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Abstract:— An interactor matrix plays some important roles in control system analysis and synthesis. Recently, a
simple derivation of the interactor matrix using pseudoinverse. Unfortunately, this method is limited to square systems.
In this paper, it will be presented a simple derivation of an interactor matrix for non-square transfer function matrices.
A pseudo inverted interactorizing will be proposed and achieved by using state feedback.
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1 Introduction

A spectral factorization of transfer function matrices are
used to solve the many control problems such as filtering
[1], [2], singular LQ problem [3] and H∞ problem [4]. A
primary solution was given in [5], which was based on the
direct operations for the transfer function matrix and was
not adequate for computer calculations. Later, a method
using state space representation was shown [6]. Unfor-
tunately, the method can not be used for strictly proper
transfer function matrices.

In this paper, it will be presented a state space formula
of spectral factorization for strictly proper transfer func-
tion matrices. The basic idea is as follows: first, calculate
a unitary interactor matrix [7], [3] for a given transfer
matrix in order to make the compensated transfer matrix
be proper, and then use the classical method in [6]. A
derivation of interactor was given in [7], which is hard to
carry out by computers. The authors presented a simple
method using state space representation of given transfer
function matrix [8]. But this method is limited to non-
singular transfer functions. Therefore, it will be presented
a method to derive an interactor for non-square transfer
function matrices. It will be shown that the problem can
be solved by calculating the null space of certain matrix.

As an application of spectral factorization, it will dis-
cussed a pseudo inverted interactorizing using by state
feedback. The notion of inverted interactorizing was pre-
sented in [9]. But the method is useful for the square
and minimum phase plants. The method is closely related
to the singular LQ regulation problem [3]. In fact, the

singular LQ regulation can be solved by the inverted in-
teractorizing of the minimum phase image of given plant.
But only square plants are discussed in [3]. It will be in-
troduced a pseudo inverted interactorizing for non-square
plants, instead. Then, a method to achieve the pseudo
inverted interactorizing will be shown by using state feed-
back.

2 Simple Derivation of Interactor
Matrix

For a given m × p strictly proper and full rank transfer
function matrix, G(z), there exists an m×m polynomial
matrix, L(z), which satisfies the following equation.

lim
z→∞L(z)G(z) = K (full rank). (1)

Such an L(z) is called an interactor matrix of G(z) 1 . If
K = Im, L(z) is called an identity interactor [11]. At first,
a derivation of an identity interactor ξ(z) := K−1L(z) is
considered.

Let (A, B, C) denote a minimal realization of G(z) and

1 Although the definition [7] is restricted the structure of L(z)
(lower triangular), we do not consider such a restriction since it is
not essential in this paper.
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define T k−1 and Jk−1 by

T k−1 =




CB 0 · · · 0
CAB CB · · · 0

...
...

. . .
...

CAk−1B CAk−2B · · · CB


 ,

Jk−1 = [Im 0m×m(k−1)].

(2)

Define w as the least integer k which satisfies the following
equation.

rank
[

T k−1

Jk−1

]
= rank T k−1. (3)

Let an identity interactor, ξ(z), be described by

ξ(z) = zξ1 + z2ξ2 + · · ·+ zwξw = ξzSw−1
Im

(z),
ξ := [ξ1 ξ2 · · · ξw], ξi ∈ Rm×m

Sw−1
Im

(z) := [Im zIm · · · zw−1Im]T ,
(4)

then, from Mutoh and Ortega (1993) (or Huang et al
1997), the following equation holds:

ξT w−1 = Jw−1. (5)

Conversely, the identity interactor ξ(z) can be obtained by
solving this equation and the solvability of this is asserted
from eqn.(3). Thus, using Moore-Penrose pseudoinverse
T †

w−1 of T w−1, ξ can be calculated by

ξ = Jw−1T
†
w−1. (6)

Example 1 Consider the following transfer function
matrix [7].

G(z) =




1
z + 1

1
z + 2

1
z + 3

1
z + 4




In this case, (A, B, C) can be given by

A =




0 1 0 0
−3 −4 0 0
0 0 0 1
0 0 −8 −6


 , B =



0 0
1 0
0 0
0 1




C =
[
3 1 4 1
1 1 2 1

]
.

In this case, w = 3 and using the pseudoinverse of

T 2 =


 CB 0 0
CAB CB 0
CA2B CAB CB


 ,

we have

ξ =
[
0.75 0.75 0.25 −1.25 0.5 −0.5
−0.5 −0.5 0 1 −0.5 0.5

]
,

ξ(z) =
z

2

[
z2 + 0.5z + 1.5 −z2 − 2.5z + 1.5

−z2 − 1 z2 + 2z − 1

]
.

3 Properties of the Interactor Ma-

trix

In this section, we consider the properties of the interactor
by the proposed method. For the pseudoinverse of T w−1,
we have the following Lemma.

Lemma 1 There exists a matrix P such that



CB
CAB

...
CAw−1B


 ξξT +

[
0m×mw

T w−2

]
PξT = ξT . (7)

(Proof). From eqns.(2) and (6), the first m rows of
T †

w−1 must be ξ. So using some matrix P , we can write

T †
w−1 =

[
ξ
P

]
. (8)

Since T †
w−1 is the Moore-Penrose pseudoinverse of T w−1,

(T w−1T
†
w−1)

T = T w−1T
†
w−1. (9)

Substituting eqn.(8) into the above equation, we have




CB
CAB

...
CAw−1B


 ξ +

[
0m×mw

T w−2

]
P =

[
ξT P T

]
T T

w−1. (10)

By postmultiplying the above equation by ξT and then
using eqn.(5), eqn.(7) can be obtained. ✷

The explicit form of P will be given in Appendix A.

Theorem 1 Let

ξ∼(z) = ξT (z−1) = z−1ξT1 + z−2ξT2 + · · ·+ z−wξTw ,

F = ξ



CA
CA2

...
CAw


 , Ow−1(C,A) =




C
CA
...

CAw−1


 ,

AF := A−BF.
(11)

If ξ is given by
ξ = Jw−1T

†
w−1, (12)

then the following properties hold:

P1 ξ(z)ξ∼(z) = ξξT , (13)
P2 Ow−1(C,AF )B = ξ†, (14)
P3 CAw

F = 0. (15)
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(Proof of P1). From eqn.(5),

ξw 0 · · · 0
ξw−1 ξw · · · 0
...

...
. . .

...
ξ2 ξ3 · · · ξw


 T w−2 = 0. (16)

Using eqn.(7),

ξw 0 · · · 0
ξw−1 ξw · · · 0
...

...
. . .

...
ξ1 ξ2 · · · ξw


 ξT

=



ξw 0 · · · 0
ξw−1 ξw · · · 0
...

...
. . .

...
ξ1 ξ2 · · · ξw







CB
CAB

...
CAw−1B


 ξξT

+



ξw 0 · · · 0
ξw−1 ξw · · · 0
...

...
. . .

...
ξ1 ξ2 · · · ξw




[
0m×mw

T w−2

]
PξT

=



ξw 0 · · · 0
ξw−1 ξw · · · 0
...

...
. . .

...
ξ1 ξ2 · · · ξw







CB
CAB

...
CAw−1B


 ξξT

=
[
0m(w−1)×m

Im

]
ξξT , (17)

which implies that ξ(z) has the all-pass property, i.e., P1
holds.

(Proof of P2). Since F is the state feedback gain of the
inverted interactorizing, the closed-loop transfer function
matrix GF (z) = ξ−1(z) is given by

GF (z) =
∞∑

i=1

z−iCAi−1
F B. (18)

From the all-pass property of ξ(z), there exists an integer
k such that

CAj
FB = 0, ∀j ≥ k. (19)

Since
G∼

F (z)GF (z) = (ξ∼(z))−1ξ−1(z) (20)
holds,

BTOT
k−1(C,AF )




CB 0 · · · 0
CAFB CB · · · 0

...
...

. . .
...

CAk−1
F B CAk−2

F B · · · CB




= [(ξξT )−1 0m×m(k−1)],

BTOT
k−1(C,AF )



CAi

FB
...

CAk+i
F B


 = 0p×p (i ≥ 1).

(21)

On the other hand, since GF (z)ξ(z) = Im, we have



CB 0 · · · 0
CAFB CB · · · 0

...
...

. . .
...

CAw−1
F B CAw−2

F B · · · CB
...

...
...

CAk−1
F B CAk−2

F B · · · CAk−w
F B






ξw
ξw−1

...
ξ1




=


 0m(w−1)×m

Im
0m(k−w)×m




(22)

for k ≥ w. Shifting the above relation, the following equa-
tion holds.



CB 0 · · · 0
CAFB CB · · · 0

...
...

. . .
...

CAw−2
F B CAw−3

F B · · · CB
...

...
...

CAk−1
F B CAk−2

F B · · · CAk−w
F B






ξ1 · · · ξw
...

. . .
...

0 · · · ξ1




=
[

Imw

0m(k−w)×mw

]
(23)

−




CAFB · · · CAw−1
F B

...
...

CAw
FB · · · CA2w−1

F B
...

...
CAk

FB · · · CAk+w−1
F B






ξ2 · · · ξw 0
...

. . .
...

...
ξw · · · 0 0




Premultiplying the above equation by BTOT
k−1(C,AF )

and then using eqn.(21), it follows that

BTOT
w−1(C,AF )

=BTOT
w−1(C,AF )




CB 0 · · · 0
CAFB CB · · · 0

...
...

. . .
...

CAw−2
F B CAw−3

F B · · · CB
...

...
...

CAk−1
F B CAk−2

F B · · ·CAk−w
F B




×



ξ1 · · · ξw
...

. . .
...

0 · · · ξ1


 (24)

= [(ξξT )−1 0m×m(k−1)]



ξ1 · · · ξw
...

. . .
...

0 · · · ξ1




= (ξξT )−1ξ = (ξ†)T .

Thus, P2 holds.
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(Proof of P3). From eqn.(14),

BTOT
w−1(C,AF )Ow−1(C,AF )B = (ξξT )−1 (25)

holds. On the other hand, from eqn.(21),

BTOT
k−1(C,AF )Ok−1(C,AF )B = (ξξT )−1. (26)

If k > w, then CAk
FB = 0 and it contradicts to the defi-

nition of k. Thus, k ≤ w in eqn.(19). Therefore,

CAw
F [B AFB · · · Ai

FB · · ·] = 0 (27)

can be obtained. From the reachability of (AF , B), P3
holds. ✷

P1 implies that ξ(z) has the all-pass property in the
discrete-time. Therefore, all zeros of the interactor lie at
the origin. Since F is the state feedback gain for the
inverted interactorizing [9], P2 and P3 imply that the
Markov parameters of the closed-loop system are given by
the pseudoinverse of the coefficient matrix of interactor.

The following Corollary is obvious consequence if the
general solution of eqn.(5) is considered.

Corollary Using the free parameter Λ ∈ Rm×mw,
define

L0 = ξ + Λ(Imw − T w−1T
†
w−1). (28)

Then, the identity interactor can be parametrized as fol-
lows:

L(z) = zL0S
w−1
Im

(z) + ξ0, (29)

where ξ0 ∈ Rm×m is an arbitrary.

4 Non-Square Transfer Matrices

4.1 Tall Transfer Matrices

In this case, m > p. Without loss of generality, assume
that K has the following form:

K =
[

Ip
0(m−p)×p

]
(30)

According to the above portion, L is also divided as follow:

L =
[

L1

L2

] } p-rows
} (m− p)-rows . (31)

Thus, algebraic equation corresponding to eqn.(5) can be
written by

L1T w−1 =
[
Ip 0p×p(w−1)

]
(32)

L2T w−1 = 0(m−p)×pw. (33)

In order to guarantee the unitarily of interactor, eqn.(32)
should be solved by using pseudoinverse as in Theorem 1,

and then the orthogonal unit bases in the left null space
of 


LT

w L
T
w−1 · · · LT

1 0 · · · 0
0 LT

w · · · LT
2 LT

1 · · · 0

T w−1

...
...

. . .
...

...
. . .

...
0 0 · · · LT

w L
T
w−1 · · · LT

1


 (34)

should be calculated.

Example 2 Consider the following transfer function
matrix.

G(z) =




1
z + 1

1
z + 2

1
z + 3

1
z + 4

1
z + 5

1
z + 6




In this case, (A, B, C) can be given by

A =




0 1 0 0 0 0
0 0 1 0 0 0

−15 −23 −9 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 −48 −44 −12



,

B =
[
0 0 1 0 0 0
0 0 0 0 0 1

]T

C =


 15 8 1 24 10 1

5 6 1 12 8 1
3 4 1 8 6 1


 .

Then, using the pseudoinverse of

T 2 =


 CB 0 0
CAB CB 0
CA2B CAB CB


 ,

the solution L1 of eqn(??) is given by

L1 =
[
L1 L2 L3

]

=
[
.1846 .1846 .1846 .0359 −.3333 −.7026

−.1385 −.1385 −.1385 .0564 .3333 .6103

.4962 −.4962 −.0038
−.4346 .3692 .0654

]
.

Then, a soution L2 of eqn.(33) is given by calculating the
orthogonal unit bases of the left null space of

 LT
3 L

T
2 L

T
1 0 0

T 2 0 LT
3 L

T
2 L

T
1 0

0 0 LT
3 L

T
2 L

T
1




to guarantee the unitarily of interactor, which is given by
as follow:

L2 =
[
.2116 .2116 .2116 .4231 0 −.4231
−.2909 .5818 −.2909 ]

.
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Thus, the interactor is given by

L(z) =

z




.4962z2 + .0359z −.4962z2 − .3333z −.0038z2 − .7026z
+.1846 +.1846 +.1846

−.4346z2 + .0564z .3692z2 + .3333z .0654z2 + .6103z
−.1385 −.1385 −.1385

−.2909z2 + .4231z .5818z2 + .2116 −.2909z2 − .4231z
+.2116 +.2116


 .

4.2 Fat Transfer Matrices

In this case, a special form of K cannot be assumed. How-
ever, T †

w−1 can be calculated. Therefore, L can be written
by

L = Jw−1T
†
w−1 = K(T †

w−1)(1 : p) (35)

where (T †
w−1)(1 : p) denote the matrix consisting of the

first p-th rows of T †
w−1. Then, substituting eqn.(35) to

eqn.(5),

K
{
(T †

w−1)(1 : p)T w−1 −
[
Ip 0p×p(w−1)

]}
= 0. (36)

By calculating the left null space of the above matrix, K
and thus L can be determined.

Example 3 Consider the following transfer function
matrix.

G(z) =




1
z + 1

1
z + 2

1
z + 3

1
z + 4

1
z + 5

1
z + 6




In this case, (A, B, C) can be given by

A =




0 1 0 0 0 0
−4 −5 0 0 0 0
0 0 0 1 0 0
0 0 −10 −7 0 0
0 0 0 0 0 1
0 0 0 0 −18 −9



,

B =


 0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1




T

C =
[
4 1 5 1 6 1
1 1 2 1 3 1

]
.

Then,

(T †
2)(1 : 3)T 2 −

[
I3 03×6

]

=


−.1471 .2941 −.1471 .0588 0 −.0588
.2941 −.5882 .2941 −.1176 0 .1176

−.1471 .2941 −.1471 .0588 0 −.0588
.0588 .0588 .0588

−.1176 −.1176 −.1176
.0588 .0588 .0588




and K, L and L(z) can be obtained as follows:

K =
[−.6802 .0262 .7326
.6088 .5768 .5447

]
,

L =[−.3763−.3763−.2113 .9177−.2355 .2335
.1060 .1060 .1430−.1751 .0107−.0107

]
,

L(z) =

z

[−.2355z2 − .2113z − .3763 .2335z2 + .9177z − .3763
.0107z2 + .1430z + .1060 −.107z2 − .1751z + .1060

]

5 Pseudo Inverted Interactorizing
by State Feedback

Throughout this section, assume that G(z) has no invari-
ant zeros on the unit circle, and m ≥ p, which means G(z)
has more outputs channel than inputs. Let (A,B,C) de-
note a minimal realization of a given transfer matrix G(z)
and L(z) denote a unitary interactor ofG(z). Then, a real-
ization of L(z)G(z) can be written by (A,B, Ĉ.D̂) defining

Ĉ = L1CA+ L2CA
2 + · · ·+ LwCA

w (37)
D̂ = L1CB + L2CAB + · · ·+ LwCA

w−1B (38)

where Li is defined in eqn.(4). It is well known that the
spectral factor G̃1(z) of L(z)G(z) which satisfies

G∼(z)L∼(z)L(z)G(z) = G̃∼
1 (z)G̃1(z) (39)

is given by

G̃1(z) =
[
A B

C̃ (Ip + (BTXB)1/2)

]
(40)

where

C̃ = (Ip +BTXB)−1/2(BTXA+ D̂T Ĉ) (41)

and X is the positive definite solution of the following
discrete-time Riccati equation [6]:

X = ATXA+ ĈT Ĉ

−(ATXB + ĈT D̂)(Ip +BTXB)−1(BTXA+ D̂Ĉ).
(42)

Note that a spectral factor G̃1(z) of L(z)G(z) is also a
spectral factor of G(z) since L(z) is a unitary interactor
and

G∼(z)L∼(z)L(z)G(z) = G∼(z)G(z).

Therefore, the above spectral factor G̃1(z) can be consid-
ered as a minimum phase image of G(z).

Since a unitary interactor of spectral factor G̃1(z) is
Im, the feedback gain Ft of the inverted interactorizing
for G̃1(z) is given by [9]

Ft = Im · C̃ = C̃. (43)
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Then, the control input u(t) is given by

u(t) = Ftx(t). (44)

Applying the above feedback gain Ft, the poles of closed-
loop system divide the following three parts:

(a) the poles corresponding to the zeros of the interactor.

(b) the poles corresponding to the stable zeros of G̃1(z).

(c) the poles corresponding to the minimum phase image
of anti-stable zeros of G̃1(z).

Therefore, by canceling the poles of (b), the closed-loop
system is given by the inverted interactorizing part plus
inner matrix (all-pass transfer matrix) part.

6 Conclusions

In this paper, we presented an easy and direct method
to compute an interactor matrix. For this derivation, we
only calculate the pseudoinverse and null space of some
Toeplitz matrix. The interactor can be applicable for spec-
tral factorization and inner-outer factorization for strictly
proper transfer function matrices. We also presented the
notion of pseudo inverted interactorizing. This is a nat-
ural extension of the inverted interactorizing for square
transfer matrix.

A Appendix A

From the existence of P ,

(Im(w−1) − T w−2T
†
w−2)(



ξT2
ξT3
...
ξTw


 − MξξT ) = 0 (45)

holds. Using the singular value decomposition, T w−2 can
be written as

T w−2 = U
[
Σ 0
0 0

]
V T . (46)

Since eq.(5) implies

[ξ2 ξ3 · · · ξw]T w−2 = 0, (47)

postmultiplying eq.(47) by V
[
Σ−2 0
0 0

]
V T gives

[ξ2 ξ3 · · · ξw](T †
w−2)

T = 0. (48)

Using a free parameter matrix Z ∈ Rm(w−1)×mw, the gen-
eral solution of eq.(7) is given by

P = (Z − T †
w−2T w−2ZξT (ξ†)T )− T †

w−2Mξ. (49)

Then define a free parameter matrix Z by

Z =
[
0m(w−1)×m T †

w−2

]
. (50)

It is easy to verify that the above Z (in T †
w−1) satisfies

the rest of conditions for the pseudoinverse, i.e.,

(T †
w−1T w−1)T = T †

w−1T w−1,

T w−1T
†
w−1T w−1 = T w−1,

T †
w−1T w−1T

†
w−1 = T †

w−1.

(51)
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