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Abstract: - We establish the localization and the structure of the spectrum of normal vibrations described by
systems of partial differential equations modelling small displacements of stratified fluid in the homogeneous
gravity field. We dso compare the spectral properties of gravitational and rotational operators. The similarity of
the esential spectrum for stratified and rotational flows corresponds to the analogy in the propagation of
gravitational and Coriolis waves in viscous fluids, whose consideration includes the study of qualitative
properties of the solutions, such as existence, uniqueness smoothness asymptotics, etc.
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1 Introduction

Let us consider a PDE system which describes small
displacements of an exporentially stratified viscous
fluid in the gravity field
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together with the PDE system describing the
rotational movement of aviscous fluid
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Here xOQOR® , t20, u(xt)=(u,u,,u,)is
the velocity field, p(x,t) isthe scalar field of the
dynamic pressure , p(x,t) isthe dynamic density,
@=(00,w), &=(001),and p.,u, g, N, @

are positive nstants. The equations (1) are deduced
under the assumption that the function of stationary

distribution of density is performed by p.e ™. The
system (2) describes the rotation over the vertical
axis.

The systems (1) and (2) were studied from diff erent
angles, some of the results may be foundin [2]- [5].

(2)

In [2] we prove that the esentia spectrum of normal
vibrations for the operators generated by (2) with
u =0 ,istheinterval of therea axis [— w,w] , and
we aso consgtruct an explicit example of non-
uniqueness for the spectral parameter belonging to
the esential spedrum.

In [3] the following result is gated:

Theorem 1.

The solution of a Cauchy problem for (2) has the
following asymptotic property : the velocity field

5
decreeses as (}t/)/z , t — oo, where the decay of

3
order (}t/)/z is due to the viscosity and the influence

of the Coriolisterm is}t/ .

In [4], [5], [7] we prove that for the system (1) the
digtribution d energy is the same. Namely, from the
point of view of t-asymptotics, the dfects of
gravitation and rotation are analogous in viscous
fluids:

Theorem 2.

Let us consider the system (1) in the semi-space

Rf ={(X1’X2’X3): (Xl,Xz)D RZ,X3 > O} ,
together with the boundary conditions
ou,

=u =0. (3
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Then, for certain initial conditions, the solution of
(2),(3) has the foll owing asymptotic representation :



u(x,t)=@?)§)z\lo+oa_zﬁ I

Let us observe that the mentioned analogy between
gravitational and rotational wavesin the dissipation
of energy, leads to the corresponding analogy in
spectral properties.

Indeed, for the systems (1) and (2) with =0 , the
singular solutions have the following forms,
respectively :
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Summing up all these results, it seems appropriate to
express the conjecture that the operators generated by
the system (1) should posess spectral properties,
analogous to the system (2) , namely, the essential
spectrum of such operators should be the interval
[-N,N] . In this paper we prove that this conjectureis
true.

2 Problem Formulation
Let us consider the system
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Differentiating the second equation of (4) with
respect tot , we obtain
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For the system (4), let us consider the boundary value
problem

, (5)

where

ulh =0 , (6)
where n isthe vector of the external normal for the

bounded domain Q 0 R®.
Let G(Q) be the space of potential fieldsin L,(Q) :

G,(Q)={u0L,(Q):u=0¢;¢ OW(Q)}.

0
Furthermore, let J (Q) be the space of solenoidal
fields:

S(Q)={UD01(Q):divu=O,uDh\aQ =0},
Finally, let us introduce the space JZ(Q) asa

closure of S(Q) in the norm of LZ(Q) :

It can be shown ([1]), that L, (Q) permits the
following orthogonal decomposition :
L,(Q)=13.(@)06,(Q).
Let P be the operator of the orthogonal projection of
LZ(Q) onto JZ(Q). Now, let us define the operator
B:
Bu = P{u3%}

with the domain

D(B) = J,(Q) .
Thus, the system (5) transforms into
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For the system (7) we consider the problem of normal
vibrations

u(x,t) = v(x)e™ . (8)
Therefore, we can finaly write the system (7) as
A >v-N?Bv=0
- (9)

[

v03,(Q)
Our aim isto investigate the spectrum of the operator
B . From the physical point of view, the separation of
variables (8) serves as atool to establish the
possihility to represent every non-stationery process
described by (4) as alinear superposition of the
normal vibrations. The knowledge of the spectrum of
the normal vibrations, its structure and localization,
may be very useful for studying the stability of the
flows. Finally, the spectrum of operator B is
important in the investigation of weakly non-linear
flows, since the bifurcation points where the small
non-linear solutions arise, belong to the spectrum of
linear normal vibrations, i.e., to the spectrum of
operator B .

- (7)

3 Problem Solution
Lemma 3.

B isa positive self-adjoint operator in J, (Q) .

Proof. Evidently, |Bu], @ S ol (@) andthus




Bt
Let u,v0J,(Q) . Then,
(0,8v) = (u, P{vse,}) = (Pu.{v,e;}) =
:£u3v3dx = (Bu,v).

Since B is bourded, its slf-adjointnessfollows from
its ymmetry.
Finaly,

(a, Bu):J’\ua(xfdxz 0,

which concludes the prodf.
Lemma 4.

The kernel of B is the subspace H,(Q) which
consists of al elements of J,(Q) with trivial third
comporent.

Proof. Obviously, HJ(Q)D Ker(B) . Suppose that

uOKer(B) anduJH, (Q) Then, we obtain that
(Uv BU):J:Us(XXde:O , which implies u; =0 and

thus H , (Q) = Ker(B).
Corallary.

A =0 isaneigenvaue of infinite multiplicity for B.
Its correspording eigenvectors compose dl the

subspace H (Q) .
Now, let us consider the same separation d variables
for the function P(x,t) :
P(xt) =q(x)e”" , qOW;(Q) .
If g(x) isasolution of the system
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then q(X) satisfiesthe egquation
Aq = —div(N 2v3t=.‘3) :
which implies
div(N?v,e, +0q)=0.
Thus, the projection ogerator B ohtains its explicit
form as

., (10)

N*Bv = N?v,g, +[q.

We shall establish now the structure of the spectrum
of the operator B.

Theorem 5.

The eseential spectrum of the operator N°Bisthe
interval of the real axis [— N, N]. Moreover, the
points 0,+N are @genvalues of infinite multiplicity.
Proof. First we recall that the essential spectrumis
compaosed of the paints belonging to the continuous
spectrum, limit points of the point spectrum and the
eigenvalues of infinite multiplicity ([8]). We shall use
the following criterion which is attributed to Weyl
([8]): A necessary and sufficient condition that ared
finitevalue U be apoint of the essential spectrum of
a self-adjoint operator B isthat there exist a sequence
of elements x, (1 D(B) such that

x[=1,x - 0 weaklyand
X =1 %, y
IB-p)x,) -0

Let usdenote A*> = , 4 # 0 . Then, the system
(10) takes the matrix form
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One @n easily see that the main symbal of the

differential operator in (12) is
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detl(¢)= ul- rig* + N7g[?) |
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we may conclude that the operator N?B is not
eliptic in sense of Doudis-Nirenberg if and orly if
pOlo,N?| . (e)) .
Now, let us consider [, D(O,NZ) and choose a
vector & such that

-~ 1,E* +NZE* =0,

Therefore, there exists

n={unsnsn,) o 0 #£0 , 1<i<4,

f\,to.



suchthat L(E) =0 :
E%uonﬁflm =0
0" Mo, +6,11, =0
g_uo + N2)73 +&qn, =0

i+ &, + &, =0
Solving (13) with recpect to n , we obtain
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Weobservethat n, #0,1<i<4.
Now, let us choose a function

w,(x)oCs (@), [wi(x)x=1.

[X<1

Wefix X, JQ and define

0, (9= K, (=) k=12...

One can easily see that
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where the constants C' # 0 do not depend onk .
We define the Weyl sequence

v = (v v gt)
asfollows:

0 ik3<x,&> 1 0 .
v (x)=n, "™ Evk—ikaf_ aq):_kEJ:Lzs
] ]

ik3<x,&>
K
X &>=xE + X6, + %€, , k=12,....
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Now we have to verify that the sequence 7* defined
above, satisfies the conditions (11). Note that a Weyl
sequence is an explicit solution of a system of partial
differential equations.

“(X)=-" g (16)

For the functions (16), the weak convergence to zero
isevident. Let usintroduce the matrix differential

operator M :
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Thus, the system (12) can be expressed as
M-pu V=0,

where
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Let us prove that
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f :(M —p0|3)7k -
We have
aq~

£, = =Vt o (= pon, +En, )%

ik3<x,&> i ik3<x,E> dl,Uk D’lorll C
X(/j - _TK +1[

€ € o He TE
By virtue of (13), (14) we have

— Holly +El’74 =0.

Therefore,
f7 . <ConstTk® -~ Oask -,
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Anaogously,
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From (13),(14) it follows that

— Holl, +Ez’74 =0.

Thus,
<Const(k® - 0ask - o .
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In the similar way,
(— Uy + N2)73 +&,n, =0 implies




7 . <Constk™ - 0ask - e,
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Anadogoudly, from <¢&,n>=0 weobtain

lim/f2 =0
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To verify that the norms HV K are

L (@)
separated from zero, it is sufficient to prove
that at least the norms of one comporent of
thefield V* are separated from zero as
K - o .
Let us consider the two summands

Vi =V Y

where

v =1, elk(wak (X) ,

K — ik<x,E>i7 awk(x) -
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However,
N = @7 = -
=In,/#0.

In this way, we have proved that the
sequence (16) satisfies Weyl condtions (11).
Since the essential spectrum is closed, the
points 1 =0, N? , belongto it. Returning
to theinitial spectral parameter A , we
obtain that the esentia spectrum of the
operator N?B istheinterval [- N, N].
We have seenthat A = Ois an eigenvalue of
infinite multiplicity . The same statement
holds for the points A =+N .

Indeed, for A =N the system (10)
transformsinto

0 n2 oq/ _
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It can be eaily seen that any function d the
type (0,0,6(x,,%,)0), ¢ OCS , satisfies

the last system.
Thus, theorem 5 is proved.

4 Conclusion

The remarkable aalogy  of gravitational and
rotational waves discused above @uld serve & an
example of how mathematical description of physicd
forces of different origin may help us to understand
the unity of the Nature's manifestations.
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