Testing with Model Checker: Insuring Fault Visibility
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Abstract: - To detect a fault in software, a test case execution must enable an intermediate error to propagate to
the output. We describe two specification-based mutation testing methods that use a model checker to guarantee
propagation of faults to the visible outputs. We evaluate the methods empirically and show that they are better
than the previous “direct reflection” approach.
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1 Introduction paths. Conceptually, a model checker visits all reach-

Specification-based testing is a black-box technique@ble states and verifies that the temporal logic expres-
that is, it assumes that internal states of the progran$i0n5 are satisfied over all paths. If an expression is
implementing the specification are unknown, hence"0t satisfied, the model checker attempts to generate a
failures can only be detected in external responsescounterexample in the form of a sequence of states.
Although model checkers can be used to generate A common logic for model checking is the
tests [3, 5], existing methods allow the model checkerdranching-time Computation Tree Logic (CTL) [12],
to choose tests that do not cause faults to propagate t#hich extends propositional logic with temporal op-
the program’s output. Further details, references angrators. For example, a CTL formulaG safe
examples can be found in [13]. means that all reachable states are safe Adhd(re-
Goradia [9] presents typical cases that prevent fluest -> AX response)  means thatarequestis

fault in an intermediate state from propagating to2lways followed by a response on the next step.
the output. For example, in a relational expres- We use SMV, a CTL symbolic model checker [12].

sion such astate var > z , anincorrect value of In SMV, a specification consists of one or more mod-
state_var may still yield the correct Boolean value ules. One module, nameahain, is the top level
of the relational expression. module in SMV. Fig. 1 is an SMV example derived

In this paper, we present two new approaches using’om [14]. We refer to this example throughout the pa-
model checker to guarantee that tests cause detectate!- Variablesl, b, andf are inputse anda are inter-
output failures. We briefly introduce model checking, mediate variables. The statememt(e) := 0;

test generation using model checkers, and mutation acs€tse to O initially. The next value o is 1 if the
equacy criterion here. guardf = On is true, otherwise it i©). The output

is the variableout , which may beLow or High . Its
value isHigh if a is greater than 10, otherwise it is

1.1 Model Checking Low. TheSPECclause states thatfifis On, it is possi-

Model checking is a formal technique based on stat o
exploration. Input to a model checker has two parts%Ie to get to some state wheoat is High . We often

One part is a state machine defined in terms of vari-drOp the keywordPECwhen clear from the context.
ables, initial values for the variables, environmental

assumptions, and a description of the conditions unl.2 Generating Software Tests

der which variables may change value. The other parModel checking is being applied to test generation and

is temporal logic expressions over states and executiotest coverage evaluation [3, 5]. In both uses, one first



MODULE main Some mutation operators are replacing a variable with

VAR another variable, replacing an integer variableith
d: 0..5; b: 0..11; a + 1, replacing a conjunction with a disjunction.
f. {On, Off};

Any particular mutant might be consistent or incon-
sistent with the state machine [2]. A consistent mutant
is a temporal logic formula that is true over all possible

out: {Low, High};
a. 0..16; e: 0..1;

AS.S.IGN executions defined by the state machine. Such mutants
init(e) = 0; are not useful and may be discarded. A mutation ad-
next(e) := <.:asle equate test set should distinguish between the correct

f : OT‘ L behavior and the behavior of inconsistent mutants.
1 h O The rest of the paper is organized as follows. Sec-
es?f’ N ] tion 2 briefly reviews similar previous work and the ex-

a .—._e d+b; isting specification-based mutation method. Section 3
out == casg _— presents our two approaches: in-line expansion and
a > 10 ) High; state machine duplication (SM duplication). Section 4
esalC'- Low; uses the example in Fig. 1 to compare approaches. In

the second part of the section, we evaluate the effec-
tiveness of the approaches at detecting seeded faults
Fig. 1: An SMV Example in a C program implementing a portion ®CAS Our
conclusions are in Section 5.

SPEC AG (f = On -> EF out = High)

chooses a test criterion [8], that is, decides on a philos-
ophy about what properties of a specification must be2 Existing Approaches
exercised to constitute a thorough test. _ _ _ _

One applies the chosen test criterion to the specifiFirst, some terminology. #aultis a defect in the code,
cation to derive test requirements, i.e., a set of individ-nformally, a bug. A (visibleailure is an unaccept-
ual properties to be tested. To use a model checkePPI€ result of execution on some test data; in other
these requirements must be represented as tempor}é(lords’ it is observable incorrect beha_mor._ A failure
logic formulas [2]. To generate tests, the test crite-IS caused by one or more faults.pbtential failure or
rion is applied to yield negative requirements, that is,potentlal error, is an intermediate incorrect result.
requirements that are considered satisfied if the corre-
sponding temporal logic formulas are inconsistentwith2_1 Related Work

the state machine. For instance, if the criterion is statel.here is an extensive body of research in program-

Cﬁyera_tge, the _neq[a;uvel reqwre_metntts e;re F[hat the M ased testing that studied conditions for detecting
chine 1S neverin state 2, neverin state =, etc. a fault from external responses [15, 9]. The RE-

. Whgn the m0d6| checker finds that a requwemgnt 'S AY model [15] defines the revealing conditions un-
inconsistent, it produces a counterexample. Again, "Njer which a fault is detected. First, a potential er-

the case of state coverage, the counterexamples Wou%r originates at the smallest subexpression containing

havehsttl)rlnulus ﬂ:ﬁt thtS tr:etzhmachlr;]g |n'sta';etl gf 'tt'sthe fault. Then the potential error propagates through
reachable), another to put the machine in state 2, e C'computations and information flow until a failure is re-

The set of counterexamples is reduced, or Win-eq1aq Test data can be selected to satisfy revealing
nowed, by eliminating duplicates and those that ar€.jtions. In our work we rely on the model checker
prefixes of other, longer counterexamples. to achieve error propagation

Program mutation testing in its original
1.3 Specification Mutation Criterion formulation—often referred to as strong mutation—
Mutation adequacy [6] is a test criterion that naturally requires the output of a mutant to differ from the
yields negative requirements. The specification-basedriginal. Weak mutation [10] only requires that the
mutation analysis scheme in [3] applies mutation oper-execution of a component of the mutant and the orig-
ators to the state machine or the temporal logic expresinal produce different values. Since in this paper we
sions yielding a set of faulty, or mutant, expressions.deal with visible failures, we require strong mutation.



AG (f = On > AX e = 1) AG (f=On -> AX(d+b>10 -> out=High))

AG (I(f = On) > AX e = 0) AG (fl=On -> AX(b>10 -> out=High))
AG (a=e*d + b AG (f=On -> AX(d+b<=10 -> out=Low))
AG (a > 10 -> out = High) AG (fl=0On -> AX(b<=10 -> out=Low))

AG (a <= 10 -> out = Low
( ) Fig. 3: Applying In-line Expansion

Fig. 2: Applying Direct Reflection

in-line copies of their transition relations. This substi-

Fabbri et. al. [7] categorized mutation operatorstution is performed repeatedly until the formulas are
for different components of Statecharts and providedcomprised exclusively of input and output variables.
strategies to abstract and incrementally test the comFig. 3 contains formulas derived from the statements in

ponents. Fig. 1 using in-line expansion method. Since only in-
puts and outputs appear, the model checker finds coun-
2.2 Direct Reflection terexamples that affect the outputs. As in direct reflec-

The test criterion we concentrate on in this paper istion. all mutants can be checked against the original
specification-based mutation adequacy. It is imple-State machine in a single run. o .

mented by mutating temporal logic formulas. These If there are conditional expressions in the transi-
formulas may be derived from the state machine by dion relations for intermediate variables, this approach

mechanical process calleeflection[2, 1]. leads to an exponential increase in the number or size
Fig. 2 contains formulas derived from the assign—Of logical formulas: different paths must be specified
ment statements in Fig. 1. For instance, tret explicitly. The example in Fig. 1 has two conditional

clause for the variable in Fig. 1 is reflected into statements, each with two branches, for a total of four

the first two formulas. The formulas directly reflect POSSible paths, so there are four formulas in Fig. 3.

the state machine transition relation; we refer to this

method adirect Reflectiorto differentiate it fromthe 3.2 State Machine (SM) Duplication

In-line expansiorapproach which we describe in Sec- The rest of Section 3 deals with the other approach:

tion 3.1. duplicating the state machine. Suppose the model
For each mutant, the model checker finds a counchecker compares the external behavior of the origi-

terexample that leads to a potential failure if possible.nal and mutated state machines. Any counterexamples

However, there is no guarantee that the potential fail-produced must exhibit failures, that is, inputs must be

ure will propagate to a visible output. Consider a mu-chosen to manifest differences in the outputs. To facil-

tant of the third formula in Fig. 2: itate this comparison, we begin by duplicating the state
machine and insure that the duplicate always takes the
AG (@ =e*(d+ 1) + Db (1) same transition as the original. Then we can mutate

the duplicate to implement the mutation test criterion.
More formally, let SM be the description of the
original state machine. L&tM, be a duplicate ob M
containing a mutation.SM and SM, have separate
sets of outputs. We combine the two machines into
3  Two New Approaches a single state machingM+. We then assert that the

] ) _ values of the outputs o§ M and SM, are identical
In this section we present two new approaches Wh'd'bverSMJr. If SM, has an observable fault, the model

use a model checker to produce counterexamples thaecker will produce a counterexample leading to the
cause faults to be visible. state where5 M/ and.S M, differ in an output value.

From the counterexample, we can construct a test
3.1 In-line Expansion case containing values for inputs and the expected val-
In this approach, only reflections of the transition re- ues for the outputs of the original state machisi@/.
lation for output variables are generated and considif the specification allows nondeterministic behavior,
ered for mutation. In these reflected temporal logicthe expected outputs might not be adequate as an ora-
formulas, any intermediate variables are replaced wittcle. Nevertheless, the tests are expected to cause some

Choosingp = 0,d = 0, andf = On shows an in-
consistency in an intermediate varialae but not in
the output variableut . Such a test is of little value.



MODULE original(d, b, f)
VAR

out: {Low, High};

a. 0..16; e: 0..1;
ASSIGN
... same transitions as in Fig. 1
MODULE duplicate(d, b, f)

. Ssame as original, to be mutated
MODULE main
VAR

d: 0..5; b: 0..11;

f. {On, Off};

good : original(d, b, f);

mutant : duplicate(d, b, f);
SPEC AG (good.out = mutant.out)

Fig. 4: A Duplication Example

faulty implementation to exhibit failures.

3.3 Handling Nondeterminism

If there are any nondeterministic transitions in the orig-
inal state machine§ M andSM,; embedded ir6 M+

are allowed to make different choices. For example
the statemenvar = {1, 2}; assignsvar the
value of 1 or 2.

When a variable is assigned a set of values, all pos-

2

sible values are explored independently of each othe
If SM is duplicated naively, SMV could provide a
counterexample that chooses one value of a variabl
in SM and another value of the corresponding vari-
able inS My, that is, the “difference” arises from acci-
dental differences or differences in execution, not from
semantic differences. We can for§é&/ and S\, to
make the same choices by declaring a new global vari
able for each nondeterministic choice. We modify both
SM and SM, to choose depending on this common
global variable.

While this method is general, it is excessive for vari-
ables without explicit transitions, such as inputs. We
can simply move their declarations to thain mod-
ule and pass them t®)/ and.SM,; as parameters.

(SM and SMy, respectively) in the newnain , and
pass inputs as parameters. The CTL formula asserts
that outputs of the original and mutant modules are al-
ways the same.

Assignment statements in tdeplicate  module
from Fig. 4 are candidates for mutation. Some muta-
tions may result in a semantically invalid SMV model.
Two cases are common. First, a mutation operator re-
placing one variable with another may generate a mu-
tant containing a circular dependency. Our tools use
SMV’s built-in analysis to automatically remove such
mutants from further consideration. Second, the value
of an expression on the right hand side of an assign-
ment in the mutant may be outside of the range of the
variable on the left hand side. Consider a mutant of an
assignment for variabla in Fig. 1.

a=e*(d+1) +b )

We change the declaration®in the mutant to expand
its range when needed.

The example only shows synchronous composition
of modules. In case of interleaving, introduced by
the keywordprocess in SMV, special care must be

taken to ensure that the processes of original and dupli-

cate machines follow each other in an orderly fashion.

.5 Sharing Independent Variables

Some parts of the model may not depend on the vari-
gble affected by a particular mutation. Strictly speak-
Ing, for any particular mutation, we need only dupli-
cate the variable whose assignment is being mutated
and any dependent variables. Dependency analysis can
stop at output variables. Such dependency can be de-
termined using slicing [16]. If the model has many

modules, only the module with the mutation and any
dependent modules need to be duplicated.

4 Comparison of Approaches

We performed experiments to compare the three ap-
proaches. First, we apply direct reflection, in-line ex-
pansion and SM duplication to the example in Fig. 1

and compare them by measuring the tests generated for
3.4 An lllustrative Example each approach against the other methods. Second, we
Consider the sample model in Fig. 1. As Fig. 4 illus- compare their effectiveness for detecting seeded faults
trates, we renammain to original  , move decla-  in an implementation of a small portion BCAS
rations of input variables into the nemvain module,

instantiate theriginal ~ andduplicate  modules 4.1  Specification-based Coverage
UIf the original state machine description has more than onel Table 1, “Mutants” is the total number of syntacti-
cally valid mutants, including consistent and duplicate

module, all of them must be renamed for duplication.



Method | Mutants UIMs UTs out is Low in the original state machine, bat is
Direct 91 21 9 1% 14 10 = 11 andout is High in the mutant ma-
SM Dupl. 28 21 7 chine.
In-line 128 17 10 Direct reflection method produces this counterex-
ample to detect the corresponding mutant, formula (1),
Table 1: Number of Mutants and Tests. Section 2.2:
Coverage Metric L
Method | Direct SM Dupl. In-line d B 0’_b = 0 f = Off,
Direct 100%  90%  76% ]‘: ; Ofr]lj
SM Dupl. || 100% 100% 88% ’
In-line 100%  100%  100% At the last step, the value of the intermediate variable,

a, is 0, which is inconsistent with the mutant formula.
However, whera is either O or 1put is Low. Hence

_ _ _ the test will detect the mutant only if intermediate vari-
mutants. “UIMs” is the number of valid, behaviorally gples are visible.

unique, inconsistent mutants. In other words, this ex-
cludes all consistent mutants and all but one copy of

inconsistent mutants which are semantic duplicates ofc")'z Ef;fgcttlver;ess tlrr: Detegtlngf lf:alljtlts.
other mutants. “UTs” is the number of unique coun- urgoal|s toreguce the number ot faufts in programs.

terexamples or tests after duplicates and prefixes OTQerfefo;e,t Wf_ evalua(';e ;hfe eltifef:tlveness” %f tthe rrlmeIh
longer counterexamples are removed. 0ds Tor detecling seeded Taulls in a small but realistic

A method can serve both for generation of testsProgram- Thg S.UbJeCt program IS a portion TTAS
and as a metric for evaluation of existing tests._a'rcraﬂ collision avoidance. It is a part of a set of

Specification-based mutation coverage metric was inPrograms that comes originally from [11].
troduced in [2]. We evaluate a methdd using a The program consists of 9 procedures and 135 non-

coverage metric as follows. We generate mutants blank n.on-comment lines of C code. There are 12 in-
using method”, but only count unigue, inconsistent put varlaples and one OUtPUt varla_ble. The program
mutants. LetN be the number of these mutants. We COMeS with 39 faulty versions derived by manually

turn the unique counterexamples generatedbinto seeding realistic faults. 26 versions have single muta-
constrained finite state machines (CFSMs) represemt-'ons"lthe fSt involve either multiple changes or more
ing individual execution sequences of the state maS°™P e)E)IC anges. » and *UTs" h h

chine [1], then use SMV to find which mutants from " Table 3, Mutants“ and 'UTs” have the same
C are inconsistent withiflled by) at least one CFSM. Meaning asin Table 1. “Time” is the time (in seconds)
Let % be the number of mutants killed. The coverage'€duired to generate the tests on a P_en%mnh.? ?HZ

is k/N. A method gets 100% coverage when evalu-~'C With 1 GB of RAM running the Linux OS. “Cov-

ated against itself as a metric. Table 2 presents cros&rage” is Fh_e number of faulty versions detected l:_)y the
coverage of the three methods. method divided by the total number of faulty versions.

SM duplication method performs better than directWe used NIST's Test Asssta'\nt for Objects (TAO) [4]
reflection: it kills 100% of direct reflection mutants, to turn the counterexamples into concrete test cases.

while direct reflection kills only 90% of SM duplicati- ~ 1aple 3 shows that SM duplication and in-line ex-
on mutants. The following example helps explain why, P2Nsion approaches detect 100% of faulty versions

SM duplication method produces this counterexam—Wh”e direct reflection detects only 59% of the faults.

ple to detect the mutant statement (2), Section 3.4: We attribute the magnitude of the difference to a rela-
’ tively large intermediate state of the program.

Table 2: Cross-Scoring of Methods.

d=20 b =0 f=0ff The in-line expansion method produced by far the
f = On; largest number of mutants and test cases of the three
b = 10; f = Off; methods. The SM duplication method generated the

r§_mallest number of mutants and test cases, yet it is as

Each execution step appears on a separate line. Va ) . ) ) )
P &pp P gffectlve as the in-line expansion method in detecting

ables not reported are unchanged from the previou
step. At the last stepa is1 0 + 10 = 10 and 2pentium is a registered trademark of Intel Corporation.




Method | Mutants UTs| Time | Coverage
Direct 948 83| 35 59%
SM Dupl. 464 52 9 100%
In-line 3062 139| 19 100%

Table 3: Effectiveness in Detecting Seeded Faults

seeded faults. The SM duplication method took con-
siderably longer due to the overhead of starting SMV

for every mutant.

5 Conclusion
We presented two new methods, in-line expansion [6]

and state machine (SM) duplication, that use a model
checker to choose tests which ensure fault propagation
to visible outputs. We compared these methods and
the previous direct reflection method based on “cross- [7
scoring”. In-line expansion and SM duplication meth-

ods got better coverage than direct reflection.

The in-line expansion method is not as useful in
practice since it quickly increases the size and number
of logic formulas. The SM duplication method dupli-

(3]

[4]

[5]

(8]

cates the state machine thus increasing the size of the

state space. The running example is tiny andiiGAS
specification is relatively small, so the limits of scala-
bility have not been addressed. Dependency analysis

by slicing is one way to improve scalability.
Our experiments suggest that the SM duplication[lo]

and in-line expansion methods are much more effec-
tive than direct reflection for generating black-box

[9]

tests. To our knowledge, SM duplication is the first 11]

method that relies on a model checker in order to auto-
matically generate tests that guarantee fault propaga-

tion to the outputs.
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