
A Persistent Memory Management in Java Card

IM Y. JUNG SUNG I. JUN KYO I. CHUNG

Electronics and Telecommunications Research Institute
161, Gajeong-Dong, Yuseong-Gu

Daejeon, 305-350
REPUBLIC OF KOREA

{imyoung, sijun, kyoil}@etri.re.kr

Abstract: - EEPROM as persistent memory in smart card has some different features with other memories. It consists
of the pages with a fixed size and has the characteristics due to them. It is more efficient to consider them and to
handle EEPROM by page than to think of it as a seamless space and to deal with it as one large chunk. Because smart
card is categorized as the device closely interactive with users, the faster response time is important. Accordingly, the
time spent in managing the card memory should be in the acceptable range. The necessity to manage the card memory,
EEPROM, to be reused efficiently, arises from its small capacity due to the physical size of smart card itself. In this
point, the memory management schemes such as memory allocation, withdrawal and garbage collection get to have
importance concretely. In this paper, we propose an efficient persistent memory management scheme in smart card
based on the model of our Next Generation Integration Circuit(NGIC) Card.

Key-Words: - Memory Management in Java Card, EEPROM, Page handing, Page Manager, NGIC Card

1 Introduction
EEPROM as persistent memory in smart card has some
qualities. If we do ignore them, the utilization of
EEPROM may not be high and it may take much time to
handle it.

There are some trade offs between the space utilization
in memory and the time required to enhance it. The
garbage collection is one example. If we take advantage
of it, we can enhance the memory utilization. But, the
time to do it may exceed the margin we can endure. If we
use it in smart card, we may be disappointed of the
processing time. It arises from the weak processing
power and the small memory sizes in smart card
including RAM as volatile memory as well as EEPROM.
The physical RAM size in smart card is four times larger
than EEPROM if compared in the same capacity[8]. But,
EEPROM has some handicaps that RAM dose not have.
One thing is the elapsed time to write on. The writing on
EEPROM is slower than that on RAM from 30 times[1]
to 100 times[8] according to the manufactories of
EEPROM. So, we take RAM management into less
consideration than EEPROM management in the
viewpoint of the card response time.

In this paper, we discuss the EEPROM management
scheme including memory allocation and withdrawal and
the garbage collection. We process our research with the
model of our Next Generation Integrated Circuit(NGIC)

card, which is the product name of our project developing
the next generation smart card.

2 Next Generation Integrated Circuit
Card

Micro Processor + Memory + I/O + Crypto Coprocessor (H/W)

Java Card Virtual Machine (JCVM) Native Interface & method

Java Card API

Installer Custom Framework

Open Platform(OP) API

JCOS

Chip Operating System (COS)

Transaction
Managemen

t Module

Memroy
Management

(Page
Manager) Contact 7816

T=0, T=1
(Optional)

Utilities
and

Device
Driver

Cryptographi
c Mudoles

Contact-less
14443
type=B

T=CL

Java Card Runtime Environment (JCRE)

Java Card Applet Java Card Applet Java Card Applet
Open Platform

Applet

Fig. 1. NGIC Card Architecture

Our NGIC card is Java Card. As licensee of Java Card,
we have referenced and followed the Java Card
specification from SUN Microsystems Inc. We have
developed our NGIC card from its Card or Chip
Operating System(COS) to its applications for some

mailto:kyoil}@etri.re.kr

years. Java Card is the smart card to execute Java
application on its platform. As a subset of Java language,
but not an exact one, the Java language for smart card has
the properties adapted to the execution platform with the
insufficient resources of smart card. The architecture of
our card is shown in Fig.1. It consists of some layers to
execute Java Card applications and to support Java Card
Virtual Machine(JCVM) and the data securities. The
memory management module we are to discuss is a
component included in COS level and is named as Page
Manager. The Java Card including a lot of cryptography
modules and Java Card Remote Method
Invocation(JCRMI) module may be general in the world
of smart card to activate its merits such as the dynamic
downloading and deletion of applications and the security
support by applet firewall. Nowadays, we dare to realize
the applications that we couldn’t have sketched owing to
the resource limitation of smart card; the processing
power and the memory capacity closely associated with
the physical chip size of smart card. It results from the
increased processing power with the processing unit more
than 32bit, and the enlarged RAM and EEPROM more
than 4KB and 64KB each. The larger memory Java Smart
Card adopts so as to execute the larger applications on it,
the more necessary it is to manage the memory not to
waste time and memory space.

2.1 Heap in Java Card
We have used a heap structure for memory handling in
our smart card. The whole EEPROM may be divided into
several heaps. The memory allocation and withdrawal is
managed in the heaps. Each heap has a table to maintain
and manage the information of the objects allocated and
freed within it. Memory allocation to some objects and
the withdrawal of them are checked in the table. When
the allocated space is returned as free one, it can be
reused. When the cycles of allocation and withdrawal do
over, there exist some gaps among the adjacent allocated
memory spaces. We name them as heap fragments or
fragments and the process to produce them as heap
fragmentation or fragmentation. To gather and reuse the
fragments, Java Language provides the mechanism of the
garbage collection apart from coalescing the adjacent
available spaces to make a large usable one. But, in case
of Java Card, only the memory coalescence is
recommended and the garbage collection is considered to
gather the spaces not used any more by any objects only
when there is no more memory space to allocate. In Java
Card, the objects do not return or free its memory that
they have occupied spontaneously until it is inevitable to

do. The memory compaction that piles up the unoccupied
spaces to one side and the occupied ones to the other side,
is not supported even in the garbage collection or in other
modules implemented on Java Card 2.2a. The processing
time may be one major factor to avoid the memory
compaction. At most, in memory withdrawal, some
adjacent memory spaces unoccupied may be connected to
one space available to be reused. In brief, Java Card has
the aspect that to call the garbage collection is a special
event that is not included in a part of the general memory
management mechanism.

3 EEPROM As Persistent Memory In
Smart Card
EEPROM has its limit in the number of writes on it. That
is to say, if we write on one spot in EEPROM more than
the cycle of 100000, we can not use the EEPROM any
more[6][7][8]b. And, when we write over two pages in
EEPROM consecutively, we should wait about
10msec[6][7]c before writing to the second page. This
time blocked exists even when writing in the same page,
if the time gap between consecutive writings exceeds
about 15usec[6][7]d. Therefore to minimize this time
blocked, it may be much efficient to handle EEPROM by
the unit of page. Besides, in order to avoid concentrated
writings, it stimulates the balanced uses of EEPROM
memory.

4 Memory Management By Page
Handling Scheme

EEPROM pages for
Memory AllocationThe Structure like

a Circular Queue

Unoccupied pages

Object B

Object A

Fig. 2. The Memory Architecture for the allocation in
EEPROM

a Java Card 2.2 is the latest version published by SUN.
b,c,d The characteristics of EEPROM are similar, although there are
some ranges on the value.

An EEPROM Page

STATE Next Page
OBJECT

IDENTIFICATION

Fig. 3. An EEPROM page to be allocated

The EEPROM memory structure and the memory
management scheme we propose are shown as Fig 2. And
one page structure in our proposal is shown as Fig 3. In
this paper, we assumed the whole EEPROM available to
be allocated dynamically as one heap without having its
nested heaps or other neighbor heaps. But, multiple heaps
may be possible. In that case, each heap is managed by
the unit of page. But, if the heap size is small, our scheme
may not be effective.
The pages available to be allocated are made to a list
named as the free page list and the list is handled as a
kind of queue. The pages occupied by some objects are
also managed as the shape of linked lists, one list per one
object. In our memory management named as the Page
Handling Scheme, all memory allocations for new
objects in EEPROM are initiated with new pages not with
the used pages in that other objects have occupied, but
some space are left. So, it is very simple to free the
memory occupied by an object because the allocated
space initiates from an independent page and ends in
another unrelated page with the spaces for other objects.
Even though there may be some memory fragments
unused, but each size of fragments can’t exceed the size
of one EEPROM page. If the space for an object that
spans several EEPROM pages can’t be obtained because
the pages are not adjacent or because there are several
adjacent pages unoccupied but they are not large enough,
those pages may be useless. But, they can be useful in our
Page Handling scheme only if they are unoccupied pages.
There may be the spaces unavailable to use within pages,
but they are swept away naturally when the allocated
pages are withdrawn. So, the real fragments can be
reduced, and we can even get the memory compaction
effect without another overheads. In our scheme, we
don’t consider the physical position of pages in
EEPROM but take the front and rear relation among the
pages represented by their link into consideration
according to their contents, objects. If we are to delete the
object on EEPROM dynamically and withdraw its
memory, we are only to adjust the pages’ links that have

shown the memory space of the deleted object to the free
page list. The state of each page is recorded in its header,
so it needs not to keep the information for all pages on
another EEPROM space separately. The fields each page
header keeps are “NEXT PAGE”, “OBJECT
IDENTIFICATION” and “STATE”. The field of “NEXT
PAGE” means the page that the current page’s link is
connected to. And, “OBJECT IDENTIFICATION”
shows which object this page belongs to, “STATE” says
whether this page is the front, end or middle area of the
occupied memory space. All the management for pages
including whether they are occupied or not is dependent
on the Page Manager.

4.1 Page Manager
The Page Manager implemented on the COS part in Fig.
1 is the module to handle the pages available to be
allocated and freed on EEPROM. It is irrelevant whether
to manage the objects created with the information table
on EEPROM or on RAM. But, it is useful to get tables
for occupied pages and unoccupied page on RAM for
rapid processing and garbage collection. This information
is small because it is enough to keep only the first pages
for all meaningful areas. Only if we know the start page
of any allocated or unoccupied areas, we can trace the
other pages by their links. After ending one Card
Acceptance Device(CAD) session-the period from when
the card is inserted in the CAD to when the card is
removed from the CAD-, new CAD sessions get to use
the pages used earlier or unused first. It enhances the
memory utilization with the evenly distributed uses. The
relative ages of pages can be judged by the information
on their headers.

4.2 Memory Allocation
The pages on EEPROM do not have their absolute ages.
But, we can know the relative ones by their links. Even
though the information for the pages kept on RAM
disappears due to a sudden power off or card tear, the
relations among the pages can be perceived. If there are
unused pages, they are preferable to be allocated. When
there are only used pages, the first page in the linked lists
for the objects deleted is used first. Each linked list is
differentiated by the field of “OBJECT
IDENTIFICATION”.

4.3 Memory Withdrawal
When the linked lists are withdrawn, the fields of
“OBJECT IDENTIFICATION” on their first pages are
set to NULL. When these pages are reallocated to another

object, they can be differentiated by these NULL values
or by the middle page’s field of “STATE”. If the first
page of the linked list freed has already been used, the
rest pages can be judged by its “STATE” as free pages.
But, the states of the EEPROM pages can be traced more
easily with the help of the information tables for free
pages and allocated pages on RAM. These information
tables are not indispensable because they can be
constructed at anytime with the headers of pages.

5 Garbage Collection
When the garbage collection is called independently, it
checks all allocated pages by objects and collects the
ones unused to add them to the free page list. All
allocated pages are sensed with the objects registered in
the object table by the method of mark and sweep. The
pages unused are put in order by checking whether its
first page’s “OBJECT IDENTIFICATION” is NULL.
Our Page Handling Scheme facilitates the garbage
collection. Only by dint of adjusting the pages’ links and
the field of “OBJECT IDENTIFICATION”, we can reuse
the memory areas cast aside.

6 Simulation

6.1 Comparison of the Best-Fit Algorithm and the
Page Handling Scheme
The representative techniques in memory allocation are
based on the algorithm of Best-Fit, First-Fit and Worst-
Fit. Among them, the Best-Fit algorithm has some
advantages in the aspect of memory utilization. But, if it
is applied to the large memory, it may take much time to
search the best-fit space. So, even though the other
algorithms produce many fragments in memory space to
reduce space utilization, they may be used to shorten the
time to seek the suitable memory fragment to be allocated.
In case of smart card, the memory area to search is small,
the Best-Fit algorithm may be the best among them in the
aspect of space utilization and time consumption if we do
not consider the characteristics of EEPROM. Therefore,
in this section, we compare the case applying our Page
Handling Scheme with the one using the Best-Fit
algorithm in memory allocation and withdrawal and
discuss the efficiency of space and time.

6.2 Assumptions and Environment Settings

To affirm in what aspect our scheme is effective
compared with the Best-Fit algorithm, we prepare several

page sizes for our Page Handling Scheme: 4B, 8B, 16B,
and 32B. These page sizes selected are based on the data
sheets provided by the memory manufactory,
ARTMEL[6][7] . We generated the 3,000 requests for
memory allocation and withdrawal to be used in our
simulation. And, we tried them 10 times. The portions to
be freed in the requests are chosen randomly among the
memory segments occupied by prior requests for
allocation. The memory sizes to be allocated are chosen
in the range from 50B to 2500B in random. We took this
range based on the average size of applets to be
downloaded on smart card and the sizes of the objects to
be created dynamically in our NGIC card. And, the
EEPROM size available to be allocated and freed
dynamically is assumed to be 32KB. We obtained our
simulation results with the establishment that the success
or failure cases in memory allocation when the Best-Fit
algorithm is used are applied to our Page Handling
Scheme in the same way.

Table 1 at Appendix shows the number of successes
and failures in memory allocation and that of memory
withdrawal in the 3000 requests for 10 trials. These data
are the same in our Page Handling Scheme with the page
size of 4B, 8B, 16B and 32B as well as in the Best-Fit
algorithm.

6.3 Simulation Results
We have an intention by the simulation to affirm the
saved number of page transfer in our Page Handling
Scheme compared with in Best-Fit algorithm and the size
distribution of memory fragments showing the memory
utilization.
Table 2 at Appendix shows the memory fragments after
processing the 3000 requests for 10 trials. Because we
pick up the memory size to be allocated randomly, the
fragments in each trial show some different distributions.
But, we can verify that all fragments from the Best-Fit
algorithm are much smaller than the largest one from the
Page Handling Scheme. As the page size goes to be small,
the chances not to reject the request of memory allocation
for some large objects become high. But, as the page size
in our Page Handling Scheme becomes large, the
fragments get not to contribute to the memory utilization
largely. In our Page Handling Scheme, the physical
continuity of memory spaces is not important. Only the
pages freed or allocated are meaningful. So, we can
ensure the larger space available to be allocated in our
Scheme than in the Best-Fit algorithm. And, we can
manage EEPROM more easily by the unit of page. We
allocate rough amount of EEPROM pages not the exact
amount of space, so we need not calculate or know the

exact memory position or address to be allocated. Only to
know the first page number or address will do. And it is
needless to spend much time and processing power to
compact memory fragments. In the Page Handling
Scheme, the major space can be used in new allocation
except the fragments within the last pages in the allocated
memory spaces. Other memory management schemes
including the Best-Fit algorithm, even though they need
compact memory fragments, they can’t afford to do it due
to a lot of overheads especially in smart card. Because the
processing power and resources in smart card are poorer
than most devices.

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10

Trial

P
T
(B

e
s
t-

fi
t)

 -
 P

T
(P

a
g
e
 H

a
n
d
lin

g
)

Page Size 4 Page Size 8 Page Size 16 Page Size 32

Fig. 4. The Difference of Page Transfer

Fig 4 shows the subtraction of the number of page
transfer(PT) in the Page Handling Scheme from that in
the best-fit algorithm for 10 trial. The number of page
transfer is meaningful in that there is the time blocked of
10msec for the consecutive writing spanning two pages.
In our simulation, the page transfer is measured with the
assumption that we write onto the whole allocated
memory segment once. The numbers of page transfers are
related only with the succeeded allocation, not with the
3000 requests. So, if there is more than one writing onto
the allocated area, the difference of page transfers will be
larger. This result arises from the fact that the Best-Fit
algorithm requires more pages than the Page Handling
Scheme in the allocation of the same memory size.

7 Related Works
There was a research to overcome the small memory size
of smart card[2]. To come over the small capacity, it
assumed a virtual memory in off-card part. So, if there
are some requests to ask big memory space, the off-card
memory was utilized and the allocated areas are mapped

onto the on-card part. There were rare the studies on
memory handling scheme in smart card. The memory for
smart card gets better on its size and access way, and its
processing power. It is valuable to think over its structure
and its management scheme especially at the viewpoint
of implementation, because the smart card market is and
will be enlarged and so do the customers’ requests.

8 Conclusion
By using the page characteristic of EEPROM, the
allocated and freed memory area can be managed easily.
Because the state information for each page can be
maintained on RAM it can be very fast to access and use
it. But, this information can be reconstructed at anytime,
there is no burden to worry about its disappearance
against sudden power offs or card tears. The garbage
collection including memory compaction does not require
much time and labor. Also, the possibility to use the
whole EEPROM evenly gets to be high by our scheme.
Our Page Handling Scheme can be applied to other
devices with the memory composed of pages as
EEPROM.

References:
[1] Marcus Oestreicher, Transactions in Java Card, In
15th Annual Computer Security Applications Conference
(ACSAC'99), pp. 291-298. IEEE, 1999.
[2] Clemens H. Cap, Nico Maibaum, Lars Heyden,
Extending the Data Storage Capabilities of a Java-based
Smartcard, Chair for Information and Communication
Services, University of Rostock, Germany, unpublished.
[3] Sun MicroSystems, Inc., Java CardTM 2.1 Application
Programming Interface, Final Revision, June 7, 1999.
[4] Sun Microsystems, Inc., Java CardTM 2.1 Runtime
Environment Specification, Final Revision, June 7, 1999.
[5] Sun Microsystems, Inc., Java CardTM 2.1 Virtual
Machine Specification, Final Revision, June 7, 1999.
[6] Atmel, AT28BV256 Specification,
http://www.atmel.com, 1999.
[7] Atmel, AT28LV010 Specification,
http://www.atmel.com, 1998.
[8] Zhiqun Chen, Java Card Technology for Smart Cards
Addison-Wesley, June 2000.
[9] Marek Rusinkiewicz and Amit Sheth, Specification
and execution of transactional workflows, In W. Kim,
editor, Modern Database Systems : The Object Model,
Interoperability, and Beyond, ACM Press : Cambridge,
Messachussetts, 1994.

http://www.atmel.com/
http://www.atmel.com/

Appendix

Table 1 Simulation Establishment

Trial 1 2 3 4 5 6 7 8 9 10
Free 1443 1447 1440 1482 1478 1479 1456 1459 1478 1444

Allocation Success 804 1029 881 1356 1464 1334 1028 1124 1366 963
Allocation Failure 753 494 676 162 58 187 516 417 156 593

Table 2 Fragment Distribution

Trial Approach Fragments (B)
Best-Fit 20, 42, 61, 65, 69, 85, 111, 118, 126, 131, 159, 672, 1093, 1095, 1209
Page SIZE 4 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4992
Page SIZE 8 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 4896
Page SIZE 16 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 10, 12, 12, 13, 14, 14, 15, 15, 4784 1

Page SIZE 32 1, 2, 2, 2, 2, 4, 4, 5, 5, 5, 7, 7, 9, 10, 10, 10, 12, 13, 14, 14, 15, 16, 16, 17, 17, 17, 19, 19, 19, 20, 20, 21, 21, 21, 22, 22, 22, 22,
23, 24, 24, 26, 28, 31, 4416

Best-Fit 32, 60, 116, 126, 351, 523, 999, 1131, 1276
Page SIZE 4 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4564
Page SIZE 8 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 4496
Page SIZE 16 2, 2, 3, 4, 4, 4, 4, 5, 5, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 12, 13, 13, 13, 13, 14, 14, 15, 4336

2

Page SIZE 32 2, 4, 4, 5, 5, 6, 8, 8, 9, 10, 11, 11, 11, 11, 12, 13, 13, 14, 14, 16, 16, 18, 19, 20, 20, 21, 23, 25, 26, 27, 27, 29, 29, 31, 4096
Best-Fit 9, 18, 32, 35, 54, 82, 120, 184, 220, 356, 358, 492, 553, 738, 828, 919, 1146, 2655
Page SIZE 4 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 8744
Page SIZE 8 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8680
Page SIZE 16 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 6, 7, 7, 7, 7, 8, 8, 8, 10, 11, 12, 13, 13, 13, 13, 13, 13, 14, 14, 15, 8560

3

Page SIZE 32 1, 1, 1, 2, 2, 2, 3, 3, 4, 7, 7, 8, 8, 10, 11, 12, 13, 14, 14, 16, 16, 16, 17, 18, 18, 19, 22, 23, 23, 24, 29, 29, 29, 29, 29, 31, 8288
Best-Fit 25, 132, 135, 190, 580, 659, 1661
Page SIZE 4 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3340
Page SIZE 8 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 3272
Page SIZE 16 2, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 10, 11, 11, 12, 12, 13, 14, 14, 15, 3168

4

Page SIZE 32 2, 4, 4, 5, 6, 6, 7, 7, 9, 10, 11, 12, 14, 14, 16, 16, 19, 20, 21, 22, 22, 25, 25, 26, 27, 28, 29, 31, 2944
Best-Fit 28, 43, 148, 211, 285, 362
Page SIZE 4 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1036
Page SIZE 8 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 976
Page SIZE 16 1, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 8, 9, 9, 10, 10, 10, 11, 12, 12, 13, 13, 13, 14, 14, 14, 15 , 848

5

Page SIZE 32 1, 3, 5, 9, 10, 11, 13, 13, 14, 14, 16, 16, 18, 19, 19, 20, 20, 21, 22, 22, 24, 25, 26, 26, 28, 28, 29, 30, 31, 544
Best-Fit 2, 77, 138, 547, 846, 940, 1350, 1395, 1688, 1766
Page SIZE 4 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 8704
Page SIZE 8 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8648
Page SIZE 16 1, 1, 1, 3, 3, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 13, 14, 14, 15, 15, 15, 8544

6

Page SIZE 32 1, 1, 3, 5, 6, 8, 8, 9, 9, 10, 10, 11, 13, 14, 14, 15, 15, 16, 17, 19, 20, 21, 21, 22, 23, 23, 31, 8384
Best-Fit 19, 27, 51, 90, 138, 242, 292, 331, 342, 361, 361, 623, 643
Page SIZE 4 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3460
Page SIZE 8 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 3360
Page SIZE 16 2, 2, 2, 2, 3, 4, 6, 6, 6, 7, 7, 8, 8, 8, 10, 10, 10, 11, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 15, 31527

Page SIZE 32 2, 3, 6, 6, 7, 7, 10, 10, 12, 12, 13, 13, 13, 13, 14, 15, 15, 15, 18, 18, 18, 20, 22, 24, 24, 24, 26, 27, 28, 29, 29, 29, 29, 29, 30, 31,
31, 2848

Best-Fit 3, 3, 10, 12, 14, 24, 28, 68, 173, 279, 808, 857, 1098, 1178
Page SIZE 4 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4496
Page SIZE 8 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 4424
Page SIZE 16 1, 1, 2, 2, 2, 2, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 11, 11, 12, 13, 14, 14, 14, 15, 15, 4272 8

Page SIZE 32 2, 2, 2, 6, 6, 7, 7, 8, 8, 9, 9, 11, 12, 14, 15, 16, 16, 17, 17, 18, 20, 21, 21, 21, 22, 23, 23, 24, 25, 25, 25, 26, 26, 27, 29, 30, 30,
31, 3904

Best-Fit 12, 65, 78, 85, 92, 168, 232, 249
Page SIZE 4 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 936
Page SIZE 8 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 864
Page SIZE 16 1, 1, 1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 6, 7, 8, 8, 8, 8, 9, 10, 10, 11, 11, 12, 12, 13, 14, 14, 15, 15, 15, 15, 720

9

Page SIZE 32 1, 2, 3, 3, 4, 4, 5, 7, 8, 10, 11, 12, 12, 13, 14, 14, 15, 15, 16, 16, 17, 17, 20, 20, 20, 20, 22, 24, 24, 24, 25, 26, 27, 31, 31, 448
Best-Fit 21, 22, 28, 42, 62, 102, 141, 255, 489, 739, 914, 1180, 1368
Page SIZE 4 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 5312
Page SIZE 8 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 5224
Page SIZE 16 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 5072 10

Page SIZE 32 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 10, 10, 10, 12, 13, 14, 15, 15, 16, 17, 18, 18, 18, 20, 21, 21, 21, 21, 24, 24, 26, 27, 28, 28, 29, 29,
29, 30, 30, 4736

