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Abstract: - Generalized algorithms for solving problems of discrete, integer, and Boolean programming are
discussed. These algorithms are associated with the method of normalized functions, are based on a combination
of formal and heuristic procedures, and allow one to obtain quasioptimal solutions after a small number of steps,
that promotes overcoming the NP-completeness of discrete optimization problems. Questions of building so-
called "duplicate" algorithms are considered to improve the quality of discrete optimization problem solutions.
The subsequent development of the algorithms is related to using their modifications to solve optimization
problems under conditions of uncertainty within the framework of a general approach to analyzing models with
fuzzy coefficients in objective functions and constraints. In practical aspect, the algorithms are already being
used to solve diverse problems of power engineering.
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1   Introduction
In the general case, direct determination of discrete
(integer, Boolean) solutions to problems of discrete
(integer, Boolean) nature is necessary. This is
explained by the fact that even though at the cost of
ignoring parameter discreteness, with smoothing of
functions, it is possible to replace an actual objective
function by a convex function defined on a convex
region, with such an approach the danger always
exists that the objective function will be distorted
(with a deviation from the optimum) or that the
constraints will be violated [1]. Besides, the transition
from the discrete model to its convex analog can lead
to considerable "coarsening" the model that often
makes vapid its essence [2]. Thus, the ability to solve
discrete problems by discrete methods also makes it
possible in the course of the solution to consider
detailed situations and reflect individual forms of
initial data reliably, thereby, to obtain solutions
within the framework of more adequate models.
Finally, with orientation to discrete methods it is
possible to pose and solve problems of combinatorial
nature, which had previously not be considered.

Theoretical and experimental evaluations [3,4]
have revealed essential drawbacks of exact methods

of discrete programming. Moreover, estimates of
computational complexity in solving discrete
problems [5] indicate that their NP-completeness
does not permit one to develop general methods with
polynomial dependence on the problem dimension.

Taking the above into account, algorithms of
discrete optimization discussed in the paper are based
on a combination of formal and heuristic procedures.
They are close to the class of greedy methods [6].
Basically, these methods provide the best heuristic
among possible heuristics with a priori estimates and
can be the basis for fully polynomial approximate
approaches [7]. They allow one to obtain
quasioptimal solutions after a small number of steps,
thus overcoming the problem NP-completeness. In
addition, heuristic procedures allow one to consider
the problem specificity. In particular, the algorithms
do not require analytical specification of objective
functions and constraints. Their specification may be
tabular or algorithmic ensuring flexibility and the
possibility to solve complex problems, for which
adequate analytical descriptions are difficult.

In the process of posing and solving a wide range
of problems related to the design and control of
complex systems, one inevitably encounters different
kinds of uncertainty [8]. Its consideration in shaping



the models of complex systems serves as a means for
increasing the adequacy of these models and, as a
result, their credibility and the factual effectiveness
of solutions based on their analysis. Considering this,
the present paper includes an attempt to modify the
generalized algorithms to use them in solving
problems with fuzzy or interval coefficients.

2 Problem Formulation
It is possible to distinguish two classes of models of
discrete optimization. The first class is related to the
general problem of discrete programming, including
the problems of integer, Boolean, and discrete
programming proper. The problems with discrete
variables may be reduced to integer or, in the general
case, Boolean models [1,2]. However, such a
reduction increases the problem dimension as regards
the number of variables as well as constraints [2].

The second class of models is associated with
problems of a combinatorial type. When solving
them, an extremum of the objective function is
defined on a given finite discrete set A . The totality
of objects obtained from A  may be considered as a
combinatorial space D . The problem may be
formulated as a search for a vector ),...,( 00
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from D  or DG �  providing the extremum of the
objective function, i.e., 
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The combinatorial problems are the most difficult
from the computational standpoint [4]. Their solution
is based on finiteness of DG �  and the problem
specificity. Some of them may be reduced to the
Boolean models, sometimes by accepting strong
assumptions, sharp increasing the model dimension,
and losing the possibility of effective considering
combinatorial properties of the problems. Thus, when
solving discrete problems, it is important that their
formulation and corresponding solution algorithms
should exploit those properties and peculiarities of
the problems that promote their effective solution.

Taking the above into account, the desirability of
allowing for constraints on the discreteness of
variables in the form of discrete sequences

iisss rsx
iii

,...,1   ,...,,, ���                   (1)
has been validated in [1,2]; here ,....

ii ss ��  are
characteristics (technical, economic, etc.) required
for constructing the objective functions, constraints,
and their increments that correspond to the sth
standard value of the variable ix

It is expedient to use the sequences (1) because
,...,

ii ss ��  cannot always be fitted closely to

analytical relationships in terms of 
isx , but in (1)

these characteristics may be taken as exact. Besides,
the flexible formulation of the combinatorial
problems is possible on the basis of the sequences (1)
because they can be different for different variables.
Considering this, a maximization problem may be
formulated as follows.

Assume we are given the discrete sequences of
the type (1) (increasing or decreasing, depending on
the problem formulation). From these sequences it is
necessary to choose parameters that the objective

,...),,,...,...,,,( maximize
11 nnni ssssss xxF ����      (2)

is met while satisfying the constraints
,,...),,,...,...,,,(
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The objective function (2) is interpreted as convex

up and the constraints (3) are interpreted as convex
down.

Given the maximization problem (1)-(3), we can
formulate a problem of minimization:

,...),,,...,...,,,( minimize
111 nnn ssssss xxF ����      (4)

subject to the constraints
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The objective function (4) is interpreted as convex

down and the constraints (5) are interpreted as
convex up.

3   Solution Algorithms
Let us consider the Boolean problem of maximizing
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while satisfying the constraints
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where ,0�ic  ni ,...,1�  and ,0�jia  ,...,m,j 1�
,...,ni 1� .

The idea of one of the most popular methods
related to the class of heuristic methods [6,9] may be
illustrated by considering the problem (6), (7) for

1�m . It is possible to assume (without generality
loss) that nixi ,...,1 , �  are arranged as follows:
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It is possible to try to maximize (6) on the basis of
the largest ii ac , taking 11 �x , then 12 �x , and so
on until (7) is observed. Similar methods are called
greedy methods. In spite of their "naivety", in many
cases [7] they represent the best heuristic among
other heuristics with a priory estimates. In particular,
they are the basis for fully polynomial approximate



schemes for solving diverse versions of the problem
(6), (7). However, a range of problems is not
restricted by the case of 1�m . Considering this, we
discuss below ways of constructing algorithms for
the general case ( 1�m ) to solve problems (linear as
well as nonlinear), which can cover not only
Boolean, but integer and discrete variables as well.

When analyzing the model (6), (7) for 1�m ,
maximization is reached by expending only one
resource type. If 1�m , the optimization process is
stopped when a remaining amount of only one of
resources is not sufficient for next incrementing any
of ,ix  ni ,...,1� . This resource is the limiting one.

It is possible to speak about equivalentness of
different types of resources from the standpoint of
cessation of the process of maximizing (6). Thus, it is
expedient to have a single measure for different
resources. This consideration leads to the idea of
normalization [1,10], which may be performed at
each optimization step. For example, the constraints
(7) are reduced to a single arbitrary resource b  as
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where t  is the optimization step number.
Using (9), it is possible to convert the constraints

(7) to equal conditions. For instance, before the first
optimization step we have
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The normalization (9) may also be useful for
reducing the model dimension. If

niqpaa qipi ,...,1   ,   ,)0()0(
��� ,                (11)

the qth constraint is disturbed earlier than the pth
one. Thus, the pth constraint can be eliminated from
consideration (the principle of explicit domination).

The algorithms, which generalize considerations
given above, have been developed to solve the
problems (1)-(3) and (1), (4), (5). The last problem is
more difficult. In the case of maximization we cease
changing the variable ix  when at least one of the
constraints (3) is violated. In minimization the
optimization is completed on any variable when all
constraints (5) are obeyed. Thus, in the maximization
case, there is usually only one "deficient" constraint
during each step requiring particular attention, while
in minimization we have to pay attention to each
constraint because the optimization process cannot be
completed until all constraints (5) have been obeyed.

Taking the above into account, we consider the
algorithm for solving the problem (1), (4), (5).

It is assumed that the constraints (5) are already
normalized
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that permits us to present the algorithm as follows.

1. The components of the constraint increment
vector }{ )(t

iG�  are evaluated
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where )(tJ  is the set of the constraints (5) at the tth
step (for t=1 we have mJj� , mJ  is the initial set of
constraints); )(tI  is the set of variables at the tth step
(for t=1 we have nIi� , nI  is the initial set of
variables); � � � � .01
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2. The components of the increment vector of the
objective function }{ )(t
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4. The index tli �  of the variable to be
incremented is determined from
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5. We recalculate the values of the quantities:
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6. We refine the set � �tJ
� � }   ,0|{= )()( tt

j
t JjbjJ �� .             (20)

7. We make a check for nonemptiness of the set
� �tJ . If � � ,��

tJ  then go to operation 8; otherwise go
to operation 11.



8. We refine the set � �tI
� � � �} ,|{ t
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9. We make a check for nonemptiness of the set
� �tI . If � �

��
tI , then go to operation 1, taking t=t+1;

otherwise go to operation 10.
10. The calculations are completed because the

problem has no solution.
11. The calculations are completed because the

solution is obtained.
The algorithm is directly related to minimizing

the objective function interpreted as convex down.
However, this does not narrow a field of its
applications because prior to using the algorithm it is
possible to carry out simple minimizing the objective
function (4) without considering the constraints (5).

A large body of comparisons of solutions for
diverse types of discrete problems, based on the
paper results and exact methods, shows their
convincing agreement. However, considering
difficulties in predicting a priori effectiveness of the
approximate algorithms, it is expedient to have not
only one, but several algorithms realizing different
strategies. Considering this, so-called "duplicate"
algorithms have been developed on the basis of a
qualitative analysis of the problem statement. One of
them is based on evaluating the components of the
vector }{ )(t

iG�  (operation 1) as follows:
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where � � � � � �ttt
ji JjIig ��� ,,  are calculated as (14).

Am alternative "duplicate" algorithm is associated
with the results of [9] and is based on calculating
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with recalculating � � )( , tt
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The availability of the "duplicate" algorithms can

be considered, in a certain measure, as an assurance
of obtaining optimal solutions. Besides, the analysis
of one and the same problem on the basis of several
algorithms permits one to reveal a series of solutions
of equal worth, that is important as well.

The described results have a high degree of
generality and are used in solving power engineering

problems: optimization in the design and
development (selecting elements of power systems
and subsystems, allocating reactive power sources,
selecting means for increasing reliability, etc.), load
management, and voltage and reactive power control.

However, the discussed algorithms have been
constructed without sufficient formal justifications.
This circumstance, in spite of the considerations
given above, forces to look for additional means for
possible improving the solution performance. As
such a means may serve formulating and solving one
and the same problem within the framework of so-
called mutually interrelated models (1)-(3) and (1),
(4), (5) using the algorithms of maximization and
minimization, respectively. It is natural that a good
agreement of solution results for these interrelated
problems is a convincing indication of the proximity
to the optimum. Using this approach, if we have the
increasing (decreasing) sequences (1) for (1)-(3), the
sequences (1) must be decreasing (increasing) for
(1), (4), (5). Thus, it is possible to solve one and the
same problem from above and from below as well.
This approach is fruitful and also serves for solving
problems with fuzzy (or interval) coefficients.

3   Discrete Optimization Problems
with Fuzzy Coefficients
Numerous optimization problems related to the
design and control of complex system [8,11] may be
formulated as follows.

From the discrete sequences (1) it is necessary to
choose standard parameters that the objective

),...,,,...,...,,,(~ maximize
111 nnn ssssss xxF ����    (25)

is met while satisfying the constraints
 ,~,...),,,...,...,,,(~

111 jssssssj bxxg
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�����  pj ,...,1�  (26)
The objective function (25) and constraint (26)

include fuzzy coefficients, as indicated by the ~
symbol.

A fuzzy analog to the problem (1), (4), (5) may be
presented in the following form:

),...,,,...,...,,,(~ minimize
111 nnn ssssss xxF ����   (27)

subject to the constraints (26).
An approach [8] to handling the constraints (26)

involves approximate replacement of each of the
constraints by a finite set of nonfuzzy constraints.
This allows one to change from (1), (25), (26) or (1),
(27), (26) to (1), (25), (3) or (1), (27), (4) with fuzzy
coefficients in the objective function alone. The
solution, for example, of (1), (27), (4) is possible on
the basis of modification of the algorithm of
minimization or "duplicate" algorithms. In particular,



the expressions (15) and (16) are to be related to
algebraic operations on fuzzy numbers [12].

The comparison (17) (in essence, the comparison
of fuzzy numbers � � � �tt

i IiV �  ,~ ) can be done using the
idea of a membership function of a generalized
preference relation [13].

If the membership functions corresponding to the
values 1

~V  and 2
~V  are )( 1v�  and )( 2v� , the quantity

)}(),({ 21 vv ���  is the degree )( 1v� )( 2v� , while
})(),({ 12 vv ���  is the degree )( 2v� )( 1v� . Then, if

V  is the numerical axis on which the values of
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i IiV �  ,~  are plotted,  the membership functions of
the generalized preference relations take the forms:
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which agree with some important choice functions
(for example, fuzzy number ranking indices of Baas-
Kwakernaak, Baldwin-Guild, and one of the indices
of Dubois-Prade) [8].

On the basis of the relation between (28) and (29)
it is possible to judge the preference of any of the
alternatives. Although this approach seems justified
[14], experience shows that in many cases )( 1v�  and

)( 2v�  correspond to flat fuzzy numbers [12]. In view
of this, using (28) and (29), we can say that the
alternatives 1

~V  and 2
~V  are indistinguishable if

)}(),({)}(),({ 1221 vvvv ������� .           (30)
In such situations the discussed algorithms do not

allow one to obtain unique solutions: they "stop"
when conditions like (30) arise. This also occurs with
modifications of other optimization methods because
combination of the uncertainty and relative stability
of optimal solutions produces the decision
uncertainty regions. In this connection, other choice
functions (for example, [15]) may be used as
additional means for the ranking of fuzzy numbers.
However, these indices occasionally result in
choices, which appear inconsistent with intuition, and
their application does not permit one to close the
question of building an order on a set of fuzzy
numbers [8,11]. There is another approach, which is
better validated for the practice of decision making.
It is associated with transition to multicriteria
selection of alternatives because the use of additional
criteria (of quantitative as well as qualitative
character) serves as convincing means to contract the
decision uncertainty regions.

Before starting to discuss multicriteria decision
making in a fuzzy environment, it is necessary to

note that the maximal contraction of the decision
uncertainty region may be obtained by formulating
and solving one and the same problem within the
framework of mutually interrelated models [8,11]:

(a) the model of maximization (25) with the
constraints (26) approximated by (3) with the
decreasing (increasing) discrete sequences (1);

(b) the model of minimization (27) with the
constraints (26) approximated by (4) with the
increasing (decreasing) discrete sequences (1).

Assume we are given a set X of alternatives (from
the decision uncertainty region) that are to be
examined by q criteria. That is, indices ),(~

kp XF
qp ,...,1� , XX k �  with the membership functions
)]([ kp Xf� , XXqp k ��  ,,...,1  are to be compared

to make a selection among alternatives. The problem
is presented by < RX  , >, where },...,{ 1 qRRR �  is a
vector fuzzy preference relation. Thus, we have
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where ),( lkR XX
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�  is a membership function of
fuzzy preference relation.

The relations qpRp ,...,1 , �  may be constructed
on the basis of XXqpXf kkp ���  ,,...,1 )],([  with
the use of expressions [11] similar to (28) and (29).

If we have a single fuzzy preference relation, it
can be put in correspondence [13] with a strict fuzzy
preference relation with
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The membership function of a subset of
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When R is a vector fuzzy preference relation,
(31)-(33) are applicable to use two techniques of
multicriteria selection of alternatives [8,11]. The first
technique is related to constructing and analyzing the
membership functions of a subset of nondominated
alternatives with simultaneous considering all
criteria. The second technique is based on a
lexicographic procedure that consists in step by step
comparison of alternatives, as a result of which we
can obtain a sequence qXXX ,...,, 21  so that

qXXXX ���� ...21 .
Finally, it is possible to propose the third approach

to contract the decision uncertainty region. Using
(32), we can build the membership functions of a



subset of nondominated alternatives )( k
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permits one to obtain nX  in accordance with (33).
Thus, three techniques for selecting alternatives

can be applied. They may lead to different solutions
and this is natural: the choice of the technique is a
prerogative of the decision making person.

The described results are of a universal character
and can be applied to the design and control of
systems and processes of different nature as well as
enhancement of corresponding CAD/CAM systems
and intelligent decision support systems. These results
are used in solving power engineering problems:
optimization in the design and development (selecting
elements of power systems and subsystems and means
for increasing reliability), load management, and
energy market planning.

4    Conclusion
In this paper, generalized algorithms for solving
problems of discrete, integer, and Boolean
programming have been described. The algorithms are
associated with the method of normalized functions,
are based on a combination of formal and heuristic
procedures, and allow one to obtain quasioptimal
solutions after a small number of steps, that promotes
overcoming the NP-completeness of the problems.
Questions of constructing "duplicate" algorithms have
been considered to improve the problem solution
quality. The subsequent development of the
algorithms is related to using their modifications to
solve problems under conditions of uncertainty within
the framework of a general approach to analyzing
models with fuzzy coefficients. In practical aspect, the
results of the paper are already being used to solve
problems of power engineering.
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