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Abstract: We find necessary and sufficient conditions for a scalar second-order hyperbolic equation

in the plane

F(l‘,y, u>uzvuy7uxw7uxy7uyy) =0

to admit an equation in involution of order k.
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1 Introduction
Loosely speaking, a system of differential equa-
tions is in involution if there are no integrabil-
ity conditions. This is trivially satisfied if one
of the equations is a differential consequence of
the other. A nontrivial example of equations in
involution is a system

2u 2uz

Ugy = m and Ugy = + ¢( )

where ¢ is an arbitrary function. Thls can be
easily verified by taking the total derivative of
the first equation with respect to z and the total
derivative of the second equation with respect to
y to conclude that these are the same modulo the
original equations. On the other hand, the equa-
tions ugy = v and ug, = 0 are not in 1nvolut10n as
the differentiation yields u, = 0 and furthermore
u = 0. If an equation admits sufficiently many
equations in involution one may find the general
solution by integrating a system of ordinary dif-
ferential equations. Such equations are called
Darboux integrable. A well known example of a
Darboux integrable equation is Goursat’s equa-

tion [3]
2. /Uuzsu
Ugy + Y —o. (1)
z+y
It admits two equations in involution
Uy \/ 2 vV Uy
© = f(z) and Ui =9(y),
2./um Tz+y 2/uy T4y

where f(z) and g(y) are arbitrary functions. The
three equations give rise to the Frobenius system
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Op 2p Op 2,/pq
L _9 _ el A

Oq _ 2P 9 _ 2
or x4y’ 8y_2g(y)\/§ T4y’

where p = u, and ¢ = u,. Integrating this system
we obtain the general solution of (1)

Flw) + Gl)” /F dx+/G’ 24y,

U= —
where F''(z) = f(z) and G"(y) = g(y).

The objective of this paper is to find neces-
sary and sufficient conditions for a second-order
hyperbolic equation in the plane

:r-i—y

F(‘r7y7u7u£1?7uy7uzx;uxy,uyy) == 0 (2)

to admit at least one equation in involution. We
approach the problem by means of a series of
differential forms intrinsically adapted to hyper-
bolic equation (2) called the Laplace adapted
coframe [1].

2 The Laplace adapted coframe
Consider a non-degenerate, scalar equation in
the plane (2), i.e. (OF/Ouyy, OF[Ouyy, OF/Ouy,)
# 0. We assume that this equation is hyperbolic

1, OF

L )2 oF OF
4" Ougy

Oy Oy,

> 0. (3)



Moreover, we assume that all geometric objects
(i.e. functions, forms, vector fields, etc.) in this
paper are smooth.

Anderson and Kamran [1] extended the clas-
sical Laplace transformation for hyperbolic lin-
ear equations

uxy + a(m, y)uaf + b(l‘, y)uy + C(Z‘7 y)u = 07

and applied it to a formal linearization of a non-
linear hyperbolic equation (2) to derive a cofra-
me on the infinitely prolonged equation manifold
called the Laplace adapted coframe. We will
briefly recall the construction of this coframe
and its structure equations derived in [1] and
[5].

Let 7: E — M denote the trivial bundle
with local coordinates =w: (x,y,u) — (z,y) and
let 7%7: J°(E) — M be the infinite jet bundle
of local sections of m. The second-order equa-
tion (2) together with all its differential conse-
quences, defines the infinitely prolonged equa-
tion manifold R>® — J*°(E). There are two
non-proportional real roots (u, \) = (my, m,) and
(A, i) = (ng,ny) of the characteristic equation

OF , OF OF

Au+ =0

Mige Oty Oy
of (2) because the discriminant is positive (see
(3). We define characteristic total vector fields
on R* (more precisely characteristic directions)
by

X =myDy+myD, and Y =n,D,+n,D,,
where D, and D, denote the total derivative op-
erators with respect to x and y restricted to R*°.
We have now developed enough terminology to
give a precise definition of an equation in invo-
lution.

Definition 2.1. We say that the k*"-order equa-
tion
G(Z, Y, Uy Uy, Uy, - - - Ugk, Ugh—1 Uggyh—1, Uyr ) = 0

yree o Ugy

is in involution with a second-order hyperbolic
equation (2) if, restricted to the infinitely pro-
longed equation manifold R>*, X(G) =0 or Y (G)
=0.

We have
[X,Y]=PX +QY, (4)

for some functions P and Q on R*. We denote
the horizontal one-forms dual to X and Y by o
and 7 (horizontal forms are forms spanned by dz
and dy), i.e.

Restrictions of the contact one-forms

0 =du—uyde—uydy, 0;=duy—uz,dr—1uzy,dy,

0y = duy — Uzy dx — Uyy dy, ...,

to R generate the contact ideal C*°, and are
related by

oF oF oF
Ougy Oue + Oy Ouy + ou Oy

vy
OF OF OF
Oy +—0,+—60=0.
Ouy N Ouy, Y * ou 0
We rewrite this equation, using the characteris-

tic vector fields X and Y, as

+

XY(0) + Ay X(0) + By Y(0) + Co© =0, (5)
or as
YX(@) + Dy X(@) + Ey Y(@) 4+ GyO =0, (6)

where V(w) denotes the Lie derivative of w with
respect to the vector field V, © = p# for some
first-order function p = p(z,y,u, ug, u,) on R*.
Explicit formulas for the coefficients Ag, By, ... ,
Gy are found in [1]. Note that in [1] Ay is denoted
by A, By is denoted by B, etc. For convenience
we will denote © also by ny and &.

The first elements of the Laplace adapted cofra-
me are o, 7, and © = 1y = &. The next two
elements are defined by

n =Y (no) + Ao o and &1 = X (&) + Eo &.

We have
X(m)=—Bom +Homno, Y(&)=—Doé1+ Ko&o.

It is interesting to note that in terms of the co-
efficients of the forms (5) and (6) we have

Hy = X(Ag)+AoBy—Co, Ko =Y (Ey)+EqDo—Gy.



We now proceed by induction. Assume that
m,-..,n; has been constructed. Then, provided
H()?éo, H1 7&0, ceey Hi—l #0, We set

Ai=Ai 1 —Y(InH;_1) = P, niyr =Y () + Ains.
The equation
XMig1) = —Biniq1 + Him;

defines H;. This process continues until H, = 0
for some p > 0, (Ait1 is not defined), in which
case we define
NMp+i+1 = Y(np—i-z) for all 4 > 1.
Similarly, assuming that &;,...,& has been
defined and provided Ky # 0, Ky #0, ..., K;_1 #
0, we set

EBi=Ei 1 —X(InK; 1) +Q, &i1=X(&)+ Ei&.
We define K; by the equation
Y(&i41) = —Di i1 + K &

This process continues until K, = 0 for some
g > 0, and we set

Eqrivr = X(§gu4)

The forms o,7,0,n1,&1,1m2,&2, ..., define a cofra-
me on R called the Laplace adapted coframe.
The functions Hy, Hy,..., and Ky, Kq,..., are
relative contact invariants called the generalized
Laplace invariants [1]. These invariants play a
key role in Darboux integrability. In fact a hy-
perbolic equation (2) is Darboux integrable if
and only if H, = 0 and K, = 0 for some p,q > 0
[5].

It is useful to split the exterior derivative d
on R* into two components

for all + > 1.

d=dy+dy,

where
dgw=0AX(w)+7AY (). (7)

dy is called the horizontal differential and d, is
referred to as vertical differential. Notice that
this splitting does not occur on any finitely pro-
longed equation manifold. These two differen-
tials define a double complex called the varia-
tional bicomplex associated with R>°.

3

From (4) we have

dyo=—Po AT, dgT=—Qo AT,

and the rest of the d, structure equations fol-
low readily from the defining equations of the
Laplace adapted coframe and (7). In [5] we de-
rived the d,, structure equations

dV’I]iEO mod{fl,@,m,...,m} iZl,
dvfiEO HlOd{’I]l,@,fl,...,fi} 1> 1.

Moreover, we proved that the horizontal forms
o and 7 satisfy

dyo=oNm+1Aa  and  dyT = o AB+TAp2, (8)
where o, 8, u1, p2 are contact one forms; o and

(3 are in the span of ©, &,m1, &, and 7, and the
following relations hold:

dy P = X(a) — Y (1) + Pz — Qar
dyQ = X(u2) = Y(B) + Qu1 — PB,

dyB = BN (p2 —p),

dyo=a A (pr — p2).

dype =a B =—dyp,

We shall also need commutation rules for X, Y
and dy,. By Q"(al,...,a%) denote the module
generated by the set of all n-fold exterior prod-
ucts ™ A...Aair, 1<4,< ... <14, <s, over the
ring of smooth functions on R*>°. Moreover, we
denote Q*(al,...,a®) =, Q" (o, ... ,a®). For
w € Q*(O,n1,&,...) we have

dy [X ()] = X(dyw) = pn A X (w) + BAY (w),
dy [Y(w)] = Y(dyw) =aA X(w)+ p ANY (w).

To hyperbolic equation (2) we associate two

characteristic Pfaffian systems of order k, C(X)
and Ci(Y) defined by

Ckr(X)291(776751,7]1~-~>§k>77k) and

Ck(Y) = Ql(av 97517771a oo ,gkank)«
Since

dG = dyG + dyG = X(G)o + Y(G)r mod C*,



then X(G) = 0 if and only if dG € Ci(X) and
Y(G) = 0 if and only if dG € Cx(Y), provided G
is of order k. Thus we have proved

Theorem 2.2. A k**-order equation G = 0 is in
involution with a second-order hyperbolic equa-
tion (2) if dG restricted to the infinitely pro-
longed equation manifold R> belongs to one of
the two characteristic Pfaffian systems C*(X) or
Ck(Y).

3 Integrable subsystems of
characteristic systems

The question of finding equations in involution
transforms into a question of finding integrable
subsystems of characteristic systems. Let C,(fo)
(X) and C,(Coo)(Y) denote the maximal integrable
subsystems of Cp(X) and C(Y), respectively. In
[5], Theorem 5.1, page 367 we completely char-
acterized C,ioo)(X ), k > 1 for hyperbolic equations
with H, = 0, for some p > 0.

Theorem 3.1. ([5]) Let H, =0, 7 =7 — 7Y and
let T € QYO,m,&1,...,&,m) for some integer |
(1<p). Let k> 1.

If p > 2, then C](COC)(X) = Q' 7, 0py1, ..., mk) for
k> p, C(X) = QNF) if L < k < p, and C3°(X) =
{0y ifk < 1.

If p =1, then C*(X) = Q (7, na, ..., ) for k >
2, C\°)(X) = Q(7) if M, =0, and ¢{°(X) = {0}
if M, # 0.

If p =0, then C\°(X) = QY (F,my,...,m) for k >
2, ¢ (X) = QU7 m) if M, =0, and C{*(X) =
{0} if M, # 0.

In the above the one-form T = T, and the
quantity M, will be defined later in the text. So,
in fact, we only need to be concern with the case
when H; # 0 for all ¢ > 0. But this requires the
same arguments as assuming that

HO#O7 H1#07 ey Hkrfl#o'

From now on we assume that the above condi-
tions are satisfied. This way we will also prove
part of Theorem 3.1 using different arguments
then in [5].

The d;; structure equations immediately im-
ply that dimC™(X), is 0 or 1. If dimC\* (X) =
1, then again using the d;; structure equations
we deduce
CR(X) =Y (1-%), d(t—¥) =0mod{7-X},
for some contact one-form ¥ that lies in the span
of {@7 "7151; ey Me—1, §k717 Nk } Sphttlng the dif-
ferential into the horizontal and vertical compo-
nents and using equation (8) we easily conclude
that the necessary and sufficient conditions for

dir—¥)=0 mod {7—-X}
are

XO)+QEX=p  and  dyX = SA(u2-Y(X)).
Let V be a vector field on R*. A form w is
called a relative V invariant form if V(w) = A\w
for some function A. The following simple lemma

plays a key role in our arguments.

Lemma 3.2. Let ¥ be a contact form on R>®
such that

X(2)+Qx—pB=0. (9)
Then

dyE =X A (2 = Y(%)) (10)

is a relative X invariant contact form.
Proof: Using the d,, structure equations togeth-

er with the commutation rules for X, Y, and d,,,
we deduce that

0=dy(X(2)+ QY — B) = X(dy3) + Qdy ¥
+BAY(E) = pa] + [X (p2) = Y (B) — PBI AT
+ i AX(E) + QS - 8]

From Equation (9) we substitute for 8 into the
last equation to conclude

X(dyX =X A (p2 =Y (X))
+QIdvE — T A (a2~ Y(Z))] = 0.
q.e.d.

At this point recall Proposition 4.5, page
286 [1] describing the relative X invariant con-
tact forms.

Proposition 3.3. If H; # 0 for all i > 0 then
there are no nonzero relative X invariant forms.



If H, = 0 for somep > 0 and ifw € Q*(0,&1,m, &2,
M2,-..) IS a relative X invariant form, then

w e Q*(np+17np+27np+3a cee )

Let ¥ be a contact form of adapted order
< k satisfying (9). If H, =0 for some p >k,
then

Ay =S A (52— V() € Q20ps1,mpsas- ).
From the d,, structure equations it easily follows
that

Ay =S A (i — Y (2)
= 0 mod {Gaflﬂh,-- . 76/677716 }

Comparing the last two statements we deduce
that

dyX = XA (p2 — Y (X)) = 0.
If H; # 0 for all ¢ > 0 then again by Lemma
3.2 and Proposition 3.3 we conclude that the
one-form (10) vanishes. Summarizing, we have
proved

Lemma 3.4. IfHy#0, H #0, ..., Hy_1 #0,

then dimC°”(X) = 1 if and only if
X(2)+Qu—pB=0,

for some one-form ¥ € QY(O,&1m1, ..+, &y Mi)-

Moreover, in this case C,(;x’)(X) =Q(r-%).

We write 3 defined by Equation (8) as

B = b2 + 0181 + c0© + c1my + cana,
for some functions by, bs, cg, ¢1, co. Note that ¢y =
M, is a relative contact invariant that vanishes
for a Monge-Ampere equation (see [4], sec. 8).
The reader can find explicit formulas for M, in
[4], sec. 9.

Let Ho#O,Hl 750, 7Hk—1 #O, k‘Z 1. We
write

k—1 k
=g+ fO+ > fims.
j=1 i=1

Using the defining equations for the Laplace-
adapted coframe we compute

X(X) + Q% =B = grt1k+1
k
+ ) (X(g;) = (Bj — Q)gj + gj-1 — b)) &
j=1

k-1
+ Z(X(fi) = Bifi+ Hifiv1 —ci)mi

1=0

+ (X (fx) — Brfr) ks
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where gy = fo and b; = ¢; = 0 for i > 3. Setting
the above expression to zero and using Lemma
3.4 we obtain

Theorem 3.5. Let Hy #0,H; #0,... ,H,_1 #0,
k>1.

(i) The rank of ¢! (X) # 0 if and only if I, = 0
and M, = 0. In this case C°(X) = Q1(r — T).
(ii) If k > 2, then the rank of C°(X) # 0 if and
only if I, = 0. In this case C,ioo)(X) = QY (7-"s).
Here

k
Tk:b2§1+ZFﬂh, and I; = X(F;)—BiF;—c¢;

=0
where
Fy= 7X(b2) + (El — Q)bg + by and
1
Fi+1 = —ﬁ(X(FZ) — B,F; — Ci) for 0 <1< k,

and as before we set ¢; = 0 for i > 3.

Theorems 3.1 and 3.5 combine to establish
the following result.

Corollary 3.6. The hyperbolic equation (2) ad-
mits at least one nontrivial equation in involu-
tion G(,y, U, Uy, Uy . . Ugk, Ugk—1y, .., Uyr) = 0
of order k, such that restricted to R dG € C(X)
if and only if

(i) k=1: M, =0 and either Hy =0 or I, = 0;

(ii) k > 2: either H; = 0 for somei =1,2,...  k—
1orl,=0.

Similar results hold for the second charac-
teristic system Cy(Y).
We now consider an equation of the form

(11)

It is a classical result that the hyperbolic Equa-
tion (2) is contact equivalent to Equation (11)
if and only if there are two non-zero first-order
functions g; and g, such that dg; € C;(X) and
dgs € C1(Y); the contact transformation being
determined by z = ¢; and y = g». Combining
Corollary 3.6 together with a similar result for
Cr(Y) (case k = 1) immediately yields a charac-
terization of equations of type (11).

Ugy = f(xayauauxauy)'



Theorem 3.7. A hyperbolic equation (2) is con-
tact equivalent to Equation (11) if and only if
M, = M, =0 (by the results of [4] the equation
is Monge-Ampére) and the following two condi-
tions are satisfied:

(i) Either Hy =0 or I; = 0.

(ii) Either Ko =0 or J; = 0.

Here J; is an analogue of I} and M, is an ana-
logue of M,. To define these quantities recall
that the one-form « defined by Equation (8) is
in the span of ©, &1, 1, &, and ny. We write

a =dany + diny + €O + e1&1 + My&a,
Furthermore, we set

Go = —Y(d3) + (By + P)dy + dy,
1
Gy = *?O(Y(Go) — BGy — ep),

J1 = Y(Gl) — ElGl — €71.

and

4 Open problems

Due to the results of [5] the hyperbolic equation
is Darboux integrable (at level (p, q)) if and only
if there are nonnegative integers p and ¢ such
that H, = 0 and K, = 0. We say that the hy-
perbolic equation is semi-Darboux integrable if
H, =0 for some p >0 or K, = 0 for some ¢ > 0.

1. Find an algorithm that will decide whether
a hyperbolic equation (2) is Darboux integrable
(at any level). More interestingly, find an al-
gorithm that will decide whether a hyperbolic
equation (2) is semi-Darboux integrable. The
first result in this direction is due to Lie [6]. Lie
showed that there are only two Darboux inte-
grable equations of type u,, = f(u); namely the
wave equation u,, = 0 and the Lioville equa-
tion wu,, = e*. Moutard’s theorem (see [2] chap-
ter XV) characterizes hyperbolic equations (2)
which solutions u(x,y) can be written in an ex-
plicit form depending on two arbitrary functions
#(x), ¥(y) and their derivatives. Goursat [3] clas-
sified all equations of type (11) Darboux inte-
grable at levels (0,1) and (1,1). His findings were
rederived by Vessiot [9] in a more systematic
way. A new approach to this classical problem
was developed by Vassiliou [8]. A recent break-
through is a paper [7] by Sokolov and Zhiber

6

in which the authors succeeded in classifying all
nonlinear Darboux integrable equations of type
(11).

2. Find an algorithm that will determine if a
given hyperbolic equation (2) will admit an eq-
uation in involution (of any order).
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