
Co-Design Architecture for Reconfigurable Assembly Platforms

JOSE L. MARTINEZ LASTRA & REIJO TUOKKO
Institute of Production Engineering, Assembly Automation Lab.

Tampere University of Technology
P.O. Box 589. Tampere. FIN-33101

FINLAND
jose.lastra@tut.fi http://www.pe.tut.fi/aal

Abstract: - This paper proposes a new architecture for distributed assembly platforms that is well suited to hardware-
software codesign. The key qualitative attribute is the reusability of her atomic architectural units called “assembly
actors”(software/hardware devices) due the correlation between actors’ goals and primitive assembly operations. We
describe the main components of the codesign architecture and focus on the interfaces between components. The
collaborative approach is illustrated using two-robotic axis iteration.

Key-Words: - Hardware/Software Reusability; Architecture-based System Development; Service-based Collaboration;
Intelligent Physical Agents; Agent UML; Assembly Automation

1 Introduction
The use of architecture-centric development for large
and complex systems helps to produce better quality
software with a shorter time-to-market [1, 2]. However
those architecture are developed from a software
perspective and do not discuss the hardware related
issues. Concurrent engineering in general and
software/hardware codesign in particular have been
active research fields in the last few years. These trends
light us for discussing in terms of mechatronic
architecture.
 Single universal manipulators (6 DOF robots) can
execute many assembly tasks. However, in some cases
like in the electronics production, multi-robot systems
with less DOFs can accomplish these tasks using
simpler and less expensive mechanisms.
 In this paper, a reference mechatronic architecture
focus software/hardware codesign is proposed. Using
resource-based collaboration between atomic units
(Assembly Actors), the system executed the required
assembly tasks. Our approach is not only targeting a co-
design at the lower level, it is also, and using an
assembly taxonomy, to concurrent design of assembly
systems. The result is an architecture that allows
reconfigurability of her units due the correlation
between individual unit’s goals and assembly system
needs in the form of primitive assembly operations.

1.1 Organization of the paper
Section 2 describes Actor-based Assembly Systems
from an individual perspective emphasizing the linkage
between primitive assembly operations and individual
goals of the architectural units. It also presents system’s

approach by describing the proposed architecture from a
mechatronic point of view.
 Section 3 discusses the interaction issues between
atomic units and presents an approach to collaboration
based on services though the individual resources. At
the end of this section an illustrative example is
presented for the case of two robotic axes.
 Section 4 is dedicated to our initial conclusions and
future research topics.

2 Actor-based Assembly Systems
The Fig.1 shows the Assembly as a specific
manufacturing process. The assembly tasks are
accomplishing by different assembly processes. Finally
each of the assembly processes is composed of a number
of primitive assembly operations
 Assembly actors are the atomic units of the
architecture, as described above they form the basis for
generating actor-vectors corresponding to assembly
processes.

Fig.1. Assembly Taxonomy.

 The actor device is modeled by combination of
resources including: computational, communication,
actuator and sensorial as Fig.2 shows. The resulting
mechatronic device is capable of achieve by use of these
resources an individual-goal (assembly operation),
however is capable of provide services to other
members of the society in order to achieve a cluster- or
society-goal (assembly processes).

2.1 Actor as an Intelligent Physical Agent
As it was mentioned in the previous chapter, one of the
resources used for modeling individual actors is the
computational. In our approach we used an approach to
agent technology for this particular resource. It has been
very much research done in the field of agent
technology in the software and AI communities. Some
of these research results have been used in
manufacturing applications. However, the use of agent
technology was limited to the middle and up levels of
enterprise operations, been the scheduling the main
target for the manufacturing arena. We explore the
limits of agent technology in terms of real-time
execution and communication, incorporating to the
assembly actors with an extra layer of reasoning that the
one provided by traditional logic technology, many
times executed by Programmer Logic Controllers –
PLCs.

Fig. 2. a) Resource-based Actor Model and b) Use Case UML

Diagram representing the Actor Model

 The technology in the field of industrial
communications is changing driven by advances in other
fields like the office automation and multimedia
entertainment. In our case we make an extensive use of
protocols initially developed for other applications like
IEEE-1394 (also known as FireWire) for the
communication of the axis controllers, Ethernet for the
collection of data or even dedicated Ethernet for
commanding I/O modules. This allows having a good
real-time information exchange.
 Probably one of the most exciting behavior
experimented by these mechatronic units is showed
using that interaction between individual and society as
presented by the Fig.2 and explained later in a dedicated
chapter.
2.2 Architecture Description

The development of actor-based assembly systems uses
an architecture-based approach. Thus the creation and
specification of the system architecture is the main
research effort presented in this paper. In this context
specification means prescription of what the pieces
(Actors) of the architecture are (discussed in the
previous chapter) and how are they connected and how
they interact.

Fig.3. Conceptual Model of the ABAS Reference Architecture

following the IEEE Std. 1471-2000 guidelines where the stakeholder
is the atomic unit

 Unified Modeling Language is used as representation
tool for the architecture description and the atomic units
models. As noted in [1], one of the main concerns was
that UML emerged from object-oriented design, so it is
most commonly used to describe things at the detailed
design level.
 The conceptual model of the architecture is presented
in Fig.3. The model follows the recommendations
published by the Institute of Electrical and Electronics
Engineers under the standard IEEE Std. 1471-2000
[3N]. The model supports the architectural description
organized by different views.
 The use of views is widely accepted within the
software community for describing software
architectures. Probably the most representing cases are:
- 4 Views Architecture as appeared in [1]
- 4 + 1 View Model of Architecture by Kruchten [4N]
- 6 View Organization of Models which represent a
systems architectures [5N]
 Currently we concentrate in two of the views as
described by Krunchten 1) Logical View and 2)
Physical View. In addition to these views, and also
proposed by Krunchten, we provide with scenarios. In
the studied domain are representative situations that
should be defined as scenarios by the architect such as
System-Start-Up, System-Shut-Down or System-
Recovery-Fault.
 The Fig.3. represents the dissemination of assembly
process within the architectural units. It must be noted
the use of hierarchical communication networks. This
approach is similar to the one standardized by the

International Electrotechnical Commission under IEC-
61499 [6N].

Fig.3. Assembly Process Distribution through the different Actors.
The figure also shows the deployment of different communication

networks according to the real-time transmission requirements.

3 Service-based Collaboration
Ferber evaluates in [7] different types of situations for
agent interactions according the goals, resources and
skills of the members of multi-agent systems. This
analysis ends in three main categories 1) indifference, 2)
cooperation and 3) antagonism. Our approach belongs to
first and partially to the second categories, what we call
“collaboration”. The Fig.4. shows the taxonomy for
agent interactions.

Fig.4. Taxonomy of ways in which Agents can interact. The paths in
discontinued lines are not contemplated in the proposed Architecture

 The interaction between atomic units is based on
services. It is in this situation where the advantages of
using agent technology in instance of object-oriented
technology are noticed. An object is defined by a certain
number of services (its methods), which it cannot refuse
to carry out if another object asks it to, and the messages
are thus necessarily invocations of methods. However,
agents can receive messages, which are not confined, to
execution requests but can also consist of information or
request for information. The main difference is an agent
can refuse to carry out a given job. This special feature
is extensively used in the request protocol standardized

by the Federation of Intelligent Physical Agents [8] and
showed in Fig.5.

Fig.5. Request Protocol used during the interaction between Actors

following FIPA standard

 Practically the request protocol starts its execution by
the Initiator, which can be any member of the actor
society including the product information traveling in a
bar code label or RF devices. A new software
component is dynamically created called Recruiter. The
mission of Recruiter is to secure the services provided
by actors and actor clusters. The Recruiter will poll the
request for service to all those member of the society
which are potentially capable of provide it. This polling
action is better semi-constructive showed in the Fig.8
representing the example in the next chapter. The
Recruiter forms an entity called :Cluster that have the
goal of keeping together in a collaborative approach
those actors involved in a particular process to be
executed by the society, the :Cluster is also a dynamic
component that will be destroyed once the society is not
demanding any more that process. The Fig.7 provides a
static view of the mechanism.
 Previously was explained one of the possible
scenarios in such actor interaction, in addition the actor
cannot refuse to provide the service (e.g. if the execution
of the service will end in a negative state for his
optimization goals like the case of energy consumption)
or can simply not understand for the service that is
asked (e.g. in case that is not capable of provide a
particular service, this will not be in his list of potentials
and obviously will not understand if is asked)

3.1 Two Robotic Axes Illustration
Precise motion is a necessary feature in the field of
assembly automation. Many assembly processes require

the control of movement either rotational or
transactional.

Fig.6. Actor-based Manipulator

 For illustrating the collaboration of two actors we use
components for the developed actor-based manipulator
in Fig.6. This actor society is capable of performing one
assembly task: Joining using two different assembly
processes: 1) Inserting and 2) Screwing according to the
product needs. For both of the processes we need to
have at least 3 axes (the second process will need an
extra actor for providing one more DOF). The example
of collaboration is related to the axes X and Y of such
society.

Fig.7. Two Robotic Axes Collaboration UML Class Diagram

 The interaction protocol is requesting by the Initiator
the service move-to a new location. Automatically
Recruiter is created, which will poll the service to the
member involved in the society. Some of these members
will not understand the request for service. Those
members that will understand the request will evaluate
internally if they want (or are capable) of provide the
service. In our case axes Xn, Yn and Xn+1 refuse to
provide the service motivated by different reasons (in
this case Xn, Yn and Xn+1 represent other axes in the
society out of our test platform of Fig.6 such as other
devices for manipulating in another stage the product to
be assembled. Recruiter will create Axis Cluster, which

will distribute the correct attributed for performing the
requested services by the actors that were agreed on do
it. Axis Cluster is also a dynamic entity and is created
and destroyed as many times as needed. The Fig.8
illustrates the full sequence.

Fig.8. Sequence UML Diagram for a Generic Service-based

Collaboration for ABAS with redundant Actors

4 Conclusions
A mechatronic architecture has been presented as an
approach to hardware/software co-design of
reconfigurable assembly platforms.
 Once the application domain is clarified in advance,
the architecture description defines hardware/software
elements in this context called assembly actors and how
they interact using a service-based approach. The
mapping of functionality or assembly operations to
architecture elements is also enunciated. These three
arguments provide the “reference” attribute to our
architectural approach.
 The type of reconfigurability is statically since the
assembly actors have not extra mobility features out of
those needed for their assembly goals. The reusability is
also an important qualitative attribute achieved by the
architecture.
 The interaction between actors has been explained
and enunciated with a robotic example. Our approach
uses the agent style defined by the FIPA protocol. We
implement the agent concept using object oriented
programming languages. The model is introduced using

Advanced UML diagrams as proposed by the AUML
initiative.
 Actor uniformity will result in significant
manufacturing costs savings. Since there are few actor
types to choose from, one might expect this architecture
to frequently install excess capability, resulting in higher
costs. The efficiencies inherent in producing a greater
volume of a much simpler product actually result in
considerable cost reduction.

Acknowledgment:
Work supported by the e2Manufacturing industrial
consortium1; the Finnish National Agency of
Technology2; and the Tampere University of
Technology.
An extended version of this paper will appear as [9]

References:
[1] Hofmeister, C.; Nord, R. and Soni, D. Applied

Software Architecture, Addison Wesley, 2000
[2] Bass, L. and Paulish, D. J. Architecture Centric

Software Project Managemenet: A Practical Guide,
Addison Wesley, 2001

 [3] IEEE, Recommended Practice for Architecture
Description of Software-Intensive Systems, Institute
of Electrical and Electronics Engineers, 2000.

[4] Kruchten, B. The 4+1 View Model of Architecture,
IEEE Software Magazine, Vol.12, No.6, 1995, pp.
42-50.

[5] Maier, M. Developments in System Architecting,
Proceedings of the 2nd IEEE International
Conference on Engineering of Complex Computer
Systems, 1996, pp. 139-142.

[6] IEC, Function blocks for industrial-process
measurement and control systems - Part 1:
Architecture, International Electrotechnical
Commission, 2000.

[7] Ferber, J., Multi-Agent Systems –An Introduction to
Distributed Artificial Intelligence, Addison Wesley,
1999

[8] FIPA, Contract Net Interaction Protocol
Specification, Foundation for Intelligent Physical
Agents, 2001.

[9] Lastra, Jose LM, A Mechatronic Reference
Architecture for Reconfigurable Actor-based
Assembly Systems, Tampere University of
Technology, Doctoral Thesis, 2002.

1 e2Manufacturing Industrial Consortium is formed by: ABB
Research Center Oy.; FlexLink Automation Oy.; GWS Systems
Oy.; JOT Automation Oyj.; Nokia Mobile Phones Oyj.; PMJ
Automec Oyj. http://e2manufacturing.net
2 The Finnish National Technology Agency –TEKES funds the
e2Manufacturing research project under the Technology
Programme entitle “ÄLY: Intelligent Automation Systems”
http://www.tekes.fi

