-ids.org

Abstract: - Nowadays, the computer network security is very important and became a crucial point in every
computational systems. For this reason, a robust and efficient security system is necessary. The intrusion
detection systems (IDS) largely used today are based on rules. These rules are written after the attack is
known, which implies that the more attacks are known, more rules can be built.With more rules, IDS become
more efficient. The goal of this paper is to test the efficacy of a new signature representation model – AISF.
This model has as feature the ease of information exchange between several IDS, using the XML technology.
In this paper will be shown how some signatures were modeled using AISF specification and how it is possible
to use it to feed an IDS.

Key–Words: security, intrusion, signature, model, IDS, XML.

1 Introduction
 Nowadays, the security of computer
networks is more important than it was in the past,
and it is less important than it will be in the future.
This is due to the growing number of crucial
activities that are being developed under
computational environments, like e-commerce.
 As the importance increases, so does the
need for integrity and privacy of those
computational system grows. The major priority of
the security analysts is how to keep the system free
from “holes” that can spoil the security and harm
the system.
 A tool largely used to protect computational
systems is called IDS (intrusion detection system).
An IDS is a program that works analyzing the data
flow in a network, and tries to identify activities that
can be classified as suspicious or offensive. The
major part of IDS is based on rules. It means that, if
an attack has a signature and this signature is
known, a rule to block this kind of event can be
built.
 If the number of known signatures grows,
so does the chance of protecting the victim against
this kind of attack. On the other hand, the number of
new attacks that is reported every day is very
impressive.
 The AISF [1] model proposes a standard
form to codify those attack signatures, looking for
the ease of exporting and importing these data
between different IDS.

 AISF consists of several modules, using the
XML technology, a feature that allows a great
portability and flexibility regarding the codified
data.
 The goal of this paper is to prove the
efficacy of this model.

2 The AISF Model
 From a technical point of view, AISF is a
data structure based on an independent set of
modules containing information that reports from
informative data of the event to implicit details of
network protocols.
 AISF organization is based on the XML
specification[2], which supplies after all, simplicity,
adaptability, high portability, flexible use and
maintenance. XML allows a markup to be created,
defining the information and sharing them, which is
exactly the goal of AISF. The description of the
modules can be seen as follows:
1 – Signature Identification Module: this module
has the information about the AISF version for this
attack codified, as well as its popular name and who
codified it;
2 – Signature Information Module: here can be
inserted the information about the attack’s category
(scan, dos, overflow, etc), the conditions that the
attack may happen, target systems, a security level
(a number from 0 to 100) that describes the danger
of the attack and other references for it, like [3][4].

3 – Signature Characteristics Module: holds the
information about the false positives and false
negatives rate, a number (0 to 100) that indicates the
ease to perform the attack, and a recommended
action to be done.
4 – Data Link Protocols Module: this module holds
the data about the data link protocols, as Ethernet,
like for example, the MAC adress.
5 – Network Protocols Module: in this module, the
features of the network protocols are codified. The
most common is the IP protocol;
6 – Transport and Control Protocol Module: here we
can find information about transport and control
protocol, like TCP, UDP and ICMP;
7 – Payload Information Module: the comments
about the data carried by the packet are written here.
This module is very important when the attack is
determinated by the string that was present in the
packet sent to the victim.
 Every module has a field called Module
Length which contains the number of fields that are
present in that module.

3 Testing the AISF model
 The model, in order to be efficient, has to
allow the information about different types of
signatures to be modeled into it. For this reason, a
great number of signatures (around 250) were
codified into AISF, trying to test its flexibility when
holding different kinds of information from them.
Were used the data base from AracNIDS[5] and
Snort[6], as well as some logs from simulated
attacks.
 Several types of signatures were codified,
ranging from information gathering attempt to real
intrusion activities. Several types of services have
been reported as well as several types of attacks and
platatorms, including: X11, DNS, SSH, IMAP,
Netscape Client, Java scripts, LPR, Web –
Frontpage, Web IIS, SMTP, SMNP, TFTP, RPC,
Netbios, signature involving shellcode, DdoS, DoS,
Finger, FTP, Rservice, scans, Telnet, Trojan.

The protocols TCP, UDP and ICMP were
involved in this signatures, showing that the AISF
model supports any of them.

After all signatures were codified, every
relevant information about the attacks could be
stored in an AISF format, proving its efficiency
when holding this kind of data.

The next section shows examples of attacks
codified in AISF format.

4 Codifying a signature using AISF
 The example is a log that contains a packet
that is tipical of buffer overflow attacks. For
example, the wu-ftpd 2.6.0 is a common FTP
server that is vulnerable to a very serious remote
attack in the SITE EXEC implementation. This
attack can be identified by the long string of x86
NOPs (no operation command in Assembly
language, code 0x90) instructions [7]. This signature
is critical to the remote exploit of the ftpd service
(port 21).
 See the figure below:

04/28/02-17:13:15.131234 source:1658 -
> destiny:21
TCP TTL:64 TOS:0x0 ID:38851 IpLen:20
DgmLen:457 DF
AP Seq: 0x9164136A Ack:
0x31DF9933 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 2605235
17971831
0x0000: 50 41 53 53 20 90 90 90 90 90
90 90 90 90 90 90 PASS
0x0010: 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90
0x0020: 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90

Fig. 1 – A typical buffer overflow log

Due to space limitations, the figure 1 does

not have the full packet.
 See this attack codified in AISF:

Signature Identification Module
Version: 0.0.7
ID: 2002-34
Name: FTP EXPLOIT wu-ftpd 2.6.0 site exec
format string overflow
Serial Number: 20020526 - 02
Credits: Eurípedes Laurindo Lopes Júnior and
Luciano Bernardes de Paula.
Next Module: Signature Information Module

Signature Information Module,
Module Length: 7
Security Level: 90
Category: Buffer overflow
Description: Wuftpd buffer overflow vulnerability.
Other IDs: CVE CAN200-0574, Bugtraq 1387,
AracNIDS 287
Impact: Attempted to gain admnistrator privileges.
Attack Scenario: Red Hat 6.2 system running a
wuftpd server 2.6.0(1).
Target System: Linux
Next Module: Signature Characteristics Module

Signature Characteristics Module
Module Length: 6
Ease of Attack: 50
False Positive Level: 20
False Negative Level: 1
Recommended Actions: Upgrade wuftpd version.
Next Module: Network Protocols Module

Network Protocols Module,
Module Length: 10
Type of Service:
Fragment ID:
Flags:
Fragment Offset:
TTL:
Source Address: External
Destination Address: Internal
Options:
Next Module: Transport and Control Protocols
Module

Transport and Control Protocols Module
Module Length: 11
Source Port: any
Destination Port: 21
Sequence Number:
Acknowledge Number:
Data Offset:
Flags: ACK
Window:
Urgent Pointer:
Options:
Next Module: Contents

Contents (Conteúdo).
Header Length: 6
Size:
Offset: 0 byte
Depth:
Contents: “|90 90 90 90 90 90 90 90 90|”
Next Module: NULL

In an attempt to simplify the example, the
signature was not codified in XML. These
information, in practice, will be coded under XML
specifications.

An idea that could be implemented is the
creation of an attack signature data base, taking
advantage of XML features. As the XML has a great
portability, automatic mechanisms could be created
to build rules for a specific IDS. These mechanisms,
having access to the AISF data base, could extract
the information needed by this specific IDS and
generate rules to insert into it. The next subsections,
shows two IDS as examples, Snort and ACME!-IDS

[8] and how an AISF data base could be used with
them.

 4.1 Using Snort with AISF
 Snort is a lightweight network intrusion
detection system, capable of performing real-time
traffic analysis and packet logging on IP networks.
Snort is widely used around the world. It uses a
flexible rules language to describe traffic that it
should collect or pass.
 The Snort IDS can have a simple rule to
detect this attack. The rule would be:

alert tcp $EXTERNAL_NET any -> $HOME_NET
21 (msg:"FTP EXPLOIT wu-ftpd 2.6.0 site exec
format string overflow Linux"; flags:A+;
flow:to_server; content: "|90 90 90 90 90 90 90|");

Fig. 2 – A Snort rule

Notice that all information needed to build
this rule can be found in the AISF version of the
attack. The External and the Internal adresses can
be obtained from the Network Protocols Module, the
destination port (21) and the protocol flag can be
read from the fields Destination Port and Flags,
respectively, from Transport and Protocols Module.
The message can be taken from the field Name of
the Signature Identification Module. The important
string that characterizes the attack (“|90 90 90 90 90
90 90 90 90|”), can be extracted from the field
Contents of the Contents Module.

4.2 Using ACME!-IDS with AISF

ACME!-IDS is an intrusion detection
system based on neural network developed by the
ACME! Computer Security laboratory. See a very
brief description of ACME!’s modules:

- Capture Module: a module that works like
a sniffer, capturing and identifying the network
traffic.

- Pre-selection and Inference Module: this
is the module that judges if a connection is
suspicious or not;

- Connection Module: this module receives
all packets from the suspicious connection and
passes its contents to the Semantic Analyser;

- Semantic Analyser: look for well known
strings into the contents of the packets from the
suspicious connection. Each well known string is
related with a binary number. The set of these
binary numbers goes through the neural network,
that analyses it, and returns an answer, that indicates
if it is an attack or a normal connection.

An AISF data base can be used by ACME!-
IDS in two different processes: generation of two
pre-filtering rules to be inserted in the Capture
Module (ACME!-IDS rules, similar to a Snort rule),
and the creation of binary data (ACME!-IDS Binary
Intrusion String - ABIS) for the Semantic Analyser.

The figure 3 contains the structure of how
an AISF data base can improve the ACME!-IDS
efficiency.

ABIS

ACME!-IDS

Semantic
Analyzer

Pre-Selection
and Inference

Module

AIS

ACME!-IDS
 Rules

ACME! Rules
generator

ABIS
generator

Fig. 3 - ACME!-IDS architecture with AISF

5 Points to be discussed

One of the AISF features is its openess to
improvement. If a new attack appears, new fields or
modules can be created to support it, if necessary.
Some point to be discussed about the current
version:

- There are some fields, like Security level
(from Signature Information Module), Ease of
attack, False positive level, False negative level
(from Signature Characteristics Module) that can
be filled with a number that goes from 0 to 100,
which implies that this information can be
subjective, because different persons can give
different values to this field.

- The Data Link Protocols Module was not
used in a single signature. In a first view, can be
assumed that this module is useless, but if an attack
uses this kind of information (a MAC spoof, for
example), the model already support it.

What can be said is that the model supplies
the need for a standard to store attacks signatures,
keeping the exchange of these information very
simple and efficient.

6 Conclusion

The model was submitted to a test, in which
different kinds of attacks were codified. The test
was successfull, because every attempt to codify an
attack could be done.
 The model allows the exporting and
importing of important information about attack
signatures, between different IDS, in a simple way
through the use of XML specifications. This feature
is very important, because the more information is
known by an IDS, the more rules can be built to
make it more efficient.

References:
[1] Cansian, Adriano M.; Souza, Marcelo de; Silva,

Artur R. A. - Developing an Attack Signature
Standard – In Proceedings of SAM'02 - The
2002 International Conference on Security and
Management

[2] World Wide Web Consortium XML (Extensible
Markup Language) 1.0. October 6, 2000.
http://www.w3.org/TR/2000/REC-xml-
20001006 - (Last seen Jan 28, 2002)

[3] MITRE Corporation. Common Vulnerabilities
and Exposures. 2001.
 http://cve.mitre.org/ (last seen January 28,
2002)

[4] BugtraqID http://www.securityfocus.com (last
seen January 28, 2002)

[5] Whitehats Inc. arachNIDS – The Intrusion Event
Database. http://www.whitehats.com (last seen
December 10, 2001).

[6] Roesch, M. Snort Signatures Database.
http://www.snort.org/snort-db/ (last seen
January 28, 2002).

[7] Cooper, M., Fearnow, M., Frederick, K. and
Northcutt, S. Intrusion Signatures and Analysis.
1st Edition - New Riders Publishing, January
2001, 408 pages.

[8] Cansian, A.M.; Moreira, E.M.; Carvalho,
A.C.P.L. and Bonifácio Jr., J.M. Network
Intrusion detection using neural networks. In:
Proceedings of International Conference on
Computational Intelligence and Multimedia
Applications, ICCIMA’97. Gold Coast,
Australia: 1997. pages 276-280.

