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Abstract: - The coordinated tuning of power system stabilizers (PSS) consists of an optimization problem where 
the objective function is to maximize system damping. Since conventional optimization methods tend to obtain a 
local optimum instead of a global one, the application of Genetic Algorithms (GA) to this problem has been 
considered. However, the computational effort required by the GA approach is very high and may become 
prohibitive for large-scale systems. This paper presents the implementation of two categories of Parallel Genetic 
Algorithms (PGA) applied to the PSS tuning problem, namely: master-slave and multi-population. In the master-
slave PGA, the evaluation of the many chromosomes within a sole population is performed in parallel, whereas 
in the multi-population PGA, many populations are evaluated concurrently on different processors. Different 
communication topologies, migration rates and substitution strategies have been exploited in the multi-
population PGA in order to evaluate the parallel speedup. The parallel platform utilized is a Linux cluster of PCs 
composed of 24 microcomputers interconnected by a switched Fast-Ethernet network. The results obtained show 
high speedup and good parallel efficiency on actual power system models. 
 
Key-Words: - Power System Stabilizers (PSS), Parallel Genetic Algorithms (PGA), Cluster Computing, Master-
Slave PGA, Multi-Population PGA. 
 
1   Introduction 
An Electrical Power System (EPS) is frequently 
submitted to non-predicted disturbances that modify 
its operation condition. Since the EPS components do 
not have linear behavior, its final state is highly 
dependent on the initial conditions prior to the 
disturbance and the characteristics of the disturbance 
itself. In the case of small disturbances, like variation 
in load demand, linear models may approximately 
predict the EPS behavior. 
Power System Stabilizers (PSS) are controllers 
designed to enhance the so-called small-signal 
stability of EPS, by damping electromechanical 
oscillations. There is a myriad of methods for PSS 
tuning, especially for the case when one PSS at a time 
is tuned for one operating condition. However, one 
hardly finds procedures for coordinated tuning of PSS 
when various operating conditions are to be taken 
into consideration during the tuning process. 
The problem of coordinated tuning of PSS can be 
setup in the form of an optimization problem, whose 
objective is to maximize the minimum system 
damping for the various operating conditions taken 
into consideration. The design of multiple power 
system controllers requires that several specifications 
be accomplished in order to ensure the system 

operation with adequate margins for a certain number 
of operating conditions. The large number of 
controlled devices in modern power systems, 
associated with the increased utilization of existing 
equipment, calls for a more rigorous and systematic 
decentralized control design procedure. 
The efficiency of Genetic Algorithms (GA) when 
applied to the coordinated PSS tuning problem is 
demonstrated and detailed in [1]. However, GA may 
require high computation effort when searching for 
optimal solution for large-scale EPS. One way to 
speedup the computation requirements is to use 
parallel processing. This paper presents several 
parallel GA implementations on a cluster of PCs. The 
implementations exploit the impact of 
communication topologies and migration strategies 
on the performance of the parallel GA. 
 
2   Problem Formulation 
Power system damping controllers are usually 
designed to operate on a decentralized way. Input 
signals from remote sites are considered not reliable 
enough and avoided. Considering the performance of 
the control system for several different operating 
conditions ensures robustness of the controllers. 
Tuning of power system damping controllers 



typically uses a small-signal model represented by the 
well-known state space equations [2]: 
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where x  is the vector of the state variables, such as 
the machine speeds, machine angles and fluxes; u  is 
the vector of the input variables, such as control 
signals; y  is the vector of the measured variables, 
such as bus voltage and machine speed; A  is the 
power system state matrix; B  is the input matrix; C  
is the output matrix; and D  is the feedforward 
matrix. In the frequency domain, the transfer function 
associated with (1) is given by: 
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where the poles of )(sP  correspond to the 
controllable and observable eigenvalues of matrix A . 
Let )(sPk , mk ,  ,2 ,1 L= , in Figure 1, represent the 
set Ω of selected power system operating conditions 
and )(sPSS  be a diagonal transfer function matrix 
with p  individual controllers. The decentralized 
control design requires a control law 

ω=  )(sPSSVPSS  such that the closed-loop system is 
stable and, if possible, has a minimum desirable 
damping ratio minζ  in all m  operating conditions. 

 
Figure 1: Closed-Loop Setup 

 
For each one of the p  controllers, it is assumed a 
classical control structure with the dynamic model 
consisting of a constant gain, a washout stage, and a 

thl  lead-lag stage as follows:  
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pi  , 2, ,1 L=                                  (3) 
 
From the viewpoint of a washout function, the precise 
value of the associated time constant wT  is not 
critical. The main consideration is that it  should  be 

small enough such that stabilizing signals at the 
frequencies of interest will be relatively unaffected. 
For this reason, wT  is considered known. Therefore, 

iK , iα  and iω , pi  , 2, ,1 L= , are the parameters 
that should be determined by the tuning procedure. 
From Figure 1 it is obtained the closed-loop state 
matrix (Acl, where Acl ∈ ℜn+3p), which represents the 
linearized system including the tuned PSS, for each 
of the m system operating point. The optimization 
process objective is to obtain the PSS parameters that 
maximize the minimum damping value (ζ j) for all 
system operating points, as shown in (4).  
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3   Genetic Algorithm Application 
The search and optimization techniques based on 
Genetic Algorithms simulate the natural process of 
evolution of species, where the best fitted individuals 
have higher probability of propagating their genes 
along successive generations via cross-over between 
their genes [3]. The search mechanisms of GA are 
simple but powerful for complex function 
optimization. At the beginning of the search there is a 
highly random population with great diversity and 
low average fitness. Successive application of genetic 
operators conduce the search towards optimal 
solution, first exploring all search space and them 
concentrating on the neighborhood of good solutions.  
The main genetic operators are the Selection, the 
Cross-over and the Mutation Operators. The 
Selection Operator is applied over each generation in 
order to choose the best fitted chromosomes. The 
Cross-over Operator combines two selected 
chromosomes to generate other two to be included in 
a new generation. The Mutation Operator produces 
random changes on the chromosomes in order to 
maintain the diversity of the population. 
In this work it has been implemented a classical GA, 
where each individual is represented by a data 
structure composed of a chromosome and a fitness 
function value. The chromosome is composed by the 
PSS parameters to be adjusted while the fitness 
function is related to the system damping calculated 
for all considered operating conditions. It has been 
used the real codification for the chromosome, where 
the variables are represented by their numerical real 
values. The size of the chromosome is equal to three 
times the number of PSS to be tuned.  
The Selection Operator is the so-called Tournament, 
with two chromosomes. In this type of selection, two 
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chromosomes are randomly chosen from the 
population and the one with higher fitness is selected 
to breed new chromosomes.  
At the beginning of the optimization process, N 
chromosomes are randomly generated and the 
diagonal PSS(s) transfer matrix is calculated. Given 
PSS(s), the closed-loop system is formed as shown in 
Figure 1. The system damping coefficients are 
obtained from the closed-loop system eigenvalues, 
which are calculated by the QR method [4]. So, N QR 
solutions must be calculated in each generation for 
each operating condition m. The fitness value for 
each chromosome is based on the minimum damping 
obtained from the closed-loop system considering all 
operation points, as shown below: 

 
 

 
 
where β0, β1, ..., βk  and ζ 0, ζ 1, ..., ζ min are positive 
real pre-defined numbers. 
Figure 2 shows the scheme of PSS tuning by the GA.  
 
 

4   Parallel Solution 
The sequential GA (SGA) described in the previous 
section has been applied to the coordinated tuning of 
PSS problem and turned out to be a promising 
method for the robust coordinated tuning of PSS [1]. 
However, the SGA requires very long computational 
time to obtain good solutions, what may become 
prohibitive for large-scale EPS. One way to reduce 
the solution process time requirement is to use 
parallel processing, in particular Parallel Genetic 
Algorithms (PGA). Two different strategies for 
parallelizing the GA have been tested: Master-Slave 
PGA and Multi-population PGA. 
 
4.1 Master-Slave PGA 
Most of the processing time required for the solution 
of the problem described is spent by the closed-loop 
system eigenvalues calculation by the QR method. 
Therefore, the most natural solution to reduce the 
computational time required by the GA is to 
parallelize the fitness function evaluation in a master-
slave model [5], here called PGA_MS. 
In PGA_MS, the initial population is generated with 
N chromosomes. Then, the population is divided into 
P groups of chromosomes, where P indicates the 
number of available processors. Each one of those 
groups is formed by nc chromosomes ( P

Nnc = ), so 

it is convenient to chose N as a multiple of P. Then, 
P-1 groups will be transmitted to the slave processors 
in order to evaluate the fitness of the nc 
chromosomes. The master also evaluates the fitness 
of the chromosomes assigned to itself, in this case the 
first group of chromosomes. 

Fitness Damping Range 

0.1 If any (ζ j) i ≤ ζ 0 

β0 If all  (ζ j) i > ζ 0 and If any (ζ j) i ≤ ζ 1 

: : 

βk If all  (ζ j) i > ζ k−1 and If any  (ζ j) i ≤ ζ min 

F If all  (ζ j) i ≥ ζ min                                                              

0.1 < β0 < β1 < β2 < L < β k < F 

ζ 0 < ζ 1 < ζ 2 < L < ζ k−1 < ζ min 

K1 K2 α1 ω1 ω2 … αp Kp ωp α2 Chromosome j 
j = 1, 2, ..., N 

Initialization 
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        Genetic Algorithm 
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ζ i → damping of eigenvalue i. 

 
 

Figure 2: The GA Role 



After each slave has concluded its computation, they 
send to the master the results of the fitness evaluation 
they have performed. The master then applies the 
genetic operators to the chromosomes of the 
population to obtain a new generation based on the 
fitness values calculated in parallel. This process 
continues until the maximum number of generations 
is reached. In PGA_MS and in SGA, the genetic 
operators are applied to the same population, what 
means that the same optimal solution is obtained 
sequentially and in parallel if the random number 
generator algorithm uses the same seed. 
 
4.2 Multi-Population PGA 
In the multi-population PGA implementation, 
different populations are allocated to different 
processors in parallel. The initial populations are 
created by randomly generating their chromosomes 
using different seeds for the random number 
generator algorithm in each processor. The seed 
calculated for each population is obtained by the 
following equation: 

1+
=

OP
seed

seed M
OP         (5) 

 
In (5), seedM means the seed supplied by the user for 
processor 0 and seedOP is the value of the seed 
calculated in the other processors as a function of the 
processor rank (OP = 1, 2, ... , P – 1). The size of the 
population on each processor is equal to the total 
number of individuals N divided by the number of 
processors P. 
In the multi-population PGA, after a fixed number of 
generations, the populations interchange a certain 
number of individuals in a process called Migration 
[6]. The migration operator establishes the 
communication and integration strategy among the 
populations. The new parameters introduced by the 
migration operator are [7]: 
- Migration interval − It establishes the number of 
generations between successive migrations. 
- Migration rate − It indicates the number of 
individuals to be communicated to the other 
populations at each migration. 
- Individuals' Selection Strategy − It establishes the 
rules for choosing the individuals that will migrate to 
other populations. In the present work, the 
individuals that have higher fitness are chosen to 
migrate from one population to the others. 
- Reception Strategy − It establishes the rules for 
incorporating the individuals migrated from other 
populations into the population that receives them. 
In the migration process, if the individuals are 
transmitted from one processor to all the others, it is 

said that the connectivity is dense, otherwise it is said 
that the connectivity is sparse.  
The communication cost in Multi-Population PGA 
with dense connectivity may be very high since each 
processor communicates with all other available 
processors. This means that the time spent in 
communication tends to increase proportionally with 
the number of processors. For that reason a Multi-
Population PGA with sparse connectivity has been 
implemented in this work, where each processor 
maintains communication with only two other 
processors, despite of the number of available 
processors. Thus, the time spent in communication 
remains constant even if the number of processors is 
increased. 
The multi-population PGA algorithm has been 
implemented using synchronous communication, as 
well as the master-slave PGA. The reasons for 
applying synchronous communication are that each 
processor executes the same algorithm, the number of 
chromosomes assigned to each processor is the same 
and finally, the characteristics of the processors that 
compose the cluster are the same, as will be seen in 
the next section. 
 
5   Experimental Results   
5.1 Cluster of PCs 
The high-performance cluster used as parallel 
platform is a dedicated PC Cluster composed of 24 
Intel Pentium III 500 MHz personal computers with 
512 MBytes of memory each, interconnected by a 
switched Fast-Ethernet network of 100 Mbits per 
second bandwith. The cluster is based on Linux 
operating system and uses MPICH implementation of 
MPI as message passing system [8]. All 
implementations were based in C programming 
language.  
 
5.2 Power System Model 
The power system model used to test the algorithms 
was the New England system described in [9], which 
contains 39 buses and 10 generators. In this system 
there are 9 PSS to be simultaneously tuned for 10 
different operation conditions varying over the 
topology of the system, demanded load level, etc.  
 
5.3 GA Parameters 
Each chromosome is composed of 27 genes, since 
there are 9 PSS in the system with 3 unknown 
parameters each. The dimension of the open-loop 
state matrix A related to equation (1) is 48, which is 
equal to the number of state variables. The closed-
loop state matrix related to Figure 1 has 75 states. 



For each algorithm, a global population of 120 
individuals was considered (N = 120). With the 
purpose of increasing the convergence speed, 4 
individuals that represent stable solutions for the 
system are included in the initial population and the 
rest of the population is generated randomly. 
The same probabilities of applying the genetic 
operators  (Cross-over and Mutation), as well as the 
same types of Selection, Cross-Over and Mutation, 
were used in the sequential and in the parallel 
implementations. The parameters used in the GA are: 
- Coding Type: Real 
- Selection Type: Tournament (2 Individuals) 
- Cross-Over Type: One point cross-over 
- Cross-Over Probability: 0.8 
- Mutation Type: Constant 
- Mutation Probability: 0.1 
For the Multi-population PGA, it has been chosen a 
migration interval of 10 generations, following the 
suggestions made in [6,7]. The performance of this 
algorithm was also tested for two migration rates (1 
and 3 individuals). The reception strategy used were: 
Substitution Strategy, in which the best individual 
received from other population substitutes the worst 
individual of the population than receives it, and 
Extended Population Strategy, in which the 
individuals received from other populations are added 
to the population that receives them, forming an 
extended population for application of the Selection 
operator, but then maintaining the original population 
size throughout the generations. 
 
5.4 Results Analysis 
Table 1 shows the experimental results for the 
sequential GA (SGA) and the master-slave PGA 
(PGA_MS), where tmean indicates the computation 
time calculated by the mean of 3 different runs, SP 
represents the speedup calculated for p processors 
and E(%) represents the respective parallel efficiency. 
The maximum fitness value of fmax = 591.56 has been 
obtained to all these trials, meaning that a minimum 
of more than 15% damping is achieved in all 10 
operating conditions with the PSS tuned by the 
algorithm. 
 

Table 1: Results for SGA and PGA_MS 
Sequential (SGA) 

P                         tmean 
1                       18min80s 
                Master-Slave PGA (PGA_MS) 
P tmean SP E 
8 2min25s 7.82 97.75 % 
15 1min17s 14.55 97.00 % 
24 49s 23.07 96.12 % 

It can be observed from Table 1 that a considerable 
reduction in computational time is achieved when 
applied the PGA_MS algorithm. It can also be 
observed that the PGA_MS algorithm is very 
efficient, with an efficiency higher than 96% on 24 
processors of the cluster. 
Table 2 shows the experimental results for the multi-
population PGA algorithm using dense connectivity 
(PGA_MD) and Extended Population reception 
strategy. It can be observed from Table 2 that 
implementations with larger migration rate are 
slightly less efficient. The reason is that larger 
migration rate increases the communication time due 
to the larger number of individuals transmitted 
between the populations, making the total 
computational time increase. This influence tends to 
be more significant when larger clusters are used. 
 

Table 2: Results for PGA_MD 
                         Migration Rate = 1 
P tmean SP E 
8 2min22s 7.98 99.75% 
15 1min19s 14.30 95.33% 
24 49.83s 22.69 94.57% 
                         Migration Rate = 3 
8 2min23s 7.90 98.75% 
15 1min20s 14.26 95.07% 
24 50.13s 22.56 94.00% 

 
The fitness values obtained by the multi-population 
PGA (fmax = 597.50) were higher than those obtained 
by SGA and PGA_MS, which represents an 
improvement in the optimal solution. Moreover, 
implementations with larger migration rate produced 
solutions with higher fitness values. The reason is the 
increase in the diversity of the search process caused 
by a larger number of good individuals received from 
other populations.  However, this higher fitness value 
corresponds to the same minimum damping of 15 %. 
In terms of efficiency, PGA_MD achieved more than 
94% on 24 processors, what can also be considered a 
very good result. The implemented algorithms also 
presented good scalability and promising 
performance is expected in a cluster with even higher 
number of processors. Another test that is being done 
in continuation to this work is to use a larger actual 
power system model and verify the algorithm 
performance. 
The speedup obtained by the parallel algorithms is 
almost linear, what means that the total processing 
time decreases in an almost linear proportion to the 
number of processors. Figures 3 shows the speedup 
curve for parallel algorithms PGA_MS and 
PGA_MD on  the cluster. 



It was also analyzed the influence of the reception 
strategy and the connectivity on 8  processors  of   the  
cluster. The results are shown on Table 3 for the 
multi-population PGA algorithm with connectivity 2 
(PGA_M2) and migration rate = 3. 
 

Table 3: Results for PGA_M2 
            Reception Strategy = Substitution 
P tmean fmax E 
8 2min22s 593.10 99.20% 
    Reception Strategy = Extended Population 
8 2min23s 598.40 99.00% 

 
It can be observed from Table 3 that the fitness value 
is higher when multi-population PGA uses the 
extended population as reception strategy. The reason 
is that the selection operator is applied on the 
extended population, which contains its own good 
individuals and the good individuals received from 
the other populations.  It can also be observed that a 
more sparse connectivity tends to improve the 
algorithm performance. However, this effect is not 
significant on 8 processors and is being confirmed on 
all   24   processors   of   the   cluster.   It   should   be 
mentioned that the efficiency was calculated using 
the processing time (sequential and parallel) in 
seconds and in the tables tmean has been approximated 
to minutes. 
 
6   Conclusion 
Sequential GA has demonstrated to be an adequate 
method for coordinated tuning of power systems 
stabilizers. However, its computational time may 
become prohibitive for application in large power 
system models.  
Master-slave parallel GA reduces the computational 
time considerably, and calculates exactly the same 
fitness value obtained by SGA. Multi-population 
parallel GA, on the other side, not only reduces the 
computational time but also has higher probability of 
finding solutions with better fitness values. 
For larger and more complex power systems, the 
multi-population PGA algorithm that uses 
substitution as the reception strategy tends to be 
faster due to the minimum number of data 
interchanged and individuals involved in the cross-
over process. However, multi-population PGA that 
used extended population as the reception strategy 
was the one that found highest fitness value. This is 
due to the increase in population diversity, what 
guarantees a better search and optimization 
performance.  
Cluster computing has demonstrated to be an 
economical  and  adequate  parallel  environment   for  

Figure 3: Speedup Curves 
 
this kind of application. The high speedup and 
efficiency obtained by all implemented algorithms on 
24 processors point to promising parallel 
performance for larger power system models on a 
cluster with even larger number of nodes. 
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