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Abstract: - The use of Fuzzy Control has been increasing considerably, and its success depends on a number of 
parameters, such as fuzzy membership functions, that are usually decided upon subjectively. The objective of 
this paper is to describe and discuss how to improve the performance of the fuzzy reasoning model through 
fitting fuzzy membership functions using Particle Swarm Optimization algorithm and Genetic Algorithms. An 
application designed to park a vehicle into a garage; beginning from any start position is used as a case study. 
Finally the obtained results are discussed and the performance is compared. 
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1   Introduction 
Fuzzy Sets Theory, proposed by Lofti A. Zadeh, 
noticed that the technologic resources available at 
that time, were not enough to provide the automation 
of the activities regarding the industrial, biologic and 
chemical problems, which use inherent analogical 
data not fitted to the computer digital handling, 
working with well defined numerical data, the so 
called discreet values. 
     The Computer Package for Fuzzy Logic Teaching 
is used as a case study [1]. The main purpose of the 
package is to park a vehicle into a garage, beginning 
from any start position. The user should first to 
develop a fuzzy control rules set and membership 
functions that will route the vehicle path. The 
program executes the variables fuzzing and defuzzing 
process with no action from user. This package 
provides the students a resource that shows actual 
happenings of every day life. 
     This paper presents a genetic training mode and a 
particle swarm optimization mode for a previously 
made control. 
     Genetics algorithms are global optimizing ones, 
based on natural selection and genetics mechanisms. 
They use a parallel procure and structured strategy, 
but random, aiming to reinforce searching of “high 
aptitude” points, that is to say, points in which the 
function to be minimized has relative low values. 
Park, Kandel and Langholz have presented an 
example of results achieved by this optimization [2]. 
     Particle Swarm Optimization (PSO) finds the 
optimal solution by simulating such social behaviors 
of group as fish schooling or bird flocking [3]. That 
is, PSO is an optimization method that uses a 

principle of social behavior of a group. A group can 
effectively achieve the objective by using the 
common information of every agent, and the 
information owned by the agent itself. 
     The control is optimized through automatic fitting 
of existing membership functions. The PSO 
algorithms was made defining the subpopulation as 
the membership functions fitting values, whose 
parameters are the centers and widths of each fuzzy 
set. These parameters compose the particle (agent). 
To check the performance of the fuzzy system, it is 
executed from an initial set of possible parameters, 
this information is used to setup each subpopulation 
adjustment (adaptability) and make the evolution of 
the population. 
 
 
2   The Original Computing Package 
The main purpose of the package is to park a vehicle 
in a garage, beginning from any start position. In 
order to make it, the user should first to develop a set 
of fuzzy control rules and membership functions, 
which will define the vehicle path. Several windows 
and numeric routines can be found in the program for 
helping the users in making the rules. The variables 
fuzzing and defuzzing processes are performed by the 
program with no action required from the user. 
     To represent the vehicle parking problem the 
program has the basic picture shown in Fig. 1 (a). It 
shows the garage layout, the existing obstacles (the 
walls in this case) and the coordinates limit values. 
Also we can see the problem entry variables, i.e. (x, 
y) measured from the vehicle back central point, and 
the car angle (φ). 



     The user may define a starting position for the 
vehicle (Coordinate X, Y and Angle). The simulation 
begins with a simulation option. Fig. 1 (b) shows the 
vehicle course using the set of 362 rules for the 
displacement. 
     In the simulation example of Fig. 1 (b), it is shown 
the vehicle track left when routing. Each point means 
an iteration (i.e. a whole passage through the rules 
set) being the counting registered in the Variables 
window. In this example the fuzzy control has made 
256 iterations. 
 

 (a) 

 (b) 
Fig. 1. (a) Program basic picture (b) Simulation 

Example 
 
     If we want to reduce the iterations number, i.e. to 
minimize the route made by the vehicle, we have to 
change the rules or to introduce new membership 
functions, or to adjust the existent ones. To define the 
best values for membership functions by hand is 
difficult and takes a lot of time. 
     A training model using particle swarm 
optimization was developed in this work and its 
results are compared with a training model using 
genetic algorithms. The control is optimized through 
automatic adjustment of existing membership 
functions, with no action required from the user. This 
modulus was introduced in the computing package. 
 
 
3   Genetic Training Modulus 
The integration of genetic algorithms with fuzzy 
control was made as follow [4]: 

• The chromosome was defined as a link of the 
membership functions adjustment values; 

• The parameters are the centers and widths of 
each fuzzy set. These parameters compose 
the chromosome genes; 

• To check the performance of the fuzzy 
system it is rolled up from an initial set of 
possible parameters; 

• These information are used for set up each 
chromosome adjustment (adaptability) and 
the making of a new population; 

• The cycle repetition is made up to completion 
of the defined generations number made by 
the user. To each generation it is found the 
best values set for the membership functions 
parameters. 

     For the genetic training it is possible to define the 
initial locations, as to evaluate each chromosome the 
vehicle will start from, representing the membership 
parameters set of values, looking for the control 
optimization, not for a sole route, but for all possible 
initial locations from which the vehicle can start for 
parking. 
 
 
3.1 Genetic Algorithms Components 
For description of each fuzzy controller membership 
function introduced by the computing package, four 
parameters are defined. They are: IE (bellow left), ID 
(bellow right), SE (above left) and SD (above right). 
     For the adjustment of membership functions the 
following equations (1) were defined: 
 
IE = (IE + ki) – wi; ID = (ID + ki) + wi; 
SE = (SE + ki);  SD = (SD + ki).                 (1) 
 
     Being ki and wi adjustment factors. ki makes each 
membership function move to the right or left with no 
change in the form. The membership function shrinks 
or expands through the factor wi. 
     These factors take any integer positive or negative 
value, depending of the defined adjustment value 
made by the user. 
     Genetic algorithms are used to find the optimum 
values according to the strategy and the initial points 
used, as well as for ki and wi for the membership 
functions. 
 
 
3.2 Genetic Representation of Solutions 
Usually, a possible solution for a problem is 
associated with a chromosome p by a vector with m 
positions p = {x1, x2, x3, ..., xm}, where each 
component xi represents a gene. 
     The most known among the chromosomes 
representation ways are: the binary representation and 



the representation by integers. The binary 
representation is a classic one. 
     However, in this paper the representation by 
integers was used, because the genes of each 
chromosome are composed by the adjust coefficients 
ki and wi which are integer values. 
     With regard to chromosome size, i.e., how many 
genes each chromosome will have, will depend upon 
the number of membership functions defined by user. 
For a fuzzy control with a group of 18 membership 
functions, for example, there will be chromosomes 
with 36 genes. This happen because for each function 
we have two adjust coefficients: ki and wi. A 36 
positions vector then represents the chromosome. 
 
 
3.3 Evaluation Function 
This function deals with the evaluation of the aptitude 
level (adaptation) of each chromosome generated by 
algorithms. For the present problem the aim is to 
minimize the vehicle-parking route. For this case the 
evaluation function (2) is given by: 
 
FA = 1 / (1 + I).                                                        (2) 
 
     Where I is the total iterations up to parking, 
regarding the adjustment made for each chromosome 
in the membership function. According to this 
function, each chromosome aptitude will be inversely 
proportional to the iterations number.  
 
 
3.4 Genetic Operators 
The genetic operators come from the natural 
evolution principle and govern the chromosomes 
renewal. The genetic operators are necessary for the 
population diversification, and the acquired 
adaptation characteristics from former generations are 
preserved. 
     The crossover process, or recombination, 
comprises a random cut upon father chromosomes in 
which genes will be changed, generating two 
descendents. For example, let us consider two-father 
chromosomes p1 - p2. A cross-point is randomly 
chosen. The former information up to this point in 
one of the fathers is linked to the latter information to 
this point into other father. 
     The mutation process consists in making the 
changes according to the adjustment value, defined 
by the user in the values of one or more chromosome 
genes. For an adjustment value of 10, for example, 
the change of a selected gene will fall into some 
value of the interval [-10, 10]. 
 
 

3.5 Renovation and Selection Criteria 
The renovation and selection criteria introduced in 
this modulus, through the algorithms, were the 
reproduction one. Reproduction is a process in which 
the chromosomes copies are used for the next 
generation, according the evaluation function values. 
Chromosomes with high aptitude value will 
contribute with one or more exactly equal 
descendents for the next generation. 
     The next generation of effectively reproduced 
chromosomes number is given by the whole part of 
the expected descendants from each chromosome. 
This process was introduced through the roulette 
technique, where the chromosomes that show a 
bigger adaptation have greater probability to be 
selected. 
     Finally, the roulette turns a determinate number of 
times, depending on the chromosomes number 
necessary for the population completion, and the ones 
drawn by the roulette are chosen as the chromosomes 
that will take part in the next generation. 
 
 
3.6 Stop Criteria 
The stop criteria used was the one that defines the 
maximum number of generations to be produced. 
When genetic algorithms, the new populations 
generating process is finished, and the best solution to 
complete the generation number is the one among the 
individuals better adapted to the evaluation function. 
 
 
3.7 Algorithm Presentation 
Being G the generation number, P the population, Pc 
the crossover rate (recombination), Pm the mutation 
rate and VA the allowed adjustment value for 
membership functions, the algorithm shown bellow 
generates as starting the vector s with G positions. 
Each one of the vector elements is the best 
chromosome of one generation. 
STEP 1. Generate initial population P with genes 

in the interval [-VA, +VA]. 
STEP 2. Evaluate population P. Store in vector s 

the best chromosome.  
STEP 3. If completed in the generation number G 

go to STEP 13. 
STEP 4. Calculate the aptitude regarding 

population P. 
STEP 5. Calculate the expected descendents from 

population P. 
STEP 6. To draw descendents from population P’ 

starting from population P. 
STEP 7. Compose the grouping of population P’. 
STEP 8.  To draw the cross-point for the father 

chromosomes of population P’. 



STEP 9. Make the crossing for population P’ 
according to Pc. 

STEP 10. Make the mutation in each chromosome 
according to Pm. 

STEP 11. Evaluate the population P’. Store in 
vector s the best chromosome. Make P = 
P’. 

STEP 12. Go back to STEP 3. 
STEP 13. End. 
 
 
4   PSO Training Modulus 
Particle Swarm Optimization (PSO) [3] finds the 
optimal solution by simulating such social behaviors 
of group as fish schooling or bird flocking. That is, 
PSO is an optimization method that uses a principle 
of social behavior of a group. A group can achieve 
the objective effectively by using the common 
information of every agent and the information 
owned by the agent itself. 
     PSO was basically developed through simulation 
of bird flocking in two-dimension space. The position 
of each agent (particle) is represented by XY-axis 
position and the velocity is expressed by vx and vy 
(the velocity of X-axis and Y-axis respectively). The 
agent position is modified by the position and 
velocity information. 
     The concept of PSO can be described as follows: 
Each agent knows its best value so far (pbest) and its 
(XY) position. Moreover, each agent knows the best 
value in the group (gbest) among pbest. Each agent 
tries to modify its position using the current velocity 
and its position. The velocity of each agent can be 
calculated using the equation (3): 
 
vi

k+1 = wi x vi
k + c1 x rand x (pbesti – si

k) 
                  + c2 x rand x (gbest – si

k).                        (3) 
 
     Where: 

vi
k: Velocity vector of agent i at iteration k; 

vi
k+1: modified velocity of agent i at next iteration 

k+1; 
si

k: Positioning vector of agent i at iteration k; 
rand: random number between 0 and 1; 
pbest : best position found by agent I; 
gbest: best position found by agent group; 
ci: weight coefficients for each term; 
wi: weight function for velocity of agent i. 

     The current position of an agent is calculated by 
the equation (4): 
 
si

k+1 =si
k  + vi

k+1.                                                        (4) 
 
 

4.1 The Integration of the PSO with Fuzzy 
Control 

The integration of PSO algorithms with fuzzy control 
was made as follow [5]:  

• The subpopulation was defined as a link of 
the membership functions adjustment values; 

• The parameters are the centers and widths of 
each fuzzy set. These parameters compose 
the particle (agent); 

• To check the performance of the fuzzy 
system it is rolled up from a initial set of 
possible parameters; 

• These information are used for set up each 
subpopulation adjustment (adaptability) and 
making the evolution of these subpopulation; 

• The cycle repetition is made up to completion 
of the defined PSO iteration number made by 
the user. For each PSO iteration it is found 
the best values set for the membership 
functions parameters. 

     For the PSO training it is possible to define the 
initial locations, as to evaluate each subpopulation the 
vehicle will start from, representing the membership 
parameters set of values, looking for the control 
optimization not for a sole route but for all possible 
initial locations from which the vehicle can start for 
parking. 
     The evaluation function applied was the same as 
in GAs. According this function, each subpopulation 
aptitude will be inversely proportional to the 
iterations number. 
 
4.2 PSO Representation of Solutions 
The fuzzy control usually is composed by many 
functions. So, for this problem it is necessary to use 
the subpopulation concept. The solution for a 
problem is associated with a population of particles 
composed subpopulation sp by a vector with m 
positions sp = {p1, p2, p3, ..., pm} where each 
component pi represents an agent (particle). Each 
subpopulation represents one possible solution. 
     However, each particle position is composed by 
the adjustment coefficients ki and wi which are integer 
values. 
     With regard to subpopulation size, i.e., how many 
agents each subpopulation will have, this depends on 
the number of membership functions defined by user. 
For a fuzzy control with a group of 18 membership 
functions, for example, there will be subpopulation 
with 36 agents. This is because for each function we 
have two adjustment coefficients: ki and wi. A 36 
positions vector then represents the subpopulation. 
Each particle position is composed by the adjust 
coefficients ki and wi. 



4.3 Algorithm Presentation 
Being IP the PSO iteration number, P the population, 
N the subpopulation number, M the particle number, 
Vmax the velocity max number and VA the allowed 
adjustment value for membership functions, the 
algorithm shown bellow generates as a start the 
vector gbest with M positions to store the best 
subpopulation result. 
STEP 1. Generate initial subpopulation with 

particles in the interval [-VA, +VA] for 
all subpopulation (N); 

STEP 2. Generate initial Velocity Vx and Vy using 
random values and don’t exceed the 
Vmax for all subpopulation (N); 

STEP 3. Evaluate subpopulation (SPi). If F (SPi) is 
better than the pbesti, the F(SPi) is set to 
pbest. If pbest is better than gbest, the 
positioning vector pbest is set to gbest; 

STEP 4. Calculate a new subpopulation velocity 
values using Eq. (3) for (SPi); 

STEP 5. Calculate a new subpopulation SPi values 
using Eq. (4); 

STEP 6. IF the iteration number (I) does not 
complete the Subpopulation number (N) 
go to STEP 3; 

STEP 7. If the PSO iteration number reaches to the 
pre-determined one (IP), then stop. 
Otherwise, go to STEP 3. 

5   Tests and Results 
Table 1 shows the three start positions used for tests 
and the vehicle’s number of iterations until parking, 
using the originals and trained membership functions. 
    These positions were chosen according to the 
points where the vehicle doesn’t follow a good route 
till parking. The definition of several initial positions 
will result in a global minimization of traveled space. 
The defined GAs and PSO parameters are shown in 
Table 2 and 3 respectively. 
     Table 4 presents the simulation results made 
starting from initial positions not used in the training. 
      The results presents an average reduction of 
iterations number for vehicle to reach the final 
position for the PSO and GAs trained control. These 
values represent the global reduction of vehicle route 
starting from positions not used in AGs and PSO 
training. The PSO training algorithm is slower than 
GAs training, because of the amount of 
communication performed by the particles (agents) 
after each iteration. 
      It is possible to notice that in some positions 
(position 8) the iterations number is bigger than the 
ones generated by the original control (without 
training). This increase comes from the modifications 
made in the membership functions, that makes the 
vehicle to change for a different route to reach the 
final position. 

 
Table 4. Simulations results 

Iterations generated by Fuzzy Controls Position X Y Car 
Angle Original Trained GAs Trained PSO 

1 1 126 182 450 329 445 
2 6 46 132 167 154 306 
3 8 41 190 1000 1000 1000 
4 15 70 -90 318 162 313 
5 70 95 -6 263 275 257 
6 74 69 -70 453 456 450 
7 76 193 232 605 363 363 
8 88 46 44 283 305 289 
9 115 120 240 463 411 289 

10 131 140 -72 457 292 512 
11 141 69 -28 342 314 225 
12 154 166 -80 863 436 950 
13 160 135 268 1101 545 445 
14 217 66 -50 684 325 506 
15 228 194 -48 830 655 476 
16 246 169 154 312 307 310 
17 250 180 -40 739 800 489 
18 265 170 -40 672 329 483 
19 300 124 258 317 306 308 
20 305 156 -40 521 318 449 

Total 10840 8082 8865 
Average 542 404,1 443,25 

 



Table 1. Start positions before and after training with time spent in seconds. 
Position X Y Car 

angle 
Iterations without 

training 
Iterations with 
PSO training 

Iterations with 
GAs training 

1 25 120 180 330 285 280 
2 160 130 -90 888 592 384 
3 275 160 -40 655 439 277 

Total 1873 1316 941 
Average 624.33 438.66 331.67 

Time (seconds)  1891 1166 
 

Table 2. GA parameters. 
Population Size 14 
Generations Number 30 
Crossover Probability 90% 
Mutation Probability 1% 

 
Table 3. PSO parameters. 

Population Size 14 
Iteration Number 30 
Vmax 10 

 
 
5   Conclusions 
The fuzzy systems are a convenient and efficient 
alternative for solution of problems where the fuzzy 
state are well defined. Nevertheless, the project of a 
fuzzy system may became difficult for large and 
complex systems, when the control quality depends 
on subjective decisions to define the best membership 
functions to solve the problem. 
      This paper presented and compared the Particle 
Swarm Optimization and the Genetic Algorithms 
training modulus, applied to fitting fuzzy membership 
functions. As a case study, a computing package for 
the fuzzy logic teaching is used. The PSO and GAs 
training modules developed in this work are added in 
this package with an automatic technique for the 
fitting of the membership functions parameters. This 
technique shows that the performance of a fuzzy 
control may be improved through the AGs and PSO 
algorithms. 
      The genetic algorithms provided distinctive 
advantages for the optimization of membership 
functions, resulting in a global survey, reducing the 
chances of ending into a local minimum, once it uses 
several sets of simultaneous solutions. The fuzzy 
logic supplied the evaluation function, a stage of the 
genetic algorithm where the adjustment is settled. 
      PSO is able to generate an optimal set of 
parameters for fuzzy reasoning model based on either 
their initial subjective selection or on a random 
selection. It is also shown that by training this 
algorithm with some specific start positions it is 
reached a good global optimization result. 
      The implementation of PSO is easier than GAs, 
but the PSO training algorithm is slower than GAs 
training, because the needs of communication 
between the particles (agents) after each iteration. 
Both algorithms show better results than fuzzy 
control, and some studies are under development to 
improve the PSO algorithm [6]. 
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