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Abstract: — The Welch-Berlekamp (WB) key equation arises in the decoding of Reed-Solomon (RS) codes over
finite fields where the decoding problem is viewed as a rational interpolation problem. The significance of this
decoding approach lies in the fact that it does not require the prior evaluation of power sum symmetric functions,
i.e. the so-called syndrome vector corresponding to a received word. It has recently been shown that RS codes
over Zg, g a prime power, can also be decoded in the same way as their field counterparts. The purpose of this
paper is therefore to present a generalization of a WB-type algorithm for solving the key equation over a Galois

ring.
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1 Introduction

In [7], a new key equation based on rational interpo-
lation for algebraically decoding Reed-Solomon (RS)
codes over finite fields was given. This decoding
strategy dispenses with the need of having to com-
pute syndromes and hence boasts a significant compu-
tational advantage over conventional syndrome-based
decoding procedures in this respect, particularly for
long codes and when the number of correctable er-
rors in a received word is large. Motivated by this
computational advantage, we extend in [2], the ap-
proach of [7] to decode RS codes over Z, where ¢
is a prime power. In particular, we gave a charac-
terization of the set of minimal solutions to the key
equation over Z,[[X]] as well as a modified Welch-
Berlekamp (WB) algorithm for solving it. This al-
gorithm is only valid when the cardinality of the pre-
scribed set of interpolating points is four, which in the
decoding context, implies that it is only applicable to
double-error correction. Here, we present a different
WB-type algorithm for solving the key equation with-
out any restriction on the order of the data set. With
it, the extended decoding approach of [2] can now be
applied to RS codes over 7, of arbitrary minimum
distance.

As the underlying algebraic structure that we will be
working with is a Galois ring, we begin with a brief
review of some basic facts about it.

2 Galois rings

The Galois extension ring R = GR(q,a) is the quo-
tient ring given by Z,[y|/® where p is prime, [ > 1,
q = p! and @ > 1. The polynomial ® € Z,[y] is
a basic irreducible polynomial of degree a, i.e. it is
irreducible both over Z, and GF(p). Further, R is
a commutative ring with identity consisting of all the
polynomials of degree at most a — 1 over Z,. Addi-
tion and multiplication is modulo ®.

Let 1), denote the induced (polynomial) reduction
mapping, i.e. ¥, : Zg[y]/® — Z,[y]/® where @
is the image of ® over GF(p), and let K = ker v,
Then v, : R/K = Z,[y]/® = GF(p®), and K is a
maximal ideal of R and is generated by p.

Any element of R\ {0} is either a unit or a zero
divisor. By [6, Theorem V.1], K is the set of zero
divisors in R, which implies that the zero divisors
in R are those elements divisible by p. Any element
r € R\ {0} can be written as r = u - p’ where u is a
unit in R, and ¢t (0 <t <[ — 1) is the unique power
of p, [8, p. 308]. Thus, for r,7’ € R, r'|r if and only
if log, " < log, 7.

From [6, Theorem XVI.9], the group of units in R
can be expressed as a direct product of cyclic groups.
One of these groups has order p* — 1 = n, say, and
ged(n, q) = ged(n, p) = 1. Let  be primitive in this
cyclic group. Thus this group consists of all the roots



of X" —1in R, ie {1,7,...,7" '}

3 The Welch-Berlekamp key equa-
tion

Assume all polynomials are in R[X] and all symbols
in R. By f and \f, we denote the degree, respec-
tively, the leading coefficient of the polynomial f.

The decoding technique of RS codes over Z; of [2]
concerns determining the pair (P, Q) € R[X]? satis-
fying the key equation

5:Q(zi) = P(xy),

with 0P < 0Q < |L/2], @ minimal, AQ a unit in
R. Throughout, we shall take the x; to be contained
in distinct cosets of v, i.e. 2; € vJ* + K such that
Ji # Jr if i # k.

Let S € R[X], 0S5 < L — 1 satisfy S(z;) = 0 for
i=0,1,...,L —1and let H = [[Z /(X — z).
Observe that such an S is well-defined as x; — x; is
a unit and hence invertible for 7  j. So (1) can be
recast as

i=0,1,....,L—1 (1)

QS — P=0mod H. 2

4 An iterative solution

In this section, we give an iterative method for solv-
ing (2). Throughout, for (P,Q),(P,Q’) € R[X]?
and f,g € R[X], we take f(P,Q) + g(P,Q’) to
mean (fP, fQ) + (gF', gQ’).

Let HO = Z;lo(X — x1) and let the R[X]-
submodule M) of R[X]? contain all solutions to the
key equation modulo H®, i.e.

JW“:“RQyQS—PEOmﬂHm}
We obtain the following sequence of modules
ME) c MEY . c MO = R[X)?

which is strictly increasing, since (0, H?) ¢ M® \
Mi+1)

Suppose (P,Q) € MY. The discrepancy d of
(P, Q) is the obstruction to (P,Q) from also being
contained in MU*Y and is given by the quantity
siQ(zi) — P(x;). Thus, if d = 0, then (P,Q) is
also an element of M(+1) . On the other hand, if

(P,Q) ¢ MU+D) 5o that d # 0, then by commutativ-
ity, it can be verified that

(P.Q)~ 5(P.Q)

is an element of M+ where (P, Q') € M@ such
that its discrepancy d’ divides d. Trivially,

(P7 Q)(X - xi—l)
is also contained in M(+1),

Adopting the terminology of [3], the rank of (P, Q) €
R[X]? is the quantity max{20P + 1,25Q}, written
Rank(P, Q). We state a useful result.

Theorem 1 Let (P,Q) and (P',Q') be such that
Rank(P, @) > Rank(P’,Q"). Then for any r € R,

(i) Rank((P, Q) + (P, @) = Rank(P,Q),

(ii) if Rank(P, Q) is even, then \(Q —r@') = \Q;
otherwise, \(P —rP’") = \P.

Proof. (i) Suppose Rank(P,@Q) is odd and
Rank(P’, Q') is even. Then 2P + 1 <
Rank(P’, Q') = 26QQ" < Rank(P,Q) = 26P+1 and
s0 0(rP') < dP' < 0P and in turn 6(P+rP") = §P.
Further, Rank(P, Q) > 26Q and so max{25(r@Q’) <
26Q', 26QQ} < Rank(P, Q). Thus,

Rank((P,Q) + r(P', Q')
= max{25(P + TP/) +1=20P+1,

26(Q +rQ") < max{26(rQ’), 20Q}}
= Rank(P,Q)

as required. If however, Rank(P, Q) is odd. Then
Rank(P, Q) = 20Q > Rank(P’,Q’) = 26Q’ and so
Rank((P, Q) + (P, @) = 20(Q + Q') = 26Q =
Rank(P, @), as required. The proof for the case when
Rank(P, @) is even is similar. (ii) is a simple conse-
quence of (i). i

Extending the definition of complementary inter-
polants of [1] to R, we say that (P,Q), (P',Q’) €
M@ are  complementary if Rank(P,Q) +
Rank(P',Q') = 2i + 1 and P'Q — PQ =
up' 1 H};lo(X — x — z) where u is some unit
in R and z; € K. One checks that the following [
pairs

0,77, 7,0, j=1,2,...1



are complementary interpolants in M(®. We shall
use these 20 elements of M to initialize our it-
erative procedure and thus fix (P Q09)) =
(0,p771) and (POIH) QOIH) = (p/~1,0) for
7 = 1,2,...,1. The reason for this will be clear
in the following section.

At the i-th iteration, the idea is then to compute 2/ el-
ements (PU+LD, QUFHLY | (Pl+12) Qi+1.20)
of MU+1) from 21 elements (P®1), Q1) .
Q2D of M® obtained from the previous iteration.
Denoting the discrepancy of (P(7) QU1)) e M®)
as d;, we update (P%9), Q7)) as follows:

Suppose d; # 0. If there exists a k such that dy|d;
and Rank(P0R) Q0R) < Rank(P04), Q)
then set (PUTLI) QUtLi)) = (pld) QJ)) —
j—i(P(i’k),Q(i’k)). If no such k exists, then set
(p(iH,j)’Q(HLj)) - (p(i,j)jQ(i,j))(X — ;). On
the other hand, if d; = 0, then we simply set
P+LI) QU+1)) = (PGd) Q(9)), In both cases,
(PUHLI) QUL ¢ ppitD),

These statements give rise to an iterative procedure
which we formally state in Algorithm 1 below.

Algorithm 1 (Rational interpolation over a Galois
ring)

forj:zltoldo

(PO, QD)) := (0,p'~ )
(P(OJ’Jrl)’Q(OJJFl )= (pP~1,0);

fori:=0to L —1do
for j: =110 2l do

dj = SiQ(i’j) (SCZ) — P(i’j) (ZCZ),
for j =110 2l do
if dj =0 then
(p(iJrLJ')7 Q(Hl,j)) — (P(m')7 Q(Z}j));
else

if 3k such that dk|dj and Rank(PF) QU:k))

< Rank(P®7) QU9)) then

(p(i+17j)’Q z+1 9)) =(PUd), Q1)) —

dj (P(z k) Q(z,k))’

else

(PE+LI) QALY .= (PI) QU)X — ),
Return the (P9) QW9)) for which N\QW7) is a
unit and its rank is as small as possible.

Remark 1 Whenl = 1 so that R is a field, Algorithm

(P(i,2l)’

1 reduces to what is essentially the WB algorithm of

[3].

At this point, we have only showed that the algorithm
computes 2 elements of Mt in the i-th iteration.
We proceed with a detailed example on Algorithm 1,
deferring the remaining justification to the next sec-
tion.

Example 1 Consider R = Zyo, H = [[2_(X —57),
sop =8, 81 =34, s =19 and s3 = 18. In the ini-
tialization phase, we have (POY QOD) = (0,1),
(P02 Q0.2 = (0,7), (PO QO3)) = (1,0) and
(POY, Q) = (7,0).

In the first iteration, the discrepancies of the
(P(O’j), Q(O’j)) are as follows: dy =8, do =17, d3 =
48 and dy = 42. Accordingly, the (P(%9) Q9)) are
updated as follows:

(PY, QM) 0D -1)=(0,X~-1)
(P12 Q(12)) 0,7)(X —1)=(0,7X —7)
(P13 QU3 = (1,0) - %(0, 1) = (1,43)
(P QL) (7,0) — g(o, 7) =(7,7).

In the second iteration, we have di = 38, dy = 21,
ds = 40 and dy = 35. Accordingly,

38

1,4
S (1,43)

(PEY,QEV) = (0,X-1) -

26X+39)
0,7X —7) —

35,7X + 28)

(

(
(PE,QE¥) = (0,7
(P39,Q%) = El 43)(X —5)

(
(7,
(

(7 7)

X + 44,43X + 30)

X =7)

7X +14,7X + 14).

(P(274)7 Q(274)) —

In the third iteration, we have di = 14, dy = 0,
ds = 3 and dy = 21. Accordingly,

(PGD QBDY = (26, X +39)(X — 25)
26X + 36, X? 4 14X +5)

(
(
(35,7X -+ 28)
(
(X

(P2, Q)
(P9, QE9)

X + 44,43X + 30)(X — 25)
2 419X +27,43X% 4+ 33X



+34)
(PBA QB (7X 4+14,7X + 14) — %(26,
X +39)
= (7X +24,30X +29).
In the final iteration, we have di = 21, dy = 0,

ds = 6 and dy = 42. Accordingly,

(p(4,1)’ Q(471)) (26X + 36, X2 + 14X + 5) —

4—;(7)( + 24,30X + 29)
= (47X +24, X% 4+ 48X +15)
(P42 QU2 = (357X + 28)
(P43 Q43)) (X2 +19X +27,43X2% + 33X
+34)(X —27)

= (X®4+41X% +4X +6,43X3
+48X?% + 25X + 13)
(P QWY = (7X +24,30X + 29)(X — 27)
= (7X? 431X +38,30X? + 3X
+1).

5 Connection to Grobner basis of
M)

Now, Rank(0, X?) < Rank(0, X7) and Rank(X?, 0)
< Rank(X7,0) for i < j, and Rank(X7,0) <
Rank(0, X?) for j + 1 < 4. Thus, by ordering
with respect to their ranks, the terms whose lin-
ear combination over R gives a prescribed element
(P,Q) € R[X)?, we may define the leading mono-
mial lm(P, Q) of (P,Q) in the usual way. That is,

AP - XoF
lm(P, Q) = { on AQ - Xég;

By Theorem 1(ii), for ¢ = 0,1,...,L, the 2 el-
ements (P4D, QG . (P2 QE2D) of M)
computed by Algorithm 1 satisfy Im(P(7) Q1)) =
(07 p]'*lX‘SQ(i’j)) and lm(P(ivj+l)7 Q(ivj+l)) =
(pP~LXOPTY o) for j=1,2,... L

Let A be an R[X]-submodule of R[X]?. A set
G = {g1,---,9n} € A of nonzero elements is a
Grobner basis of A if for each a € A, there ex-
ists an @ € {1,...,n} such that lm(a) is divisible by
Im(g;). An arbitrary subset G of R[X is called a
Grobner basis if it is a Grobner basis of the ideal (G)
generated by G.

Rank(P, @) even
otherwise.

By [4, Theorem V.3], since (H®,0) and (0, H®)
are elements of M® fori =1,2,...,L, M@ is an
R[X]-submodule of R[X[> having ordered Grobner
basis of the form

{(a(i,l)’ b(i’l)), (a(i,Q)’ b(i,Q))7 o (a(z’,2l)’ b(i,QZ))}

where Im(a®,b09)) = (0, pi=1x%“") and
Im(a®3+0,p0540) = (pi=1x2 0) for j =
1,2,...,l. By the same theorem, we have that the
ranks of these 2/ interpolants are uniquely determined

by M and so we may associate with it, the vector

(PED P62 620

P

where 7(*7) denotes the unique rank of (a*7), b(:9)),

We now state two key results.

Lemma 1 For j = 1,2,...,2l, either pitLi) —
T(ivj) or r(l+17]) — T(ivj) _|_ 2

Theorem 2 For k =1i,i+ 1, let M) have Grobner
basis

{(a(k,l)7 b(k’l)), (a(k;,2)’ b(k;,2)) (a(k,QZ)7 b(k,QZ))}

where lm(a(kyj)’b(kvj)) = (0, pj—lXéb(k»i)) and
Im(aF7H0 pka+D) = (pjlezSa(’@’f‘*‘l)’ 0) for j =
1,2,...,0l. Further, for j = 1,2,...,2l, let oj =
sib(i’j)(xi) — a(i’j)(xi). Then for each j, there ex-
ist j' such that ojl|a; and Rank(a(i’j/),b(i’j/)) <
Rank(a™), b(9)) if and only if (7)) = ¢(+1.7),

The proofs of Lemma 1 and Theorem 2 are similar to
that of Lemma VI.1 and Theorem VL.3 in [4], respec-
tively. Term ordering is with respect to their ranks.

Returning to Algorithm 1, evidently the initial set
{(POD QO . (PO QUO2D)1 is a Grobner
basis of M(©). Next, suppose that for ¢ > 0,
{(P&D, QW)Y ... (P2 QU2DY} is a Grobner
basis of M®). Then if (P®7), Q7)) is updated as

(UL QU+Ld)y = (plid), i)y — 9 plik),

dy,
QUY),
by Theorem 1(i) we have that Rank(PU+17) QUi+1.1)

= Rank(P(4), QU9)) = ¢(3), From Theorem 2,
it follows that (P(+17) QU+1J)) is contained in a



Grobner basis of M1 On the other hand, suppose
(P9, QU9)) is updated as

(P(iJrl,j)’ Q(m,j)) _ (p(m')7 Q(i,j))(X — ;)

so that Rank(PU+17) QU+13)) = Rank(P®7), Q1))
+2 = r(59) 4+ 2. From Lemma 1 and Theorem 2,
(P (i+1’j),Q(i+1’j)) is again contained in a Grobner
basis of M) and so we have

Theorem 3 The set
{(P(i,l)’ Q(i,l))’ e (P(i,2l)’ Q(i,Zl))}

that Algorithm 1 computes is a Grobner basis of
MO for i =1,2,..., L.

Finally, from Section 3, the desired solution to the key
equation is an element (P, Q) of M) and in turn a
Grobner basis of M) such that AQ is a unit in R and
Rank(P, @) is minimal. With this, the justification
for Algorithm 1 is complete.

Example 2 In Example 1, Algorithm 1 will return
(47X + 24, X? + 48X + 15) which is the minimal
regular element in the computed Grobmner basis for

M®,

6 Concluding remarks

We have given a generalization of the WB algorithm
for solving the WB key equation over a Galois ring.
In the aforementioned decoding application, this al-
gorithm represents a significant improvement over
that given in [2] since we are no longer restricted
to double-error correction.

Finally, we recall that in the field case, the WB algo-
rithm computes a pair of complementary interpolants
in each iteration — see [1, 3]. It is likely that the

Grobner basis that Algorithm 1 computes in each it-
eration can in fact be divided into [ pairs of com-
plementary interpolants, namely, (P%7), Q(:1)) and
(Pi2=i+D) QU2=3+D) for j — 1,2, .. 1.
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