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Abstract: – The Welch-Berlekamp (WB) key equation arises in the decoding of Reed-Solomon (RS) codes over
finite fields where the decoding problem is viewed as a rational interpolation problem. The significance of this
decoding approach lies in the fact that it does not require the prior evaluation of power sum symmetric functions,
i.e. the so-called syndrome vector corresponding to a received word. It has recently been shown that RS codes
over Zq, q a prime power, can also be decoded in the same way as their field counterparts. The purpose of this
paper is therefore to present a generalization of a WB-type algorithm for solving the key equation over a Galois
ring.
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1 Introduction
In [7], a new key equation based on rational interpo-
lation for algebraically decoding Reed-Solomon (RS)
codes over finite fields was given. This decoding
strategy dispenses with the need of having to com-
pute syndromes and hence boasts a significant compu-
tational advantage over conventional syndrome-based
decoding procedures in this respect, particularly for
long codes and when the number of correctable er-
rors in a received word is large. Motivated by this
computational advantage, we extend in [2], the ap-
proach of [7] to decode RS codes over Zq where q
is a prime power. In particular, we gave a charac-
terization of the set of minimal solutions to the key
equation over Zq[[X]] as well as a modified Welch-
Berlekamp (WB) algorithm for solving it. This al-
gorithm is only valid when the cardinality of the pre-
scribed set of interpolating points is four, which in the
decoding context, implies that it is only applicable to
double-error correction. Here, we present a different
WB-type algorithm for solving the key equation with-
out any restriction on the order of the data set. With
it, the extended decoding approach of [2] can now be
applied to RS codes over Zq of arbitrary minimum
distance.

As the underlying algebraic structure that we will be
working with is a Galois ring, we begin with a brief
review of some basic facts about it.

2 Galois rings

The Galois extension ring R = GR(q, a) is the quo-
tient ring given by Zq[y]/Φ where p is prime, l ≥ 1,
q = pl and a ≥ 1. The polynomial Φ ∈ Zq[y] is
a basic irreducible polynomial of degree a, i.e. it is
irreducible both over Zq and GF(p). Further, R is
a commutative ring with identity consisting of all the
polynomials of degree at most a− 1 over Zq. Addi-
tion and multiplication is modulo Φ.

Let ψp denote the induced (polynomial) reduction
mapping, i.e. ψp : Zq[y]/Φ �→ Zp[y]/Φ where Φ
is the image of Φ over GF(p), and let K = ker ψp.
Then ψp : R/K ∼= Zp[y]/Φ = GF(pa), and K is a
maximal ideal of R and is generated by p.

Any element of R \ {0} is either a unit or a zero
divisor. By [6, Theorem V.1], K is the set of zero
divisors in R, which implies that the zero divisors
in R are those elements divisible by p. Any element
r ∈ R \ {0} can be written as r = u · pt where u is a
unit in R, and t (0 ≤ t ≤ l − 1) is the unique power
of p, [8, p. 308]. Thus, for r, r′ ∈ R, r′|r if and only
if logp r

′ ≤ logp r.

From [6, Theorem XVI.9], the group of units in R
can be expressed as a direct product of cyclic groups.
One of these groups has order pa − 1 = n, say, and
gcd(n, q) = gcd(n, p) = 1. Let γ be primitive in this
cyclic group. Thus this group consists of all the roots



of Xn − 1 in R, i.e. {1, γ, . . . , γ n−1}.

3 The Welch-Berlekamp key equa-
tion

Assume all polynomials are in R[X] and all symbols
in R. By δf and λf , we denote the degree, respec-
tively, the leading coefficient of the polynomial f .

The decoding technique of RS codes over Zq of [2]
concerns determining the pair (P,Q) ∈ R[X]2 satis-
fying the key equation

siQ(xi) = P (xi), i = 0, 1, . . . , L− 1 (1)

with δP < δQ ≤ �L/2�, δQ minimal, λQ a unit in
R. Throughout, we shall take the xi to be contained
in distinct cosets of γ i, i.e. xi ∈ γ ji + K such that
ji 	= jk if i 	= k.

Let S ∈ R[X], δS < L − 1 satisfy S(xi) = 0 for
i = 0, 1, . . . , L − 1 and let H =

∏L−1
i=0 (X − xi).

Observe that such an S is well-defined as xi − xj is
a unit and hence invertible for i 	= j. So (1) can be
recast as

QS − P ≡ 0 mod H. (2)

4 An iterative solution
In this section, we give an iterative method for solv-
ing (2). Throughout, for (P,Q), (P′, Q′) ∈ R[X]2

and f, g ∈ R[X], we take f(P,Q) + g(P ′, Q′) to
mean (fP, fQ) + (gP ′, gQ′).

Let H(i) =
∏i−1

k=0(X − xk) and let the R[X]-
submodule M(i) of R[X]2 contain all solutions to the
key equation modulo H(i), i.e.

M (i) =
{

(P,Q) : QS − P ≡ 0 mod H(i)
}
.

We obtain the following sequence of modules

M (L) ⊂M (L−1) ⊂ . . . ⊂M (0) = R[X]2

which is strictly increasing, since (0,H(i)) ∈ M (i) \
M (i+1).

Suppose (P,Q) ∈ M(i). The discrepancy d of
(P,Q) is the obstruction to (P,Q) from also being
contained in M(i+1) and is given by the quantity
siQ(xi) − P (xi). Thus, if d = 0, then (P,Q) is
also an element of M(i+1). On the other hand, if

(P,Q) 	∈M (i+1) so that d 	= 0, then by commutativ-
ity, it can be verified that

(P,Q) − d

d′
(P ′, Q′)

is an element of M(i+1) where (P ′, Q′) ∈M (i) such
that its discrepancy d′ divides d. Trivially,

(P,Q)(X − xi−1)

is also contained in M(i+1).

Adopting the terminology of [3], the rank of (P,Q) ∈
R[X]2 is the quantity max{2δP + 1, 2δQ}, written
Rank(P,Q). We state a useful result.

Theorem 1 Let (P,Q) and (P ′, Q′) be such that
Rank(P,Q) > Rank(P ′, Q′). Then for any r ∈ R,
(i) Rank((P,Q) + r(P ′, Q′)) = Rank(P,Q),

(ii) if Rank(P,Q) is even, then λ(Q − rQ′) = λQ;
otherwise, λ(P − rP ′) = λP .

Proof. (i) Suppose Rank(P,Q) is odd and
Rank(P ′, Q′) is even. Then 2δP ′ + 1 <
Rank(P ′, Q′) = 2δQ′ < Rank(P,Q) = 2δP+1 and
so δ(rP ′) ≤ δP ′ < δP and in turn δ(P+rP ′) = δP .
Further, Rank(P,Q) > 2δQ and so max{2δ(rQ′) ≤
2δQ′, 2δQ} < Rank(P,Q). Thus,

Rank((P,Q) + r(P ′, Q′))
= max{2δ(P + rP ′) + 1 = 2δP + 1,

2δ(Q + rQ′) ≤ max{2δ(rQ′), 2δQ}}
= Rank(P,Q)

as required. If however, Rank(P′, Q′) is odd. Then
Rank(P,Q) = 2δQ > Rank(P ′, Q′) = 2δQ′ and so
Rank((P,Q) + r(P ′, Q′)) = 2δ(Q+ rQ′) = 2δQ =
Rank(P,Q), as required. The proof for the case when
Rank(P,Q) is even is similar. (ii) is a simple conse-
quence of (i). ‡

Extending the definition of complementary inter-
polants of [1] to R, we say that (P,Q), (P ′, Q′) ∈
M (i) are complementary if Rank(P,Q) +
Rank(P ′, Q′) = 2i + 1 and P ′Q − PQ′ =
upl−1

∏i−1
k=0(X − xk − zk) where u is some unit

in R and zi ∈ K. One checks that the following l
pairs

(0, pj−1), (pl−j, 0), j = 1, 2, . . . l



are complementary interpolants in M(0). We shall
use these 2l elements of M(0) to initialize our it-
erative procedure and thus fix (P(0,j), Q(0,j)) =
(0, pj−1) and (P (0,j+l), Q(0,j+l)) = (pj−1, 0) for
j = 1, 2, . . . , l. The reason for this will be clear
in the following section.

At the i-th iteration, the idea is then to compute 2l el-
ements (P(i+1,1), Q(i+1,1)), . . . , (P (i+1,2l), Q(i+1,2l))
ofM(i+1) from 2l elements (P (i,1), Q(i,1)), . . . , (P (i,2l),
Q(i,2l)) of M(i) obtained from the previous iteration.
Denoting the discrepancy of (P (i,j), Q(i,j)) ∈ M (i)

as dj , we update (P (i,j), Q(i,j)) as follows:

Suppose dj 	= 0. If there exists a k such that dk|dj

and Rank(P (i,k), Q(i,k)) < Rank(P (i,j), Q(i,j)),
then set (P(i+1,j), Q(i+1,j)) = (P (i,j), Q(i,j)) −
dj

dk
(P (i,k), Q(i,k)). If no such k exists, then set

(P (i+1,j), Q(i+1,j)) = (P (i,j), Q(i,j))(X − xi). On
the other hand, if dj = 0, then we simply set
(P (i+1,j), Q(i+1,j)) = (P (i,j), Q(i,j)). In both cases,
(P (i+1,j), Q(i+1,j)) ∈M (i+1).

These statements give rise to an iterative procedure
which we formally state in Algorithm 1 below.

Algorithm 1 (Rational interpolation over a Galois
ring)

for j := 1 to l do
(P (0,j), Q(0,j)) := (0, pj−1);
(P (0,j+l), Q(0,j+l)) := (pj−1, 0);

for i := 0 to L− 1 do
for j := 1 to 2l do
dj := siQ

(i,j)(xi) − P (i,j)(xi);
for j := 1 to 2l do
if dj = 0 then

(P (i+1,j), Q(i+1,j)) := (P (i,j), Q(i,j));
else
if ∃ k such that dk|dj and Rank(P (i,k), Q(i,k))
< Rank(P (i,j), Q(i,j)) then
(P (i+1,j), Q(i+1,j)) :=(P (i,j), Q(i,j))−

dj

dk
(P (i,k), Q(i,k));

else
(P (i+1,j), Q(i+1,j)) := (P (i,j), Q(i,j))(X − xi);

Return the (P (L,j), Q(L,j)) for which λQ(L,j) is a
unit and its rank is as small as possible.

Remark 1 When l = 1 so that R is a field, Algorithm

1 reduces to what is essentially the WB algorithm of
[5].

At this point, we have only showed that the algorithm
computes 2l elements of M(i+1) in the i-th iteration.
We proceed with a detailed example on Algorithm 1,
deferring the remaining justification to the next sec-
tion.

Example 1 Consider R = Z49, H =
∏3

i=0(X − 5i),
s0 = 8, s1 = 34, s2 = 19 and s3 = 18. In the ini-
tialization phase, we have (P(0,1), Q(0,1)) = (0, 1),
(P (0,2), Q(0,2)) = (0, 7), (P (0,3), Q(0,3)) = (1, 0) and
(P (0,4), Q(0,4)) = (7, 0).

In the first iteration, the discrepancies of the
(P (0,j), Q(0,j)) are as follows: d1 = 8, d2 = 7, d3 =
48 and d4 = 42. Accordingly, the (P (0,j), Q(0,j)) are
updated as follows:

(P (1,1), Q(1,1)) = (0, 1)(X − 1) = (0,X − 1)
(P (1,2), Q(1,2)) = (0, 7)(X − 1) = (0, 7X − 7)

(P (1,3), Q(1,3)) = (1, 0) − 48
8

(0, 1) = (1, 43)

(P (1,4), Q(1,4)) = (7, 0) − 42
7

(0, 7) = (7, 7).

In the second iteration, we have d1 = 38, d2 = 21,
d3 = 40 and d4 = 35. Accordingly,

(P (2,1), Q(2,1)) = (0,X − 1) − 38
40

(1, 43)

= (26,X + 39)

(P (2,2), Q(2,2)) = (0, 7X − 7) − 21
35

(7, 7)

= (35, 7X + 28)
(P (2,3), Q(2,3)) = (1, 43)(X − 5)

= (X + 44, 43X + 30)
(P (2,4), Q(2,4)) = (7, 7)(X − 7)

= (7X + 14, 7X + 14).

In the third iteration, we have d1 = 14, d2 = 0,
d3 = 3 and d4 = 21. Accordingly,

(P (3,1), Q(3,1)) = (26,X + 39)(X − 25)
= (26X + 36,X2 + 14X + 5)

(P (3,2), Q(3,2)) = (35, 7X + 28)
(P (3,3), Q(3,3)) = (X + 44, 43X + 30)(X − 25)

= (X2 + 19X + 27, 43X2 + 33X



+34)

(P (3,4), Q(3,4)) = (7X + 14, 7X + 14) − 21
14

(26,

X + 39)
= (7X + 24, 30X + 29).

In the final iteration, we have d1 = 21, d2 = 0,
d3 = 6 and d4 = 42. Accordingly,

(P (4,1), Q(4,1)) = (26X + 36,X2 + 14X + 5) −
21
42

(7X + 24, 30X + 29)

= (47X + 24,X2 + 48X + 15)
(P (4,2), Q(4,2)) = (35, 7X + 28)
(P (4,3), Q(4,3)) = (X2 + 19X + 27, 43X2 + 33X

+34)(X − 27)
= (X3 + 41X2 + 4X + 6, 43X3

+48X2 + 25X + 13)
(P (4,4), Q(4,4)) = (7X + 24, 30X + 29)(X − 27)

= (7X2 + 31X + 38, 30X2 + 3X
+1).

5 Connection to Gröbner basis of
M (i)

Now, Rank(0,Xi) < Rank(0,Xj) and Rank(Xi, 0)
< Rank(Xj , 0) for i < j, and Rank(Xj , 0) <
Rank(0,Xi) for j + 1 ≤ i. Thus, by ordering
with respect to their ranks, the terms whose lin-
ear combination over R gives a prescribed element
(P,Q) ∈ R[X]2, we may define the leading mono-
mial lm(P,Q) of (P,Q) in the usual way. That is,

lm(P,Q) =
{

(λP ·XδP , 0) : Rank(P,Q) even
(0, λQ ·XδQ) : otherwise.

By Theorem 1(ii), for i = 0, 1, . . . , L, the 2l el-
ements (P(i,1), Q(i,1)), . . . , (P (i,2l), Q(i,2l)) of M(i)

computed by Algorithm 1 satisfy lm(P(i,j), Q(i,j)) =
(0, pj−1XδQ(i,j)

) and lm(P (i,j+l), Q(i,j+l)) =
(pj−1XδP (i,j+l)

, 0) for j = 1, 2, . . . , l.

Let A be an R[X]-submodule of R[X]2. A set
G = {g1, . . . , gn} ⊆ A of nonzero elements is a
Gröbner basis of A if for each a ∈ A, there ex-
ists an i ∈ {1, . . . , n} such that lm(a) is divisible by
lm(gi). An arbitrary subset G of R[X]2 is called a
Gröbner basis if it is a Gröbner basis of the ideal 〈G〉
generated by G.

By [4, Theorem V.3], since (H(i), 0) and (0,H(i))
are elements of M(i) for i = 1, 2, . . . , L, M(i) is an
R[X]-submodule of R[X]2 having ordered Gröbner
basis of the form

{(a(i,1), b(i,1)), (a(i,2), b(i,2)), . . . , (a(i,2l), b(i,2l))}

where lm(a(i,j), b(i,j)) = (0, pj−1Xδb(i,j)) and
lm(a(i,j+l), b(i,j+l)) = (pj−1Xδa(i,j+l)

, 0) for j =
1, 2, . . . , l. By the same theorem, we have that the
ranks of these 2l interpolants are uniquely determined
by M(i) and so we may associate with it, the vector

(r(i,1), r(i,2), . . . , r(i,2l))

where r(i,j) denotes the unique rank of (a(i,j), b(i,j)).

We now state two key results.

Lemma 1 For j = 1, 2, . . . , 2l, either r(i+1,j) =
r(i,j) or r(i+1,j) = r(i,j) + 2.

Theorem 2 For k = i, i+1, let M(k) have Gröbner
basis

{(a(k,1), b(k,1)), (a(k,2), b(k,2)), . . . , (a(k,2l), b(k,2l))}

where lm(a(k,j), b(k,j)) = (0, pj−1Xδb(k,j)
) and

lm(a(k,j+l), b(k,j+l)) = (pj−1Xδa(k,j+l)
, 0) for j =

1, 2, . . . , l. Further, for j = 1, 2, . . . , 2l, let αj =
sib

(i,j)(xi) − a(i,j)(xi). Then for each j, there ex-
ist j′ such that αj′ |αj and Rank(a(i,j′), b(i,j

′)) <
Rank(a(i,j), b(i,j)) if and only if r(i,j) = r(i+1,j).

The proofs of Lemma 1 and Theorem 2 are similar to
that of Lemma VI.1 and Theorem VI.3 in [4], respec-
tively. Term ordering is with respect to their ranks.

Returning to Algorithm 1, evidently the initial set
{(P (0,1), Q(0,1)), . . . , (P (0,2l), Q(0,2l))} is a Gröbner
basis of M(0). Next, suppose that for i ≥ 0,
{(P (i,1), Q(i,1)), . . . , (P (i,2l), Q(i,2l))} is a Gröbner
basis of M(i). Then if (P (i,j), Q(i,j)) is updated as

(P (i+1,j), Q(i+1,j)) = (P (i,j), Q(i,j)) − dj

dk
(P (i,k),

Q(i,k)),

by Theorem 1(i) we have that Rank(P (i+1,j), Q(i+1,j))
= Rank(P (i,j), Q(i,j)) = r(i,j). From Theorem 2,
it follows that (P(i+1,j), Q(i+1,j)) is contained in a



Gröbner basis ofM(i+1). On the other hand, suppose
(P (i,j), Q(i,j)) is updated as

(P (i+1,j), Q(i+1,j)) = (P (i,j), Q(i,j))(X − xi)

so that Rank(P (i+1,j), Q(i+1,j)) = Rank(P (i,j), Q(i,j))
+2 = r(i,j) + 2. From Lemma 1 and Theorem 2,
(P (i+1,j), Q(i+1,j)) is again contained in a Gröbner
basis of M(i+1) and so we have

Theorem 3 The set

{(P (i,1), Q(i,1)), . . . , (P (i,2l), Q(i,2l))}
that Algorithm 1 computes is a Gröbner basis of
M (i+1) for i = 1, 2, . . . , L.

Finally, from Section 3, the desired solution to the key
equation is an element (P,Q) of M(L) and in turn a
Gröbner basis ofM(L) such that λQ is a unit in R and
Rank(P,Q) is minimal. With this, the justification
for Algorithm 1 is complete.

Example 2 In Example 1, Algorithm 1 will return
(47X + 24,X2 + 48X + 15) which is the minimal
regular element in the computed Gröbner basis for
M (4).

6 Concluding remarks
We have given a generalization of the WB algorithm
for solving the WB key equation over a Galois ring.
In the aforementioned decoding application, this al-
gorithm represents a significant improvement over
that given in [2] since we are no longer restricted
to double-error correction.

Finally, we recall that in the field case, the WB algo-
rithm computes a pair of complementary interpolants
in each iteration – see [1, 3]. It is likely that the

Gröbner basis that Algorithm 1 computes in each it-
eration can in fact be divided into l pairs of com-
plementary interpolants, namely, (P (i,j), Q(i,j)) and
(P (i,2l−j+1), Q(i,2l−j+1)) for j = 1, 2, . . . , l.
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