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Abstract: - Electrical Tomography consists in reconstruction the image of the body interior on the measur-
aments made on the it’s surface. Mathematically it can be described as a coefficient inverse problem for
the Laplace equation, written in the divergent form. The coefficient is the functions of the space variables
and characterize the electrical properties of a media. Well know and the most developed now approach is
Electrical Impedance Tomography, that includes the resistence and capacitance tomographies. It use the
measuraments of the voltages on the surface produced under the the known injected currents. This method
has some advantiges, but it’s algorithmic realization is sufficiently hard, because of nonlinear structure
of the mathematical model. We propose here another approach for the plane case, based on the original
use of the Radon transformation. We use regularization by spline-approzimation method for the explicit
realization of the inverse Radon transformation, that leads to the fast algorithm of the image reconstruc-
tion. These approach and algotithms are justified with the numerical experiments on the simulated model

problems.
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1. Introduction

Electrical Tomography consists in reconstruction
the image of the body interior on the electrical char-
acteristics measurements made on its surface [1],
[2]. Well know and the most developed now ap-
proach is Electrical Impedance Tomography (EIT),
that includes the resistance and capacitance tomo-
graphies. In a plane case EIT can be mathemati-
cally described as a coefficient inverse problem for
the Laplace equation, written in the divergent form
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where z,y € Q - some region on a plane, u(z,y)
is potential, the function T' = T'(x,y) characterize
the admittivity of a media. The goal of EIT is to
reconstruct the admittvity distribution of the inte-
rior of the object on the knowledge of measurements
of the voltages on the surface. It use the so-called
complete electrode model, when the voltages on the
surface are produced under the known injected cur-

rents. This approach leads to nonlinear and ill-

posed problem. As the rule, the Tikhonov regular-
ization scheme is used to solve it. This method has
some advantages, but its algorithmic and software
realization for desired image reconstruction are suf-
ficiently complicated because of nonlinear structure
of the corresponding mathematical model.

We propose here another more simple approach
for the measurement of the external data that is
explicated here more detailed for the plane case.
Proposed measurement scheme leads in the radial
symmetric case to the classic Radon transforma-
tion [10]. To solve the corresponding inverse prob-
lem we use in the radial symmetric case the ex-
plicit form of the inverse Radon transformation and
regularization by spline-approximation method for
it calculation. It leads to the fast algorithm of
the image reconstruction and a simple computer
programs. In the general case we propose a new
G —transformation, related with the Radon trans-
formation. We obtain the basic integral equation
and propose the simplified algorithm for its numer-
ical solution. These approach and algorithms are
justified with the numerical experiments on the sim-



ulated model problems.

2. Coefficient inverse problem for the elliptic
equation

The inverse problem for the equation (1) consists
in reconstruction of the coefficient 7. This scheme
can appear in the component quantification prob-
lem for the fluids of complex mixture (for example,
mixture of gas, oil and water). If the solution u is
known and initial conditions for T are given, then
in principle it is possible to solve the partial differ-
ential equation of the first order concerning 7' by
the characteristics method [7]. The main system of
the differential equations is the next
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where u;:,u; are nonzero derivatives of the func-
tion u(x,y) on z and y accordingly. If the func-
tion u is given in a discreet form on some red, the
approach of the construction numerical algorithms
for this type of equations on the base of the local
spline approximation formulas was proposed in [8],
[9]. If the input data are noised values of the func-
tion it is possible to realize the regularization with
the Full Spline Approximation Method (F.S.A.M.)
[14] -[17]. We use here the adopted for considered
case F.S.A.M., that includes four recursion steps: 1)
pre-smoothing the input data by explicit approxi-
mation cubic splines Si; 2) pre-reconstruction of re-
quired functions by calculations with given formulas
or by numerical solution of the equation, describing
the process; 3) post-processing, including the post-
smoothing and projecting of the pre-reconstruction
on the set, that characterizes special properties of
the exact solution of the problem; 4) stop rule in
the form of the residual principle. The theoretical
justification of the regularization properties of this
algorithm for sufficiently general cases can be cho-
sen in [3] - [6], [14] -[17].

3. The General Ray principle and its application
to the Electric tomography

3.1.The General Ray principle and the basic in-
tegral equation

Let us consider the problem of the image recon-
struction of the structure, consisting of the compo-
nent with different characteristics, under the influ-
ence of the known external physical field or rays.

The image of the distribution of this characteristics
are described inside the plane domain €2 by some
function g(z,y), that must be reconstructed based
on indirect boundary observations. To construct
the algorithms of the desired image reconstruction
we propose here the General Ray (GR) principle. It
consists in the next assumptions:

1) the considered influence of the external physi-
cal field or rays can be ii)mulated mathematically by
the plane vector field V () parallel to the direction
of the ray along the straight line [ ;.

2) this field is homogeneous on the direction or-
thogonal [; .

3) the field V' (1) is characterized with some func-
tion u(x,y);

4) we can measure the values of the difference
v = u(z',y') — u(2®4%) in any boundary points.
Py = (2, y') and Py = (2°,9°). of the domain;

5) the values of derivatives du(x,y)/0l on all di-
rections [ give us the possibility to reconstruct the
function g(z,y).

It is easy to observe that the tomography such as
electrical, ultrasonic and radioisotope imaging [1],
can be considered under this GR-principle due to
the choice of the measurement scheme.

The line [ has the parametric presentation p =
x cosp + ysinp, where |p| is a length of the per-
pendicular, passed from the center of coordinates
to the line [, ¢ is the angle between the axis x and
this perpendicular. Hence, using this parametriza-
tion, we present the function v = v(p, ). If v(p, )
is given for all p, p,then, using the Radon transfor-
mation [10]

du(z,y)
R = —=2dt 3
w = [, (3)
x = pcosy —tsinp,
y = psing +1icosp,

we can obtain as the mathematical model of the
GR-principle the basic linear integral equation

Glu] = Rlug]cos ¢ + Rluy|sing = v(p, ) (4)

of the first kind with respect to the function u(z,y).
Investigation of the G—transformation shows that
G is unbounded operator from the Lo into Lo,
bounded from the Sobolev space WQ(I) into Lo, that
defines the character of the instability at the solving
the equation (4). It is possible to prove the unique-
ness of the solution of the basic integral equation



on the set of the functions u that equal to zero in
one fixed point (Z,7) on the boundary.

We will consider the Electri@)l Tomography
scheme, when the external field V (I) is the elec-
tromagnetic field. It initiates some distribution of
the electric potential u(z,y) inside the domain €2,
which we define for simplicity as a unit circle. The
function g(z,y) is the admittivity function T'(z,y).
We suppose that the measurement scheme is a ” par-
allel”, i.e., we have the 2(2n — 2) electrodes uni-
formly and symmetrically distributed on the unit
circle at the points {¢;, p;} such as to the every pare
P, = {t;,p;} corresponds P; = {—t;,p;}. These
electrodes serve as sources of the electric field and
also as measurement units. The realization of the
General Ray principle consists in the measurement
of the difference of the potential for the angle ¢ =0
between points P; and P;,i = 1,...,(2n — 2). Then
for values ¢; = w(i — 1)/(2n — 2) we rotate the
scheme of measurements on this angle, that corre-
sponds to the scanning by the rotating field V ().

3.2. Electrical tomography in the case of the radial
symmetry.

In the case of the radial symmetry the potential
u = u(r) does not depend on the angle ¢ and it
is sufficient to use in the measurement scheme only
¢ = 0. Equation (1) transforms into the equation
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the mentioned basic integral equation (4) trans-
forms into well known Abel s equation:
I ow(t)dt
w
IR w(p), peo,1], 6
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with respect to the function w(r) = wu,(r) that
has the explicit relation with 7T'(p) by the formula
T(p) = ¢/pw(p), ¢ = const. Hence, the reconstruc-
tion of the function u(p) give us possibility to re-
construct the desired electric admittvity distribu-
tion g = T'(p). The instability of the solution of the
equation (7) is equivalent to the instability of the
problem of the numerical differentiation. We use as
he input data the measured values of the difference
of potentials v; = v(p;) +&;, in the boundary points
of the n parallel lines, corresponding to p; = ih,
h =1/n, & <6, i = 1,..,n. The formula for

calculation of the function w is based on the ap-
proximate calculation of the explicit inverse Radon
transformation:

w(p) = /(m\[ti, —p*)+ (7)
XH: % |:1/\/t12+1 —p* - 1/\/7512 —Pz] :

i=k+1

We applied the described above F.S.A.M. algo-
rithm. Let us present outcomes of some model
numerical experiments. We underline, that in this
scheme we use as the input data the values of the
simulated potential on the boundary only, not in-
side the circle. For the exact T(r) = 11 = 0.5,
r€0,03]; T(r) =Ty, =2,r € [0.3,0.7]; T(r) =
T3 = 1, r € [0.7, 1]; we calculated the exact
uw(r) = 2Inr —1.5In(0.3) +0.5In(0.7) +1, r € [0,
0.3]; w(r) = 0.5lnr +0.5In(0.7) + 1, » € [0.3,
0.7;u(r) = Inr 4+ 1, r € [0.7, 1]. The simulation
consists in the construction of the model potential
distribution in the domain Q for the known 7T'(p)
under the influence of the known external el@)tric
field. We considered the plane vector field V (x)
parallel to the direction of r independent on .
The simulated relative exact values of the func-
tion v(p) can be calculated by formulas: v(p) =
2[(1/Ty = 1/13)5 +(1/T1 — 1/T2)Z +T/T3], p € [0,
0.3]; v(p) = 2[(1/Ty — 1/T3)y +7/T3], p € 0.3, 0.7);
v(p) = 2T/T3, p € [0.7, 1], where T = (1 — p?)!/2,
7= (0.72 = p>)1/2, Z = (0.3% — p>)'/2. We used the
values v(p;) with the additional random errors as
the input data.

We note that in considered case 1" presents
some piece-wise constant function, corresponding
the electric properties of the mixture components.
Although the theoretical foundation of F.S.A.M. is
given for the smooth functions, however, the pro-
posed algorithm gives good results of the recon-
struction of the coefficient 7" in considered case too.
Moreover, if the values of this constants {T;} are
known a priori, we include this information into
the algorithm as the last post-processing step, that
consists in the projection the result of the post-
smoothing on the set {7;}. This projection can be
realized with respect to the absolute or the relative
criteria. If the values {7;} have not very different
scale, the absolute criterion gives good results, oth-
erwise we need to use the relative criterion.

In Fig. 1 the results of the coefficient T' re-




construction for n = 21, § = 0.05 are pre-
sented as maps of isolines. Graph (a): the exact
T(z,y); graph (b): reconstruction on noised sim-
ulated data without regularization; graph (c): re-
construction on noised simulated data by spline-
approximation method without post-processing;
graph (d): F.S.A.M. reconstruction on noised sim-
ulated data with the post-processing (absolute cri-
terion).
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Figure 1: Regularization effect at the coefficient T
reconstruction in the radial symmetric case.

3.3. The general case.

It is possible to look for the approximate so-
lution of the integral equation (4) in the general
case by spline-approximation method with realiza-
tion the pre-reconstruction using the collocation
scheme [17]. The most simple variant corresponds
to the linear splines in the collocation scheme and
to the cubic splines for recursive smoothing. We
will locate in Cartesian coordinates the approxi-
mation of the potential of electric field u(z,y) as
a bipolinomial spline s(x,y) = Zf’;;% ¢ij Si ()
si(y), [z,y] € Q@ C [-1,1] x [-1,1]. B-splines s;
are constructed on the corresponding uniform grids
on z and y. Substituting s(x,y) into equation (4)
and using collocation conditions on the correspond-
ing grids {p},{vr},l,k = 1,...,2n — 2, we obtain
the system of linear algebraic equations concern-
ing {c;j}. Together with the condition s(Z,7) =
0 and with periodicity and symmetry it gives us
sufficient number of equations to determine desired
coefficients. Then it is possible to construct ap-

proximation for u(x,y) and recuperate the function
T(z,y) from equations (2). In principle, proposed
scheme, based on the G—transformation for electric
tomography images reconstruction, is more simple
then traditional schemes of electrical tomography.
But it is also unstable as the problem of twice nu-
merical differentiation and we need regularize it, for
example with the spline-approximation algorithms.
Proposed scheme has also sufficiently grand number
(2n — 1)? of equations. That is why we developed
the simplified approximate algorithm for the solu-
tion of the equation (4). It consists in the following
approximate presentation of the function vy(x,y) =
ou(z,y)/0l for ¢ = 0 and z,y belonging to the line

l:
2n—2

7(pat) = Z Q5,557 (p)Sj(t),

ij=1

(8)

using B—splines, constructed on
the grids {p;}, {t;}. Substituting (8) it into equa-
tion (4) we have for every p; relations

2n—2
> si(p)bi = w(pi,0), (9)
=1
2n—2 ton—1
bZ' = Z az-yj/ Sj(t)dt. (10)
1 t1
J
From the explicit formulas of

spline-approximation theory [3], [4] we obtain ap-
proximate averaged values b; =~ v(p;,0). To recon-
struct the tomography image function T'(z,y) we
use the described scheme for all {¢x} with rotat-
ing of the investigated object and inverse rotation
after the approximation. We extend the approxi-
mate averaged values along the line [ for all p and
use the coincidence condition for calculate recuper-
ation of the T'(x,y). Proposed ”averaged-rotating”
algorithm appears effective for the piece-wise con-
stant function T'(z,y) = T3, x,y € Q;,if the values
of this constants {7;} are known a priori and it is
necessary to reconstruct the distribution of subdo-
mains €; inside the circle. We include the special
projection procedure into our algorithm as the last
post-processing step. We obtain the good quality of
the reconstruction of the tomography image if the
values {T;} have not very different scale.

Some results of numerical experiments with exact
simulated data are presented on the Fig. 2, 3. In



the little circle 7' = T1, in the middle circle T' = T5,
in the unit circle T = T3 . Graphs (a) - exact image;
(b), (c), (d) - reconstructed by ”averaged-rotating”
algorithm for n = 11, 21, 31 correspondingly.
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Figure 2: Reconstruction the electrical tomography
image for T1=1, T2=2, T3=3 with n=11, 21, 31.
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Figure 3: Reconstruction the electrical tomography
image for T1=3, T2=2, T3=1 with n=11, 21, 31.
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