
Particle Swarm Optimization versus Genetic Algorithms for Fitting
Fuzzy Membership Functions

Ahmed Ali Abdalla Esmin1,2, Alexandre Rasi Aoki1, and Germano Lambert-Torres1

1 Instituto de Engenharia Elétrica – Universidade Federal de Itajubá
Av. BPS, 1303 – Itajubá/MG – 37500-0903 – BRAZIL

2 Fundação Educacional Comunitária Formiguense
Av. Dr. Arnaldo de Senna, 328 – Formiga/MG – 35570-000 – BRAZIL

{ahmed, aoki, germano}@iee.efei.br

Abstract: - The use of Fuzzy Control has been increasing considerably, and its success depends on a number of
parameters, such as fuzzy membership functions, that are usually decided upon subjectively. The objective of
this paper is to describe and discuss how to improve the performance of the fuzzy reasoning model through
fitting fuzzy membership functions using Particle Swarm Optimization algorithm and Genetic Algorithms. An
application designed to park a vehicle into a garage; beginning from any start position is used as a case study.
Finally the obtained results are discussed and the performance is compared.

Key-Words: - Particle Swarm Optimization, Genetic Algorithms, Fuzzy Membership Functions.

1 Introduction
Fuzzy Sets Theory, proposed by Lofti A. Zadeh,
noticed that the technologic resources available at
that time, were not enough to provide the automation
of the activities regarding the industrial, biologic and
chemical problems, which use inherent analogical
data not fitted to the computer digital handling,
working with well defined numerical data, the so
called discreet values.
 The Computer Package for Fuzzy Logic Teaching
is used as a case study [1]. The main purpose of the
package is to park a vehicle into a garage, beginning
from any start position. The user should first to
develop a fuzzy control rules set and membership
functions that will route the vehicle path. The
program executes the variables fuzzing and defuzzing
process with no action from user. This package
provides the students a resource that shows actual
happenings of every day life.
 This paper presents a genetic training mode and a
particle swarm optimization mode for a previously
made control.
 Genetics algorithms are global optimizing ones,
based on natural selection and genetics mechanisms.
They use a parallel procure and structured strategy,
but random, aiming to reinforce searching of “high
aptitude” points, that is to say, points in which the
function to be minimized has relative low values.
Park, Kandel and Langholz have presented an
example of results achieved by this optimization [2].
 Particle Swarm Optimization (PSO) finds the
optimal solution by simulating such social behaviors
of group as fish schooling or bird flocking [3]. That
is, PSO is an optimization method that uses a

principle of social behavior of a group. A group can
effectively achieve the objective by using the
common information of every agent, and the
information owned by the agent itself.
 The control is optimized through automatic fitting
of existing membership functions. The PSO
algorithms was made defining the subpopulation as
the membership functions fitting values, whose
parameters are the centers and widths of each fuzzy
set. These parameters compose the particle (agent).
To check the performance of the fuzzy system, it is
executed from an initial set of possible parameters,
this information is used to setup each subpopulation
adjustment (adaptability) and make the evolution of
the population.

2 The Original Computing Package
The main purpose of the package is to park a vehicle
in a garage, beginning from any start position. In
order to make it, the user should first to develop a set
of fuzzy control rules and membership functions,
which will define the vehicle path. Several windows
and numeric routines can be found in the program for
helping the users in making the rules. The variables
fuzzing and defuzzing processes are performed by the
program with no action required from the user.
 To represent the vehicle parking problem the
program has the basic picture shown in Fig. 1 (a). It
shows the garage layout, the existing obstacles (the
walls in this case) and the coordinates limit values.
Also we can see the problem entry variables, i.e. (x,
y) measured from the vehicle back central point, and
the car angle (φ).

 The user may define a starting position for the
vehicle (Coordinate X, Y and Angle). The simulation
begins with a simulation option. Fig. 1 (b) shows the
vehicle course using the set of 362 rules for the
displacement.
 In the simulation example of Fig. 1 (b), it is shown
the vehicle track left when routing. Each point means
an iteration (i.e. a whole passage through the rules
set) being the counting registered in the Variables
window. In this example the fuzzy control has made
256 iterations.

 (a)

 (b)
Fig. 1. (a) Program basic picture (b) Simulation

Example

 If we want to reduce the iterations number, i.e. to
minimize the route made by the vehicle, we have to
change the rules or to introduce new membership
functions, or to adjust the existent ones. To define the
best values for membership functions by hand is
difficult and takes a lot of time.
 A training model using particle swarm
optimization was developed in this work and its
results are compared with a training model using
genetic algorithms. The control is optimized through
automatic adjustment of existing membership
functions, with no action required from the user. This
modulus was introduced in the computing package.

3 Genetic Training Modulus
The integration of genetic algorithms with fuzzy
control was made as follow [4]:

• The chromosome was defined as a link of the
membership functions adjustment values;

• The parameters are the centers and widths of
each fuzzy set. These parameters compose
the chromosome genes;

• To check the performance of the fuzzy
system it is rolled up from an initial set of
possible parameters;

• These information are used for set up each
chromosome adjustment (adaptability) and
the making of a new population;

• The cycle repetition is made up to completion
of the defined generations number made by
the user. To each generation it is found the
best values set for the membership functions
parameters.

 For the genetic training it is possible to define the
initial locations, as to evaluate each chromosome the
vehicle will start from, representing the membership
parameters set of values, looking for the control
optimization, not for a sole route, but for all possible
initial locations from which the vehicle can start for
parking.

3.1 Genetic Algorithms Components
For description of each fuzzy controller membership
function introduced by the computing package, four
parameters are defined. They are: IE (bellow left), ID
(bellow right), SE (above left) and SD (above right).
 For the adjustment of membership functions the
following equations (1) were defined:

IE = (IE + ki) – wi; ID = (ID + ki) + wi;
SE = (SE + ki); SD = (SD + ki). (1)

 Being ki and wi adjustment factors. ki makes each
membership function move to the right or left with no
change in the form. The membership function shrinks
or expands through the factor wi.
 These factors take any integer positive or negative
value, depending of the defined adjustment value
made by the user.
 Genetic algorithms are used to find the optimum
values according to the strategy and the initial points
used, as well as for ki and wi for the membership
functions.

3.2 Genetic Representation of Solutions
Usually, a possible solution for a problem is
associated with a chromosome p by a vector with m
positions p = {x1, x2, x3, ..., xm}, where each
component xi represents a gene.
 The most known among the chromosomes
representation ways are: the binary representation and

the representation by integers. The binary
representation is a classic one.
 However, in this paper the representation by
integers was used, because the genes of each
chromosome are composed by the adjust coefficients
ki and wi which are integer values.
 With regard to chromosome size, i.e., how many
genes each chromosome will have, will depend upon
the number of membership functions defined by user.
For a fuzzy control with a group of 18 membership
functions, for example, there will be chromosomes
with 36 genes. This happen because for each function
we have two adjust coefficients: ki and wi. A 36
positions vector then represents the chromosome.

3.3 Evaluation Function
This function deals with the evaluation of the aptitude
level (adaptation) of each chromosome generated by
algorithms. For the present problem the aim is to
minimize the vehicle-parking route. For this case the
evaluation function (2) is given by:

FA = 1 / (1 + I). (2)

 Where I is the total iterations up to parking,
regarding the adjustment made for each chromosome
in the membership function. According to this
function, each chromosome aptitude will be inversely
proportional to the iterations number.

3.4 Genetic Operators
The genetic operators come from the natural
evolution principle and govern the chromosomes
renewal. The genetic operators are necessary for the
population diversification, and the acquired
adaptation characteristics from former generations are
preserved.
 The crossover process, or recombination,
comprises a random cut upon father chromosomes in
which genes will be changed, generating two
descendents. For example, let us consider two-father
chromosomes p1 - p2. A cross-point is randomly
chosen. The former information up to this point in
one of the fathers is linked to the latter information to
this point into other father.
 The mutation process consists in making the
changes according to the adjustment value, defined
by the user in the values of one or more chromosome
genes. For an adjustment value of 10, for example,
the change of a selected gene will fall into some
value of the interval [-10, 10].

3.5 Renovation and Selection Criteria
The renovation and selection criteria introduced in
this modulus, through the algorithms, were the
reproduction one. Reproduction is a process in which
the chromosomes copies are used for the next
generation, according the evaluation function values.
Chromosomes with high aptitude value will
contribute with one or more exactly equal
descendents for the next generation.
 The next generation of effectively reproduced
chromosomes number is given by the whole part of
the expected descendants from each chromosome.
This process was introduced through the roulette
technique, where the chromosomes that show a
bigger adaptation have greater probability to be
selected.
 Finally, the roulette turns a determinate number of
times, depending on the chromosomes number
necessary for the population completion, and the ones
drawn by the roulette are chosen as the chromosomes
that will take part in the next generation.

3.6 Stop Criteria
The stop criteria used was the one that defines the
maximum number of generations to be produced.
When genetic algorithms, the new populations
generating process is finished, and the best solution to
complete the generation number is the one among the
individuals better adapted to the evaluation function.

3.7 Algorithm Presentation
Being G the generation number, P the population, Pc
the crossover rate (recombination), Pm the mutation
rate and VA the allowed adjustment value for
membership functions, the algorithm shown bellow
generates as starting the vector s with G positions.
Each one of the vector elements is the best
chromosome of one generation.
STEP 1. Generate initial population P with genes

in the interval [-VA, +VA].
STEP 2. Evaluate population P. Store in vector s

the best chromosome.
STEP 3. If completed in the generation number G

go to STEP 13.
STEP 4. Calculate the aptitude regarding

population P.
STEP 5. Calculate the expected descendents from

population P.
STEP 6. To draw descendents from population P’

starting from population P.
STEP 7. Compose the grouping of population P’.
STEP 8. To draw the cross-point for the father

chromosomes of population P’.

STEP 9. Make the crossing for population P’
according to Pc.

STEP 10. Make the mutation in each chromosome
according to Pm.

STEP 11. Evaluate the population P’. Store in
vector s the best chromosome. Make P =
P’.

STEP 12. Go back to STEP 3.
STEP 13. End.

4 PSO Training Modulus
Particle Swarm Optimization (PSO) [3] finds the
optimal solution by simulating such social behaviors
of group as fish schooling or bird flocking. That is,
PSO is an optimization method that uses a principle
of social behavior of a group. A group can achieve
the objective effectively by using the common
information of every agent and the information
owned by the agent itself.
 PSO was basically developed through simulation
of bird flocking in two-dimension space. The position
of each agent (particle) is represented by XY-axis
position and the velocity is expressed by vx and vy
(the velocity of X-axis and Y-axis respectively). The
agent position is modified by the position and
velocity information.
 The concept of PSO can be described as follows:
Each agent knows its best value so far (pbest) and its
(XY) position. Moreover, each agent knows the best
value in the group (gbest) among pbest. Each agent
tries to modify its position using the current velocity
and its position. The velocity of each agent can be
calculated using the equation (3):

vi

k+1 = wi x vi
k + c1 x rand x (pbesti – si

k)
 + c2 x rand x (gbest – si

k). (3)

 Where:

vi
k: Velocity vector of agent i at iteration k;

vi
k+1: modified velocity of agent i at next iteration

k+1;
si

k: Positioning vector of agent i at iteration k;
rand: random number between 0 and 1;
pbest : best position found by agent I;
gbest: best position found by agent group;
ci: weight coefficients for each term;
wi: weight function for velocity of agent i.

 The current position of an agent is calculated by
the equation (4):

si

k+1 =si
k + vi

k+1. (4)

4.1 The Integration of the PSO with Fuzzy
Control

The integration of PSO algorithms with fuzzy control
was made as follow [5]:

• The subpopulation was defined as a link of
the membership functions adjustment values;

• The parameters are the centers and widths of
each fuzzy set. These parameters compose
the particle (agent);

• To check the performance of the fuzzy
system it is rolled up from a initial set of
possible parameters;

• These information are used for set up each
subpopulation adjustment (adaptability) and
making the evolution of these subpopulation;

• The cycle repetition is made up to completion
of the defined PSO iteration number made by
the user. For each PSO iteration it is found
the best values set for the membership
functions parameters.

 For the PSO training it is possible to define the
initial locations, as to evaluate each subpopulation the
vehicle will start from, representing the membership
parameters set of values, looking for the control
optimization not for a sole route but for all possible
initial locations from which the vehicle can start for
parking.
 The evaluation function applied was the same as
in GAs. According this function, each subpopulation
aptitude will be inversely proportional to the
iterations number.

4.2 PSO Representation of Solutions
The fuzzy control usually is composed by many
functions. So, for this problem it is necessary to use
the subpopulation concept. The solution for a
problem is associated with a population of particles
composed subpopulation sp by a vector with m
positions sp = {p1, p2, p3, ..., pm} where each
component pi represents an agent (particle). Each
subpopulation represents one possible solution.
 However, each particle position is composed by
the adjustment coefficients ki and wi which are integer
values.
 With regard to subpopulation size, i.e., how many
agents each subpopulation will have, this depends on
the number of membership functions defined by user.
For a fuzzy control with a group of 18 membership
functions, for example, there will be subpopulation
with 36 agents. This is because for each function we
have two adjustment coefficients: ki and wi. A 36
positions vector then represents the subpopulation.
Each particle position is composed by the adjust
coefficients ki and wi.

4.3 Algorithm Presentation
Being IP the PSO iteration number, P the population,
N the subpopulation number, M the particle number,
Vmax the velocity max number and VA the allowed
adjustment value for membership functions, the
algorithm shown bellow generates as a start the
vector gbest with M positions to store the best
subpopulation result.
STEP 1. Generate initial subpopulation with

particles in the interval [-VA, +VA] for
all subpopulation (N);

STEP 2. Generate initial Velocity Vx and Vy using
random values and don’t exceed the
Vmax for all subpopulation (N);

STEP 3. Evaluate subpopulation (SPi). If F (SPi) is
better than the pbesti, the F(SPi) is set to
pbest. If pbest is better than gbest, the
positioning vector pbest is set to gbest;

STEP 4. Calculate a new subpopulation velocity
values using Eq. (3) for (SPi);

STEP 5. Calculate a new subpopulation SPi values
using Eq. (4);

STEP 6. IF the iteration number (I) does not
complete the Subpopulation number (N)
go to STEP 3;

STEP 7. If the PSO iteration number reaches to the
pre-determined one (IP), then stop.
Otherwise, go to STEP 3.

5 Tests and Results
Table 1 shows the three start positions used for tests
and the vehicle’s number of iterations until parking,
using the originals and trained membership functions.
 These positions were chosen according to the
points where the vehicle doesn’t follow a good route
till parking. The definition of several initial positions
will result in a global minimization of traveled space.
The defined GAs and PSO parameters are shown in
Table 2 and 3 respectively.
 Table 4 presents the simulation results made
starting from initial positions not used in the training.
 The results presents an average reduction of
iterations number for vehicle to reach the final
position for the PSO and GAs trained control. These
values represent the global reduction of vehicle route
starting from positions not used in AGs and PSO
training. The PSO training algorithm is slower than
GAs training, because of the amount of
communication performed by the particles (agents)
after each iteration.
 It is possible to notice that in some positions
(position 8) the iterations number is bigger than the
ones generated by the original control (without
training). This increase comes from the modifications
made in the membership functions, that makes the
vehicle to change for a different route to reach the
final position.

Table 4. Simulations results

Iterations generated by Fuzzy Controls Position X Y Car
Angle Original Trained GAs Trained PSO

1 1 126 182 450 329 445
2 6 46 132 167 154 306
3 8 41 190 1000 1000 1000
4 15 70 -90 318 162 313
5 70 95 -6 263 275 257
6 74 69 -70 453 456 450
7 76 193 232 605 363 363
8 88 46 44 283 305 289
9 115 120 240 463 411 289

10 131 140 -72 457 292 512
11 141 69 -28 342 314 225
12 154 166 -80 863 436 950
13 160 135 268 1101 545 445
14 217 66 -50 684 325 506
15 228 194 -48 830 655 476
16 246 169 154 312 307 310
17 250 180 -40 739 800 489
18 265 170 -40 672 329 483
19 300 124 258 317 306 308
20 305 156 -40 521 318 449

Total 10840 8082 8865
Average 542 404,1 443,25

Table 1. Start positions before and after training with time spent in seconds.
Position X Y Car

angle
Iterations without

training
Iterations with
PSO training

Iterations with
GAs training

1 25 120 180 330 285 280
2 160 130 -90 888 592 384
3 275 160 -40 655 439 277

Total 1873 1316 941
Average 624.33 438.66 331.67

Time (seconds) 1891 1166

Table 2. GA parameters.
Population Size 14
Generations Number 30
Crossover Probability 90%
Mutation Probability 1%

Table 3. PSO parameters.

Population Size 14
Iteration Number 30
Vmax 10

5 Conclusions
The fuzzy systems are a convenient and efficient
alternative for solution of problems where the fuzzy
state are well defined. Nevertheless, the project of a
fuzzy system may became difficult for large and
complex systems, when the control quality depends
on subjective decisions to define the best membership
functions to solve the problem.
 This paper presented and compared the Particle
Swarm Optimization and the Genetic Algorithms
training modulus, applied to fitting fuzzy membership
functions. As a case study, a computing package for
the fuzzy logic teaching is used. The PSO and GAs
training modules developed in this work are added in
this package with an automatic technique for the
fitting of the membership functions parameters. This
technique shows that the performance of a fuzzy
control may be improved through the AGs and PSO
algorithms.
 The genetic algorithms provided distinctive
advantages for the optimization of membership
functions, resulting in a global survey, reducing the
chances of ending into a local minimum, once it uses
several sets of simultaneous solutions. The fuzzy
logic supplied the evaluation function, a stage of the
genetic algorithm where the adjustment is settled.
 PSO is able to generate an optimal set of
parameters for fuzzy reasoning model based on either
their initial subjective selection or on a random
selection. It is also shown that by training this
algorithm with some specific start positions it is
reached a good global optimization result.
 The implementation of PSO is easier than GAs,
but the PSO training algorithm is slower than GAs
training, because the needs of communication
between the particles (agents) after each iteration.
Both algorithms show better results than fuzzy
control, and some studies are under development to
improve the PSO algorithm [6].

References:
[1] G. Lambert-Torres, V.H. Quintana & L.E. Borges

da Silva - “A Fuzzy Control Lab for Educational
Purposes,” Proceedings of the Canadian
Conference on Engineering Education, pp. 117-
124, Kingston, Canada, Jun. 16-18, 1996.

[2] D. Park, A. Kandel & G. Langholz - “Genetic-
Based New Fuzzy Reasoning Models with
Application to Fuzzy Control,” IEEE
Transactions on SMC, Vol. 24, No. 1, pp. 39-47,
January 1994.

[3] J. Kennedy and R.C. Eberhart - "Particle swarm
optimization," Proceedings of the 1995 IEEE
International Conference on Neural Networks,
vol. 4, 1942-1948. IEEE Press.

[4] M.A. Carvalho, G. Lambert-Torres, L.E. Borges
da Silva & J.O.P. Pinto, “Fitting Fuzzy
Membership Functions using Genetic
Algorithms.” In: Proceedings of the 2000 IEEE
International Conference on Systems, Man, and
Cybernetics, Oct. 8-11, 2000, Nashville, USA.

[5] A.A.A. Esmin, A.R. Aoki & G. Lambert-Torres -
“Fitting Fuzzy Membership Functions using
Particle Swarm Optimization.” In: Proceedings of
the Sixth ICNNSC - International Conference on
Neural Networks and Soft Computing, June 11-15,
2002, Zakopane, Polish.

[6] Y. Shi and R.C. Eberhart, "A modified Particle
Swarm Optimiser", Proceedings of the IEEE
International Conference on Evolutionary
Computation, Anchorage, Alaska, May 4-9, 1998.

