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Abstract: — This paper present a methodology for fault diagnosis in power transformers using an Adaptative
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concentration in power transformers.
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1 Introduction

The transformers are key pieces in power systems. The
operative conditions of the system can be highly influ-
enced by variations in the behavior of this equipments.
Faults, such as overhathing, arch or partial discharges
can cause interruptions in the supply of energy result-
ing in high costs. This faults are unchained by elec-
tric, thermal and mechanics stresses what the trans-
former is submitted during its operation. During the
occurrence of these faults the insulating material of the
transformers are degraded, resulting in the generation
of gases. The type, the amount and the proportion of
these gases depend on the type of degraded material, of
the responsible phenomenon for the degradation and
the levels of energy involved in the action. This way
it is possible to characterize the type and the severity
of the fault through the analysis of the gases compo-
sition that find dissolved in the insulating oil avoid-
ing the inconveniences of the unexpected loss of the
transformer, increasing, with that, the reliability of the
system.

Several criteria for the fault diagnosis in trans-
formers starting from the analysis of the dissolved
gases in the oil has been developed and it has been
used broadly. These criteria, called DGA (Dis-
solved Gas Analysis), involve several methods, such
as the Key Gas Method [7], the Dörnenburg Ra-
tio Method [14], the Rogers Ratio Method [12],[13],

among others.
An relatively new approach for transformers di-

agnosis is the use of fuzzy logic and neural net-
works. Some diagnosis systems based on these meth-
ods are developed with the purpose of diagnosing
faults in transformers through the Dissolved Gas Anal-
ysis (DGA) in the insulating oil. Dukarm [3] shows as
fuzzy logic and neural networks are being used to au-
tomate of the standard DGA methods and to improve
your usefulness for the diagnosis of lacks. In [4] an
approach of artificial neural network (ANN) is pre-
sented for diagnosis and detection of faults in power
transformers based on the DGA methods. A method
in two stages is used to detect faults. Two ANN’s are
proposed, being one to diagnose the principal types of
faults in the transformer (overheating, arch, etc.) and
other to identify damages to the cellulose insulating.
Huang [15] presents a Evolutionary Fuzzy System Di-
agnosis (EFDS). In this system the conventional DGA
criteria are used to build the initial architecture of the
system, including the diagnosis rules and the member-
ship functions of the fuzzy subsets. After this first step,
a genetic algorithm is applied so that, with base in pre-
vious tests of dissolved gases and your real fault types,
the diagnosis rules and the membership functions of
the fuzzy subsets are simultaneously adjusted in order
to obtain the best performance for the group of sam-
ples given. In [11] is presented a neuro-fuzzy hybrid
system that combines a ANN with a fuzzy evolution-



ary expert system , with the purpose of allying the ad-
vantages of high learning and high capacity of non lin-
eal map of ANN’s with the explicit knowledge repre-
sented by the rules of a fuzzy expert system. Hell [10]
presents a Fuzzy Neural Network approach (FNN) that
use training data sampled in field to increase the diag-
nosis accurate for a set of equipments. In [5] a Koho-
nen Neural Network approach is presented. The appli-
cation of this technique in the solution of the proposed
problem is due to the hight capacity patterns classifica-
tion and low computational cost if compared the other
diagnosis systems.

In this work an approach using an Adaptative
Neuro-Fuzzy Inference Systems (ANFIS) [9] was
used with the purpose of to set the membership func-
tions of expert systems based on real data picked in
field and your real faults types, to increase the effi-
ciency of the diagnosis system for a group of equip-
ments.

2 Problem Formulation

Attempts of diagnosing faults in transformers from
gases generated after the occurrence of fault started in
the decade of 50, having as base the gases collected
in the Buchholz relay. In 1956 a detailed assessment
of faults from the collected gases was published [1].
Although the importance of the analysis of the gases
collected in the Buchholz relay had been unquestion-
able, the obtained results were usually late, because
to have a considerable amount of gases that allow to
accomplish the diagnosis, the internal degradation in
the transformer it had already reached advanced stage.
Just with the arrival of techniques of liquid chromato-
graph, capable to analyze small oil samples with great
precision and sensibility, was possible a new vision of
the problem. In 1968 started a regular accompaniment
by chromatographic analysis of gases dissolved in the
insulating oil and, according to [6], in 1970 over one
thousand units of 132, 275 and 400 KV voltage rating
were monitored at least annually. The collected data
showed that all the transformers, including the slightly
loaded, they developed hydrogen and other gaseous
hydrocarbons, although in little amount. In 1973 was
published [6] a theoretical thermodynamic evaluation
of the insulating oils in which suggested that the pro-
portion of each hydrocarbon in the oil varies in agree-
ment with the temperature of its decomposition point.
That led for the hypothesis that each gas would reach
your maximum concentration degree in a specific tem-

perature. With base in these studies, several methods
of diagnosis of faults from dissolved gas analysis in
the insulating oil were proposed, among which it is
possible to emphasize:

2.1 Key Gas Method

The diagnosis through Key Gas Method is based on
the predominance of a certain gas in relation to the
Total of Dissolved Combustible Gases (TDCG) in the
insulating oil. The TDCG is calculated adding the con-
centrations of hydrogen (H2), methane (CH4), ethane
(C2H6), ethylene (C2H4), acetylene (C2H2) and car-
bon monoxide (CO) that find dissolved in the oil. In
this method the absolute concentrations (in ppm) and
the generation rates (in ppm/dia) of the gases they are
used to be determined the type and the intensity cer-
tain faults. Based on experimental data was possible
to establish concentration limits which, if exceeded in
small proportion, it served as first indicative of abnor-
mality. From this limits a four-condition criterion was
developed to classify risks to transformers. This crite-
rion use both concentrations for separate gases and the
total concentration of all combustible gases, as showed
in Table 1.

Table 1. Concentration Limits
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0 No fault < 100 < 120 < 35 < 50 < 65 < 350 < 2500 < 720

1 Fault(s) may be present

2 Fault(s) are probably present
701 to 
1800

401 to 
1000

51  to    
80

101 to 
200

101 to 
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> 100003 > 1800 > 1000 > 80Continued operation could result in 
failure of the transformer

> 4630

Dissolved Key Gas Concentration Limits (ppm)

> 200 > 150 > 1400

These values cannot be generalized for the sev-
eral types of transformers, because older transformers,
for example, same apparently free from faults possess
high concentrations of gases, already in the newest
these concentrations are low. The magnitude of these
normal concentrations depends broadly on factors as
age, operation conditions, etc., but limits values can
be empirically established. Once established the con-
dition of the transformer it is possible to evaluate the
probable fault type through the predominance certain
gases. These significant gases are called ”Key Gases”.
The following Table 2 indicates these ”Key Gases” and
its relatives proportions for the for general fault types.



Table 2. Key Gas Method

Characteristic Fault 
Condition

1 Oil breakdown (thermal stress) 2 16 0 63 19 0 C
2
H

4

2
Cellulose insulation breakdown 
(related to the aging process)

3 2 0 3 0 92 CO

3 Corona (electric stress) 85 13 0 1 1 0 H2
4 Arcing (electric stress) 60 5 30 3 2 0 C2H2
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2.2 Dörnenburg Ratio Method

In 1970, Fallou [7] differentiated between faults of
thermal and electrical origin by comparison pairs of
characteristic gases, with approximately equal solubil-
ities and diffusion coefficients. This method was con-
sidered promising, because it eliminated the effect of
the volume of oil of the transformer, could be applied
so much to units with great volumes of gases gener-
ated as to small units. From these considerations and
of experiences it was obtained 4 concentration ratios
of pairs of particularly useful gases [14], that are pre-
sented below:

1. CH4 Concentration of methane
H2 Concentration of hydrogen

2. C2H2 Concentration of acetylene
C2H4 Concentration of ethylene

3. C2H6 Concentration of etano
C2H2 Concentration of acetileno

4. C2H2 Concentration of acetylene
CH4 Concentration of methane

From experimental data was obtained a relation-
ship between typical faults and ranges of values related
to the above ratios, generating, like this, a criteria for
the diagnosis of faults. These ranges are shown in the
Table 3. The following rules are necessary for the ap-
plication of the ratios concentration described above in
the diagnosis process:

1. An only ratio can just be used in the diagnosis
if the concentration of one of the two gases of the rela-
tionship is twice larger than the value limits shown in
the Table 1;

2. Several ratios can be used together in the diag-
nosis if at least one of the first two ratios can be used
alone, in agreement with the rule above and, at least a
gas of those whose concentrations are formed by other
ratio, exceed the limiting value in Table 1;

3. In the case of transformers with gas cushions

(mainly nitrogen) above the oil level, the limiting val-
ues quoted in the Table 3 can be applied only to a
limited extent. If the oil volume and gas cushion are
known, the limiting values can be calculated.

This diagnosis method may be used only with
extreme caution if the dissolved gases are originated
from a fault that are not more present for some time,
because several decomposition gases travel to the sur-
face of the oil, expanding in the tank of the transformer
and escape to atmosphere, what can distort the diag-
nosis. Monoxide and dioxide of carbon are typically
related to the process of decomposition of the solid
isolation, and they are not used in the characteristic ra-
tios. The ranges of characteristic values for extracted
gases from the oil and for free gases (such as contained
them in the Buchholz relay and the ones that form the
gas cushion) related with the faults types are presented
in the tables 3 and 4, respectively.

Table 3. Ranges of characteristic values for ratios of gases
dissolved in transformer oil

Ratio of Concentations of
Dissolved Gases

Type of Characteristic Faults
Termal decomposition (hot spots)
Corona
Electrical discharges (except corona)

C  H2 2

C  H2 4 C  H2 2

C  H2 2 C  H2 6

CH 4

CH4

  H2

> 1.0
< 0.1

>0.1 e <1

< 0.75

> 0.75
*

> 0.4
 > 0.4
 < 0.4

< 0.3
 < 0.3
 > 0.3

* Not significant

Table 4. Ranges of characteristic values for ratios of free gases
(relay or cushion) in transformer

C  H2 2

C  H2 4 C  H2 2

C  H2 2 C  H2 6

CH 4

CH4

  H2

> 0.1
< 00.1
> 0.01  
e < 0.1

<1.0

>1.0
*

> 0.2
 > 0.2
 < 0.2

< 0.1
 < 0.1
 > 0.1

Ratio of Concentations of
Dissolved Gases

Type of Characteristic Faults
Termal decomposition (hot spots)
Corona
Electrical discharges (except corona)

* Not significant

A diagnosis is appropriately confirmed if two or
more of the used ratios are within the ranges of values
are typical for the same type of fault.

2.3 Rogers Ratio Method

In 1975 a statistical study in more than ten thousand
gas analysis in transformers [12] showed that cer-
tain types of faults conditions could be differentiated



within more detailed ranges and combinations of ratio
of gases. This was confirmed by internal examination
of a certain number of suspect transformers together
with units destroyed in faults, as well as for the study
of hot spots likely to be found in transformers under
operational conditions. So, was proposed a refined
code using three ratios diagnosing a larger number of
faults. The use of the code facilitated computational
programming in the development diagnosis systems.
To establish the identification of current faults a study
was accomplished in a hundred groups of oil analysis
extracted of transformers with known fault types in or-
der to evaluate the probable temperature in the which
the ratios indicate significant changes. Based on the
result of these studies and theoretical assessment, new
changes of ratios values for electric and thermal faults
were then obtained. To help in the understanding of
the technique a table were organized to indicate a more
rational progression of faults, resulting the code de-
scribed in the Table 5.

Table 5. Code for analysis of dissolved gases in mineral oil

0  (L) 1  (L) 0  (L)
1  (M) 0  (M) 0  (L)
1  (M) 2  (H) 1  (M)
2  (H) 2  (H) 2  (H)

Fault  
Code

Characteristic                                         
fault type

0 No fault 0  (L) 0  (M) 0  (L)

1
Low temperature thermal 
fault < 150º 0  (L) 0  (M) 1  (M)

2
Low temperature thermal 
fault 150º - 300º 0  (L) 2  (H) 0  (L)

3
Medium temperature thermal 
fault 300º - 700º 0  (L) 2  (H) 1  (M)

4
High temperature thermal 
fault > 700º 0  (L) 2  (H) 2  (H)

5
Low energy partial 
discharges 0  (L) 1  (L) 0  (L)

6
High energy partial 
discharges 1  (M) 1  (L) 0  (L)

7 Low energy discharges 1-2 (M-H) 0  (M) 1-2 (M-H)
8 High energy discharges 1  (M) 0  (M) 2  (H)

Ratios of                   
characteristic gasesCode of ranges ratios

< 0.1
0.1 - 1.0
1.0 - 3.0

> 3.0

PSfrag replacements

C2H2
C2H4

CH4
H2

C2H4
C2H6

In the approach proposed in this work the Rogers
ratio method is used to build the initial architecture
of the membership functions of the fuzzy subsets in
the ANFIS [10]. This method uses three relationships
of gases, obtained through chromatographic analysis.
In the fuzzy model, each set is associated with each
one of the input ratios, with defined threshold val-
ues in agreement with the original DGA method, as
can be seen in the figures presented to proceed, where
Figure 1 , 2 and 3 shows the ratios CH4

H2 , C2H2
C2H4

, and

C2H4
C2H6

, respectively. The fuzzy rules are derived of the
code presented in the Table 1 and are applied to ob-
tain the uncertain factors for the diagnosis based on
the Rogers method. To assure the consistence with the
Rogers method, the membership functions of the in-
tervals fuzzy are defined as 0.5 of the correspondents ”
crisp ” intervals limits [15]. To the obtaining of a diag-
nosis, the values of the gases ratios are applied to the
Fuzzy Inference System (FIS), where the pertinence
functions associated with the fuzzy sets, shown pre-
viously, are applied to the considered variables. The
output of the fuzzy system is one of the types of faults
presented in the Table 5, where L, M and H are the
fuzzy subsets Low, Medium and High, respectively.

Figure 1. Ratio Methane / Hidrogen
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Figure 2. Ratio Acetylene / Ethylene
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Figure 3. Ratio Ethylene / Ethane
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3 The Adaptative Neuro-Fuzzy Inference
System

The proposal of this work is to improve the efficiency
of the fuzzy inference system being used the technique
of neuro-adaptive learning in the adjustment of the



membership functions described previously, for these
functions to have better acting for a group of trans-
formers.

The basic idea behind these neuro-adaptive learn-
ing techniques is very simple. These techniques pro-
vide a method for the fuzzy modelling procedure to
learn information about a data set containing real sam-
ples and its current fault types given by [2], in or-
der to compute the membership function parameters
that best allow the associated fuzzy inference system
to track the given input/output data. This learning
method works similarly to that of neural networks.

Then the ANFIS architecture of the proposed sys-
tem is presented in the Figure 4.

Figure 4. ANFIS Structure
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According to [8], the node functions in the same
layer are of the same function family as described be-
low:

Layer 1: Every node in this layer is a square node that
represents the membership function of the lin-
guistic label (S , M and L as presented in the
Figures 1,2 and 3) and it specifies the degree to
which the given inputs Ri (i = 1, · · · ,3) satisfies
the linguistic labels.

Layer 2: Every node in this layer is a circle labelled ∏
which multiplies the incoming signal and sends
the product out. Each node output represents the
firing strength of a rule.

Layer 3: Every node in this layer is a circle labelled
N. The ith node calculates the ratio of the ith
rule’s firing strength to the sum of all rules’ fire

strengths:

ωi =
ωi

∑i ωi
i = 1, · · · ,3.

where ωi is the output of the layer 2. For conve-
nience, outputs of this layer will be called nor-
malized firing strength.

Layer 4: Every node i in this layer is a square node
with a node function:

O4
i = ωi fi = ωi(piR1 +qiR2 + siR3 + τi)

where ωi is the output of layer 3, and
{pi,qi,si,τi} is the parameter set.

Layer 5: The single node in this layer is a circle la-
belled ∑ that computes the overall output as the
summation of all incoming signals.

The system developed in this work was trained
with 40 samples and it was tested using 435 samples
of a real data base. The results are presented in the
Table 6.

Table 6. Results

Correct Diagnosis FIS ANFIS FIS ANFIS
Sample related to Type 
Fault 0

7 5 7 71% 100%

Sample related to Type 
Fault 1

34 37 34 92% 100%

Sample related to Type 
Fault 2

104 100 104 96% 100%

Sample related to Type 
Fault 3

20 19 20 95% 100%

Sample related to Type 
Fault 4

43 48 43 90% 100%

Sample related to Type 
Fault 5

0 3 0 100% 100%

Sample related to Type 
Fault 6

28 29 28 97% 100%

Sample related to Type 
Fault 7

143 131 143 92% 100%

Sample related to Type 
Fault 8

70 77 70 91% 100%

91,46% 100,00%

Input Data

TOTAL ACCURATE OF THE SYSTEMS

No. of Samples Tested % Accurate

4 Conclusions

The use of ANFIS technique has been proved to be an
accurate fault detection in powers transformers, and
the benefits of the early detection and monitoring of
incipient faults are proven and are increasingly applied
to current and emerging maintenance concepts.
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