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Abstract: In the paper constrained controllability of distributed parameter dynamical system defined in infinite-
dimensional domain is considered. Using spectral theory of unbounded differential operators, necessary and sufficient 
conditions constrained controllability are formulated and proved. Remarks and comments on the relationships 
between different kinds of controllability are also given. Simple numerical examples of controllable systems are 
presented. 
 
Key Words: Distributed parameter systems. Linear systems. Controllability. Linear operators. 
 
1 Introduction*  

                                                

 
Controllability is one of the fundamental concept in 
mathematical control theory [1], [3], [6]. Roughly 
speaking, controllability generally means, that it is 
possible to steer dynamical system from an arbitrary 
initial state to an arbitrary final state using the set of 
admissible controls. In literature there are many 
different definitions of controllability which depend on 
class of system [1], [3], [6], [9], [11], [13], [15]. 
 Problems of controllability for linear control 
systems defined in infinite-dimensional Banach spaces, 
have attracted a good deal of interest over the past 20 
years. For infinite dimensional dynamical systems it is 
necessary to distinguish between the notions of 
approximate and exact controllability [1], [3], [6], [11], 
[12], [13], [14] and [15]. It follows directly from the 
fact, that in infinite-dimensional spaces there exist linear 
subspaces which are not closed.  
 Most of the literature in this direction so far has 
been concerned, however, with unconstrained 
controllability, and little is known for the case when the 
control is restricted to take on values in a preassigned 
subset of the control space. Until now, scare attention 
has been paid to the important case where the control of 
a system are nonnegative. In this case controllability is 
possible only if the system is oscillating in some sense.  
 The present paper is devoted to a study of 
controllability for positivity-preserving dynamical 
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systems [9] if the controls are taken to be positive. In 
analogy to the usual definition of controllability it is 
possible to introduce the concept of positive 
controllability for positive systems [9]. 
 The present paper is devoted to a study of 
constrained approximate controllability for linear 
infinite-dimensional distributed parameter dynamical 
systems. For such dynamical systems direct verification 
of constrained approximate controllability is rather 
difficult and complicated [8]. Therefore, we shall 
concentrate on special case, when the values of controls 
are taken from a given closed convex cone [10]. 

 

2 System  Description 

Let us consider distributed parameter dynamical system 
described by the following partial differential equation 
defined on infinite domain [2], [7] 
 
vt(z,t) =  Akv(z,t) + b1(z)u1(t) + b2(z)u2(t)         (1) 
 
with initial condition 
 
v(z,0) ∈ L2(R)                       (2) 
 
where  z∈R and t ≥ 0 , b1(z) ∈ L2(R) , b2(z) ∈ L2(R) , 
and k is an integer number. In the next section we shall 
also consider dynamical system of the form (2.1) but 
with only one scalar control (i.e. b2(z) = 0). 



 In the sequel it is generally assumed, that the 
admissible controls u1(t)∈L2([0,t1],R+), and 
u2(t)∈L2([0,t1],R+). 
 
Ak : D(Ak) → L2(R) is a linear unbounded differential 
operator defined as follows 
 
D(Ak) = {v(z) ∈ L2(R) : Akv(z) ∈L2(R)}                 (3) 
 
Akv(z) = vzz(z) + (k - z2)v(z)                     (4) 
 
 Now, for the convenience, let us collect some 
well known facts about the operator Ak [2], [6], [7], . 
Operator Ak is selfadjoint with compact resolvent and is 
an infinitesimal generator of an analytic semigroup of 
linear bounded operators  Sk(t) : L2(R) → L2(R) , for 
t≥0. Moreover, operator Ak has only pure discrete point 
spectrum  σ(Ak) = {skn}, where the eigenvalues : 
 
skn = -2n + k -1 , for n = 0,1,2,...  
 
are all of multiplicity one.  
 
The corresponding eigenfunctions  
 
gn(z)=(2nn!)-0,5(π)-0,25exp(-0,5z2)Hn(z)     n=0,1,2,... 
 
where  
 
Hn(z) = (-1)nexp(z2)dn/dzn(exp(-z2)) 
 
are Hermite's polynomials, and form a complete 
ortonormal system in a separable Hibert space L2(R)=V. 
 It is well known [2], [3], [7], that abstract 
ordinary differential equation (1) with initial conditions 
v(z,0) ∈ D(Ak) has for each t1 > 0 an unique solution  
v(t;v(z,0),u) such that v(t) ∈ D(Ak) for t∈(0,t1]. 
 
 Definition 2.1 . [1], [3], [6]. Dynamical system 
(1) is said to be approximately controllable with 
nonnegative controls if for any initial condition  
v(z,0)∈V, any given final condition  vf ∈ V and each 
positive real number ε there exist a finite time   t1 < ∞   
(depending  generally on  v(z,0)  and  vf  )  and 
admissible controls  u1(t) ∈ L2([0,t1],R+), and u2(t) ∈ 
L2([0,t1],R+)  such that  
v t v z u u v f V
( ; ( , ), , )1 1 20 − ≤ ε   

                
 The above notion of approximate controllability 
is defined in the sense that we want to reach a dense 
subspace of the entire state space. However, in many 

instances for systems with restrictions on the controls, it 
is known that all states are contained in a closed positive 
cone V+ of the state space. In this case approximate 
controllability in the sense of the above definition is 
impossible but it is interesting to know conditions under 
which the reachable states are dense in V+. This 
observation leads to the concept of so-called positive 
approximate controllability. 
 
 Definition 2.2. [9] Dynamical system (1) is said 
to be positively approximately controllable if for any 
initial condition  v(z,0)∈V+ , any given final condition  
vf∈V+ and each positive real number ε there exist a 
finite time   t1 < ∞   (depending  generally on  v(z,0)  
and  vf  )  and admissible controls  u1(t) ∈ L2([0,t1],R+), 
and u2(t) ∈ L2([0,t1],R+)  such that  
v t v z u u v f V
( ; ( , ), , )1 1 20 − ≤ ε   

                
 From the above definitions directly follows, that 
approximate controllability with nonnegative controls  
always implies positive approximate controllability. 
 
 
3 Constrained  Controllability 
Now, let us formulate several results concerning 
constrained approximate controllability of dynamical 
system (1). 
 
 Theorem 3.1. Dynamical system (1) is 
approximately controllable with nonnegative controls if 
and only if 
b1nb2n < 0   for every  n=0,1,2,...         (5) 
where 

b b z g z b z g z dzjn j n V j n= =
−∞

+∞

∫( ), ( ) ( ) ( ) 0≠  

 for j=1,2 and every   n=0,1,2,... 
  
Proof. Proof of theorem is based on the results given in 
the papers [5], [6] and [10] concerning constrained 
approximate controllability. First of all, let us observe 
that dynamical system (1) satisfies all the assumptions 
stated in the paper [10]. Therefore, by theorem in [10] 
the following statement is valid: dynamical system (1)  
approximately controllable with nonnegative controls if 
and only if  Fourier coefficients of the functions b1(z) 
and b2(z) corresponding to each eigenfunctions gn(z) 
have different signs. Therefore our theorem follows.. 
 



 Corollary 3.1. [2] Dynamical system (1) is 
approximately controllable (with unconstrained 
controls) if and only if 
b2

1n  +  b2
2n ≠ 0   for every  n=0,1,2,...                    (6) 

 
 In other words dynamical system (1) is 
approximately controllable (with unconstrained 
controls) if and only if  b1n ≠ 0  or  b2n ≠ 0  for every n = 
0,1,2,...  Therefore, approximate controllability with 
unconstrained controls may occur even for one scalar 
controls, which is impossible for approximate 
controllability with nonnegative controls. 
 
 Corollary 3.2. [2] Let b2(z) = 0. Then 
dynamical system (1) is approximately controllable 
(with unconstrained controls) if and only if 
b1n  ≠ 0   for every  n=0,1,2,...                     (7) 
 
 In the next part of this section it is assumed that 
b2(z) = 0 , i.e. there is only one positive scalar control 
u(t)∈R+. 
  
 Theorem 3.2. Dynamical system (1) is not 
positively approximately controllable. 
 
 Proof. In order to prove this theorem it is 
sufficient to point the final state vf ∈ V+ which cannot 
be reached approximately from a given initial state v0 ∈ 
V+. Let us take v0 = 0. Without loss of generality we 
may assume that bn ≠ 0 for all n = 0,1.2.,,, If it is not this 
case, then dynamical system (2.1) is not approximately 
controllable in any sense. Let us choose the final state vf 
as follows 
vf (z) = zexp(-0,5z2)       for z >0   and    
vf = 0  for z < 0   if  b2 < 0 
vf (z) = -zexp(-0,5z2)         for z < 0 and    
vf = 0  for z > 0   if  b2 > 0 
 
 Hence, taking into account the form of 
eigenfunction g2(z) we conclude, that Fourier coefficient 
vf2 has different sign than b2. Therefore, the Fourier 
coefficient of the solution v2(t) has different sign than 
vf2 for all t>0. Hence the final state vf cannot be reached 
from zero initial state. 

 In practice, it is often not so important to reach 
approximately the entire positive cone V+ of the state 
space V. Sometimes it suffices to reach approximately 
by nonnegative controls only particular positive states in 
the positive cone V+. This observation leads directly to 
the concept of so-called positive stationary pairs.  
  

 Definition 3.3. [9] A pair {vs,us}∈V+×R+ is said 
to a positive stationary pair for dynamical system (2.1) 
if  Akvs + b1us = 0. 
 
 Let us observe, that if {vs,us} is a positive 
stationary pair, then v(z,t) = vs is a nonzero constant 
solution of (2.1) for u(t) = us ,  and  v(z,0) = vs. 
Moreover, there exists strong connection between 
existence of positive stationary pairs and stability of 
dynamical system (2.1). 
 
 Theorem 3.3. Let -2n+k-1 ≠ 0. Then to each us 
∈ R+ there exists exactly one vs∈V+ such that {vs,us}is a 
positive stationary pair. 
 
 Proof. If  -2n+k-1 ≠ 0 then  zero is not an 
eigenvalue of the operator Ak and therefore belongs to 
the resolvent set, i.e. 0∈ρ(Ak). Hence, -(Ak)-1 is a 
positive operator [9]. For all us∈R+ we therefore obtain 
that {-(Ak)-1bus , us} is a positive stationary pair. On the 
other hand, 0∈ρ(Ak) implies that for each us∈R+, there 
exists at most one vs such that {vs , us} is a positive 
stationary pair. 
 
 
4. EXAMPLE. 
 
 Let us consider dynamical system (2.1) with 
two nonnegative controls and the following functions 
  
b1(z) = - exp(2z - 0,5z2 -1) ∈ L2(R) 
b2(z) = exp(z - 0,5z2) ∈ L2(R) 
 Using the complete ortonormal system gn(z) we 
can express functions b1(z) and b2(z) as follows 
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where 
b1n = -(π)0,2520,5n(n!)-0,5 < 0 , for every n=0,1,2,... 
Moreover, 
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where  
b2n = (2nn!)-0,5(πe)0,25 > 0 , for every n=0,1,2,... 
 Since inequality (3.1) is satisfied, than by 
Theorem 3.1 dynamical system is approximately 
controllable with nonnegative control. 
 
5 Conclusion 
In the paper approximate constrained  controllability for 
linear infinite dimensional dynamial system has been 
considered. Using methods of functional analysis, 
specially theory of linear unbounded differential 
operators, necessary and sufficient conditions for 
approximate controllability have been formulated and 
proved. The obtained results can be extended to other 
types of infinite dimensional distributed parameter 
dynamical systems described by linear partial 
differential equations. 
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