
Parallel Genetic Algorithms Applied to
Damping Controllers Tuning on a Linux Cluster of PCs

CARMEN L. T. BORGES ENRIQUE C. VIVEROS GLAUCO N. TARANTO

Department of Electrical Engineering
Federal University of Rio de Janeiro

PO Box 68516, 21945 – 970
BRAZIL

carmen@dee.ufrj.br

Abstract: - The coordinated tuning of power system stabilizers (PSS) consists of an optimization problem where
the objective function is to maximize system damping. Since conventional optimization methods tend to obtain a
local optimum instead of a global one, the application of Genetic Algorithms (GA) to this problem has been
considered. However, the computational effort required by the GA approach is very high and may become
prohibitive for large-scale systems. This paper presents the implementation of two categories of Parallel Genetic
Algorithms (PGA) applied to the PSS tuning problem, namely: master-slave and multi-population. In the master-
slave PGA, the evaluation of the many chromosomes within a sole population is performed in parallel, whereas
in the multi-population PGA, many populations are evaluated concurrently on different processors. Different
communication topologies, migration rates and substitution strategies have been exploited in the multi-
population PGA in order to evaluate the parallel speedup. The parallel platform utilized is a Linux cluster of PCs
composed of 24 microcomputers interconnected by a switched Fast-Ethernet network. The results obtained show
high speedup and good parallel efficiency on actual power system models.

Key-Words: - Power System Stabilizers (PSS), Parallel Genetic Algorithms (PGA), Cluster Computing, Master-
Slave PGA, Multi-Population PGA.

1 Introduction
An Electrical Power System (EPS) is frequently
submitted to non-predicted disturbances that modify
its operation condition. Since the EPS components do
not have linear behavior, its final state is highly
dependent on the initial conditions prior to the
disturbance and the characteristics of the disturbance
itself. In the case of small disturbances, like variation
in load demand, linear models may approximately
predict the EPS behavior.
Power System Stabilizers (PSS) are controllers
designed to enhance the so-called small-signal
stability of EPS, by damping electromechanical
oscillations. There is a myriad of methods for PSS
tuning, especially for the case when one PSS at a time
is tuned for one operating condition. However, one
hardly finds procedures for coordinated tuning of PSS
when various operating conditions are to be taken
into consideration during the tuning process.
The problem of coordinated tuning of PSS can be
setup in the form of an optimization problem, whose
objective is to maximize the minimum system
damping for the various operating conditions taken
into consideration. The design of multiple power
system controllers requires that several specifications
be accomplished in order to ensure the system

operation with adequate margins for a certain number
of operating conditions. The large number of
controlled devices in modern power systems,
associated with the increased utilization of existing
equipment, calls for a more rigorous and systematic
decentralized control design procedure.
The efficiency of Genetic Algorithms (GA) when
applied to the coordinated PSS tuning problem is
demonstrated and detailed in [1]. However, GA may
require high computation effort when searching for
optimal solution for large-scale EPS. One way to
speedup the computation requirements is to use
parallel processing. This paper presents several
parallel GA implementations on a cluster of PCs. The
implementations exploit the impact of
communication topologies and migration strategies
on the performance of the parallel GA.

2 Problem Formulation
Power system damping controllers are usually
designed to operate on a decentralized way. Input
signals from remote sites are considered not reliable
enough and avoided. Considering the performance of
the control system for several different operating
conditions ensures robustness of the controllers.
Tuning of power system damping controllers

typically uses a small-signal model represented by the
well-known state space equations [2]:

)()()(
)()()(

.

tDutCxty
tButAxtx

+=
+= (1)

where x is the vector of the state variables, such as
the machine speeds, machine angles and fluxes; u is
the vector of the input variables, such as control
signals; y is the vector of the measured variables,
such as bus voltage and machine speed; A is the
power system state matrix; B is the input matrix; C
is the output matrix; and D is the feedforward
matrix. In the frequency domain, the transfer function
associated with (1) is given by:

DBAsICsP +−= −1)()((2)

where the poles of)(sP correspond to the
controllable and observable eigenvalues of matrix A .
Let)(sPk , mk , ,2 ,1 L= , in Figure 1, represent the
set Ω of selected power system operating conditions
and)(sPSS be a diagonal transfer function matrix
with p individual controllers. The decentralized
control design requires a control law

ω=)(sPSSVPSS such that the closed-loop system is
stable and, if possible, has a minimum desirable
damping ratio minζ in all m operating conditions.

Figure 1: Closed-Loop Setup

For each one of the p controllers, it is assumed a
classical control structure with the dynamic model
consisting of a constant gain, a washout stage, and a

thl lead-lag stage as follows:
l

ii

i

i

w
w

i
s

s

sT
sT

KsPSS

+

+
×

+
=

αω

ω
α

11

1

)1(
)(

)(

pi , 2, ,1 L= (3)

From the viewpoint of a washout function, the precise
value of the associated time constant wT is not
critical. The main consideration is that it should be

small enough such that stabilizing signals at the
frequencies of interest will be relatively unaffected.
For this reason, wT is considered known. Therefore,

iK , iα and iω , pi , 2, ,1 L= , are the parameters
that should be determined by the tuning procedure.
From Figure 1 it is obtained the closed-loop state
matrix (Acl, where Acl ∈ ℜn+3p), which represents the
linearized system including the tuned PSS, for each
of the m system operating point. The optimization
process objective is to obtain the PSS parameters that
maximize the minimum damping value (ζ j) for all
system operating points, as shown in (4).

∑ ∑
=

+

=

ζ=

m

i

pn

j
jMaxF

1

3

1

)((4)

3 Genetic Algorithm Application
The search and optimization techniques based on
Genetic Algorithms simulate the natural process of
evolution of species, where the best fitted individuals
have higher probability of propagating their genes
along successive generations via cross-over between
their genes [3]. The search mechanisms of GA are
simple but powerful for complex function
optimization. At the beginning of the search there is a
highly random population with great diversity and
low average fitness. Successive application of genetic
operators conduce the search towards optimal
solution, first exploring all search space and them
concentrating on the neighborhood of good solutions.
The main genetic operators are the Selection, the
Cross-over and the Mutation Operators. The
Selection Operator is applied over each generation in
order to choose the best fitted chromosomes. The
Cross-over Operator combines two selected
chromosomes to generate other two to be included in
a new generation. The Mutation Operator produces
random changes on the chromosomes in order to
maintain the diversity of the population.
In this work it has been implemented a classical GA,
where each individual is represented by a data
structure composed of a chromosome and a fitness
function value. The chromosome is composed by the
PSS parameters to be adjusted while the fitness
function is related to the system damping calculated
for all considered operating conditions. It has been
used the real codification for the chromosome, where
the variables are represented by their numerical real
values. The size of the chromosome is equal to three
times the number of PSS to be tuned.
The Selection Operator is the so-called Tournament,
with two chromosomes. In this type of selection, two

Vref
Pk(s)

PSS(s)

+

+
ω

VPSS

chromosomes are randomly chosen from the
population and the one with higher fitness is selected
to breed new chromosomes.
At the beginning of the optimization process, N
chromosomes are randomly generated and the
diagonal PSS(s) transfer matrix is calculated. Given
PSS(s), the closed-loop system is formed as shown in
Figure 1. The system damping coefficients are
obtained from the closed-loop system eigenvalues,
which are calculated by the QR method [4]. So, N QR
solutions must be calculated in each generation for
each operating condition m. The fitness value for
each chromosome is based on the minimum damping
obtained from the closed-loop system considering all
operation points, as shown below:

where β0, β1, ..., βk and ζ 0, ζ 1, ..., ζ min are positive
real pre-defined numbers.
Figure 2 shows the scheme of PSS tuning by the GA.

4 Parallel Solution
The sequential GA (SGA) described in the previous
section has been applied to the coordinated tuning of
PSS problem and turned out to be a promising
method for the robust coordinated tuning of PSS [1].
However, the SGA requires very long computational
time to obtain good solutions, what may become
prohibitive for large-scale EPS. One way to reduce
the solution process time requirement is to use
parallel processing, in particular Parallel Genetic
Algorithms (PGA). Two different strategies for
parallelizing the GA have been tested: Master-Slave
PGA and Multi-population PGA.

4.1 Master-Slave PGA
Most of the processing time required for the solution
of the problem described is spent by the closed-loop
system eigenvalues calculation by the QR method.
Therefore, the most natural solution to reduce the
computational time required by the GA is to
parallelize the fitness function evaluation in a master-
slave model [5], here called PGA_MS.
In PGA_MS, the initial population is generated with
N chromosomes. Then, the population is divided into
P groups of chromosomes, where P indicates the
number of available processors. Each one of those
groups is formed by nc chromosomes (P

Nnc =), so

it is convenient to chose N as a multiple of P. Then,
P-1 groups will be transmitted to the slave processors
in order to evaluate the fitness of the nc
chromosomes. The master also evaluates the fitness
of the chromosomes assigned to itself, in this case the
first group of chromosomes.

Fitness Damping Range

0.1 If any (ζ j) i ≤ ζ 0

β0 If all (ζ j) i > ζ 0 and If any (ζ j) i ≤ ζ 1

: :

βk If all (ζ j) i > ζ k−1 and If any (ζ j) i ≤ ζ min

F If all (ζ j) i ≥ ζ min

0.1 < β0 < β1 < β2 < L < β k < F

ζ 0 < ζ 1 < ζ 2 < L < ζ k−1 < ζ min

K1 K2 α1 ω1 ω2 … αp Kp ωp α2 Chromosome j
j = 1, 2, ..., N

Initialization

V ref P k (s)

PSS (s)

+

+

ω

V
PSS

Obtain:
ζ i [i = 1, 2, ..., m×(n+3p)]

Fitness Evaluation
based in ζmin

 Genetic Algorithm
 - Apply GA operators

n - Obtain new chromossomes

ζ i → damping of eigenvalue i.

Figure 2: The GA Role

After each slave has concluded its computation, they
send to the master the results of the fitness evaluation
they have performed. The master then applies the
genetic operators to the chromosomes of the
population to obtain a new generation based on the
fitness values calculated in parallel. This process
continues until the maximum number of generations
is reached. In PGA_MS and in SGA, the genetic
operators are applied to the same population, what
means that the same optimal solution is obtained
sequentially and in parallel if the random number
generator algorithm uses the same seed.

4.2 Multi-Population PGA
In the multi-population PGA implementation,
different populations are allocated to different
processors in parallel. The initial populations are
created by randomly generating their chromosomes
using different seeds for the random number
generator algorithm in each processor. The seed
calculated for each population is obtained by the
following equation:

1+
=

OP
seed

seed M
OP (5)

In (5), seedM means the seed supplied by the user for
processor 0 and seedOP is the value of the seed
calculated in the other processors as a function of the
processor rank (OP = 1, 2, ... , P – 1). The size of the
population on each processor is equal to the total
number of individuals N divided by the number of
processors P.
In the multi-population PGA, after a fixed number of
generations, the populations interchange a certain
number of individuals in a process called Migration
[6]. The migration operator establishes the
communication and integration strategy among the
populations. The new parameters introduced by the
migration operator are [7]:
- Migration interval − It establishes the number of
generations between successive migrations.
- Migration rate − It indicates the number of
individuals to be communicated to the other
populations at each migration.
- Individuals' Selection Strategy − It establishes the
rules for choosing the individuals that will migrate to
other populations. In the present work, the
individuals that have higher fitness are chosen to
migrate from one population to the others.
- Reception Strategy − It establishes the rules for
incorporating the individuals migrated from other
populations into the population that receives them.
In the migration process, if the individuals are
transmitted from one processor to all the others, it is

said that the connectivity is dense, otherwise it is said
that the connectivity is sparse.
The communication cost in Multi-Population PGA
with dense connectivity may be very high since each
processor communicates with all other available
processors. This means that the time spent in
communication tends to increase proportionally with
the number of processors. For that reason a Multi-
Population PGA with sparse connectivity has been
implemented in this work, where each processor
maintains communication with only two other
processors, despite of the number of available
processors. Thus, the time spent in communication
remains constant even if the number of processors is
increased.
The multi-population PGA algorithm has been
implemented using synchronous communication, as
well as the master-slave PGA. The reasons for
applying synchronous communication are that each
processor executes the same algorithm, the number of
chromosomes assigned to each processor is the same
and finally, the characteristics of the processors that
compose the cluster are the same, as will be seen in
the next section.

5 Experimental Results
5.1 Cluster of PCs
The high-performance cluster used as parallel
platform is a dedicated PC Cluster composed of 24
Intel Pentium III 500 MHz personal computers with
512 MBytes of memory each, interconnected by a
switched Fast-Ethernet network of 100 Mbits per
second bandwith. The cluster is based on Linux
operating system and uses MPICH implementation of
MPI as message passing system [8]. All
implementations were based in C programming
language.

5.2 Power System Model
The power system model used to test the algorithms
was the New England system described in [9], which
contains 39 buses and 10 generators. In this system
there are 9 PSS to be simultaneously tuned for 10
different operation conditions varying over the
topology of the system, demanded load level, etc.

5.3 GA Parameters
Each chromosome is composed of 27 genes, since
there are 9 PSS in the system with 3 unknown
parameters each. The dimension of the open-loop
state matrix A related to equation (1) is 48, which is
equal to the number of state variables. The closed-
loop state matrix related to Figure 1 has 75 states.

For each algorithm, a global population of 120
individuals was considered (N = 120). With the
purpose of increasing the convergence speed, 4
individuals that represent stable solutions for the
system are included in the initial population and the
rest of the population is generated randomly.
The same probabilities of applying the genetic
operators (Cross-over and Mutation), as well as the
same types of Selection, Cross-Over and Mutation,
were used in the sequential and in the parallel
implementations. The parameters used in the GA are:
- Coding Type: Real
- Selection Type: Tournament (2 Individuals)
- Cross-Over Type: One point cross-over
- Cross-Over Probability: 0.8
- Mutation Type: Constant
- Mutation Probability: 0.1
For the Multi-population PGA, it has been chosen a
migration interval of 10 generations, following the
suggestions made in [6,7]. The performance of this
algorithm was also tested for two migration rates (1
and 3 individuals). The reception strategy used were:
Substitution Strategy, in which the best individual
received from other population substitutes the worst
individual of the population than receives it, and
Extended Population Strategy, in which the
individuals received from other populations are added
to the population that receives them, forming an
extended population for application of the Selection
operator, but then maintaining the original population
size throughout the generations.

5.4 Results Analysis
Table 1 shows the experimental results for the
sequential GA (SGA) and the master-slave PGA
(PGA_MS), where tmean indicates the computation
time calculated by the mean of 3 different runs, SP
represents the speedup calculated for p processors
and E(%) represents the respective parallel efficiency.
The maximum fitness value of fmax = 591.56 has been
obtained to all these trials, meaning that a minimum
of more than 15% damping is achieved in all 10
operating conditions with the PSS tuned by the
algorithm.

Table 1: Results for SGA and PGA_MS
Sequential (SGA)

P tmean
1 18min80s
 Master-Slave PGA (PGA_MS)
P tmean SP E
8 2min25s 7.82 97.75 %
15 1min17s 14.55 97.00 %
24 49s 23.07 96.12 %

It can be observed from Table 1 that a considerable
reduction in computational time is achieved when
applied the PGA_MS algorithm. It can also be
observed that the PGA_MS algorithm is very
efficient, with an efficiency higher than 96% on 24
processors of the cluster.
Table 2 shows the experimental results for the multi-
population PGA algorithm using dense connectivity
(PGA_MD) and Extended Population reception
strategy. It can be observed from Table 2 that
implementations with larger migration rate are
slightly less efficient. The reason is that larger
migration rate increases the communication time due
to the larger number of individuals transmitted
between the populations, making the total
computational time increase. This influence tends to
be more significant when larger clusters are used.

Table 2: Results for PGA_MD
 Migration Rate = 1
P tmean SP E
8 2min22s 7.98 99.75%
15 1min19s 14.30 95.33%
24 49.83s 22.69 94.57%
 Migration Rate = 3
8 2min23s 7.90 98.75%
15 1min20s 14.26 95.07%
24 50.13s 22.56 94.00%

The fitness values obtained by the multi-population
PGA (fmax = 597.50) were higher than those obtained
by SGA and PGA_MS, which represents an
improvement in the optimal solution. Moreover,
implementations with larger migration rate produced
solutions with higher fitness values. The reason is the
increase in the diversity of the search process caused
by a larger number of good individuals received from
other populations. However, this higher fitness value
corresponds to the same minimum damping of 15 %.
In terms of efficiency, PGA_MD achieved more than
94% on 24 processors, what can also be considered a
very good result. The implemented algorithms also
presented good scalability and promising
performance is expected in a cluster with even higher
number of processors. Another test that is being done
in continuation to this work is to use a larger actual
power system model and verify the algorithm
performance.
The speedup obtained by the parallel algorithms is
almost linear, what means that the total processing
time decreases in an almost linear proportion to the
number of processors. Figures 3 shows the speedup
curve for parallel algorithms PGA_MS and
PGA_MD on the cluster.

It was also analyzed the influence of the reception
strategy and the connectivity on 8 processors of the
cluster. The results are shown on Table 3 for the
multi-population PGA algorithm with connectivity 2
(PGA_M2) and migration rate = 3.

Table 3: Results for PGA_M2
 Reception Strategy = Substitution
P tmean fmax E
8 2min22s 593.10 99.20%
 Reception Strategy = Extended Population
8 2min23s 598.40 99.00%

It can be observed from Table 3 that the fitness value
is higher when multi-population PGA uses the
extended population as reception strategy. The reason
is that the selection operator is applied on the
extended population, which contains its own good
individuals and the good individuals received from
the other populations. It can also be observed that a
more sparse connectivity tends to improve the
algorithm performance. However, this effect is not
significant on 8 processors and is being confirmed on
all 24 processors of the cluster. It should be
mentioned that the efficiency was calculated using
the processing time (sequential and parallel) in
seconds and in the tables tmean has been approximated
to minutes.

6 Conclusion
Sequential GA has demonstrated to be an adequate
method for coordinated tuning of power systems
stabilizers. However, its computational time may
become prohibitive for application in large power
system models.
Master-slave parallel GA reduces the computational
time considerably, and calculates exactly the same
fitness value obtained by SGA. Multi-population
parallel GA, on the other side, not only reduces the
computational time but also has higher probability of
finding solutions with better fitness values.
For larger and more complex power systems, the
multi-population PGA algorithm that uses
substitution as the reception strategy tends to be
faster due to the minimum number of data
interchanged and individuals involved in the cross-
over process. However, multi-population PGA that
used extended population as the reception strategy
was the one that found highest fitness value. This is
due to the increase in population diversity, what
guarantees a better search and optimization
performance.
Cluster computing has demonstrated to be an
economical and adequate parallel environment for

Figure 3: Speedup Curves

this kind of application. The high speedup and
efficiency obtained by all implemented algorithms on
24 processors point to promising parallel
performance for larger power system models on a
cluster with even larger number of nodes.

References:

[1] A. L. B. do Bomfim, G. N. Taranto and D. M. Falcão,

“Simultaneous Tuning of Power System Damping
Controllers using Genetic Algorithms”. IEEE
Transactions on Power Systems, Vol. 15, No. 1, pp.
163 – 169, February 2000.

[2] P. Kundur, Power System Stability and Control.
Electric Power Research Institute series – EPRI series.
Mc Graw Hill, Inc., 1994.

[3] D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning. Addison –
Wesley, MA, 1989.

[4] W. H. Press, S. A. Teukolsly, W. T. Vetterling, B. P.
Flannery, Numerical Recipes in C: The Art of Scientific
Computing.

[5] C.L.T. Borges, D. M. Falcão, G. N. Taranto, “Cluster
Based Power System Analysis Applications”.
Proceedings of IEEE International Conference on
Cluster Computing - Cluster 2000, pp.193 – 200,
Chemnitz – Germany, 2000.

[6] M. O. Mejía, E. Cantú – Paz, “DGENESIS: Software
para la Ejecución de Algoritmos Genéticos
Distribuidos”. XX Conferência Latinoamericana de
Informática (CLEI – PANEL’94). México, 1994.

[7] E. Cantú – Paz, “Topologies, Migration Rates, and
Multipopulation Parallel Genetic Algorithms”. Illinois
Genetic Algorithms Laboratory – IlliGAL Report No.
99006. University of Illinois. Urbana – Champaign,
United States. January, 1999.

[8] W. Gropp, E. Leusk and A. Skjellum, Using MPI –
Portable Parallel Programming with the Message
Passing Interface. The MIT Press, Cambridge –
Massachusetts, UK, 1996.

[9] R. T. Byerly, D. E. Sherman and R. J. Bernnon,
“Frequency domain Analysis of Low frequency
oscillations in large electric systems”. Report EPRI EL
– 726, 1978.

6

8

10

12

14

16

18

20

22

24

6 8 10 12 14 16 18 20 22 24

Number of Processers

Sp
ee

du
p

 (S
p

)

Linear

AG_MS

AGP_MPD
(Mig.Rate=1)

AGP_MPD
(Mig.Rate=3)

