Equations in Involution with a Scalar Second-Order Hyperbolic Equation in the Plane

MARTIN JURÁŠ

Department of Mathematics North Dakota State University

Fargo, ND 58105–5075

United States

Martin.Juras@ndsu.nodak.edu http://www.math.ndsu.nodak.edu

Abstract: We find necessary and sufficient conditions for a scalar second-order hyperbolic equation in the plane

$$F(x, y, u, u_x, u_y, u_{xx}, u_{xy}, u_{yy}) = 0$$

to admit an equation in involution of order k.

Key-Words: Hyperbolic PDE, equations in involution, generalized Laplace invariants, characteristic systems.

1 Introduction

Loosely speaking, a system of differential equations is in involution if there are no integrability conditions. This is trivially satisfied if one of the equations is a differential consequence of the other. A nontrivial example of equations in involution is a system

$$u_{xy} = \frac{2u}{(x+y)^2}$$
 and $u_{xx} = -\frac{2u_x}{x+y} + \phi(x),$

where ϕ is an arbitrary function. This can be easily verified by taking the total derivative of the first equation with respect to x and the total derivative of the second equation with respect to y to conclude that these are the same modulo the original equations. On the other hand, the equations $u_{xy} = u$ and $u_{xx} = 0$ are not in involution as the differentiation yields $u_y = 0$ and furthermore u = 0. If an equation admits sufficiently many equations in involution one may find the general solution by integrating a system of ordinary differential equations. Such equations are called *Darboux integrable*. A well known example of a Darboux integrable equation is Goursat's equation [3]

$$u_{xy} + \frac{2\sqrt{u_x u_y}}{x+y} = 0.$$
 (1)

It admits two equations in involution

$$\frac{u_{xx}}{2\sqrt{u_x}} + \frac{\sqrt{u_x}}{x+y} = f(x) \quad \text{and} \quad \frac{u_{yy}}{2\sqrt{u_y}} + \frac{\sqrt{u_y}}{x+y} = g(y),$$

where f(x) and g(y) are arbitrary functions. The three equations give rise to the Frobenius system

$$\begin{split} &\frac{\partial p}{\partial x} = 2f(x)\sqrt{p} - \frac{2p}{x+y}, \qquad \qquad \frac{\partial p}{\partial y} = -\frac{2\sqrt{pq}}{x+y}, \\ &\frac{\partial q}{\partial x} = -\frac{2\sqrt{pq}}{x+y}, \qquad \qquad \frac{\partial q}{\partial y} = 2g(y)\sqrt{q} - \frac{2q}{x+y}, \end{split}$$

where $p = u_x$ and $q = u_y$. Integrating this system we obtain the general solution of (1)

$$u = -\frac{(F(x) + G(y))^2}{x + y} + \int F'(x)^2 dx + \int G'(y)^2 dy,$$

where F''(x) = f(x) and G''(y) = g(y).

The objective of this paper is to find necessary and sufficient conditions for a second-order hyperbolic equation in the plane

$$F(x, y, u, u_x, u_y, u_{xx}, u_{xy}, u_{yy}) = 0$$
(2)

to admit at least one equation in involution. We approach the problem by means of a series of differential forms intrinsically adapted to hyperbolic equation (2) called the Laplace adapted coframe [1].

2 The Laplace adapted coframe

Consider a non-degenerate, scalar equation in the plane (2), i.e. $(\partial F/\partial u_{xx}, \partial F/\partial u_{xy}, \partial F/\partial u_{yy}) \neq 0$. We assume that this equation is hyperbolic

$$\frac{1}{4}\left(\frac{\partial F}{\partial u_{xy}}\right)^2 - \frac{\partial F}{\partial u_{xx}}\frac{\partial F}{\partial u_{yy}} > 0.$$
(3)

Moreover, we assume that all geometric objects (i.e. functions, forms, vector fields, etc.) in this paper are smooth.

Anderson and Kamran [1] extended the classical Laplace transformation for hyperbolic linear equations

$$u_{xy} + a(x, y)u_x + b(x, y)u_y + c(x, y)u = 0,$$

and applied it to a formal linearization of a nonlinear hyperbolic equation (2) to derive a coframe on the infinitely prolonged equation manifold called the *Laplace adapted coframe*. We will briefly recall the construction of this coframe and its structure equations derived in [1] and [5].

Let $\pi: E \to M$ denote the trivial bundle with local coordinates $\pi: (x, y, u) \to (x, y)$ and let $\pi_M^{\infty}: J^{\infty}(E) \to M$ be the infinite jet bundle of local sections of π . The second-order equation (2) together with all its differential consequences, defines the *infinitely* prolonged equation manifold $\mathcal{R}^{\infty} \hookrightarrow J^{\infty}(E)$. There are two non-proportional real roots $(\mu, \lambda) = (m_x, m_y)$ and $(\lambda, \mu) = (n_x, n_y)$ of the characteristic equation

$$\frac{\partial F}{\partial u_{xx}}\lambda^2 - \frac{\partial F}{\partial u_{xy}}\lambda\mu + \frac{\partial F}{\partial u_{yy}}\mu^2 = 0$$

of (2) because the discriminant is positive (see (3). We define characteristic total vector fields on \mathcal{R}^{∞} (more precisely characteristic directions) by

$$X = m_x D_x + m_y D_y \quad \text{and} \quad Y = n_x D_x + n_y D_y,$$

where D_x and D_y denote the total derivative operators with respect to x and y restricted to \mathcal{R}^{∞} . We have now developed enough terminology to give a precise definition of an equation in involution.

Definition 2.1. We say that the k^{th} -order equation

$$G(x, y, u, u_x, u_y, \dots u_{x^k}, u_{x^{k-1}y}, \dots, u_{xy^{k-1}}, u_{y^k}) = 0$$

is in involution with a second-order hyperbolic equation (2) if, restricted to the infinitely prolonged equation manifold \mathcal{R}^{∞} , X(G) = 0 or Y(G)= 0. We have

$$[X,Y] = PX + QY, (4)$$

for some functions P and Q on \mathcal{R}^{∞} . We denote the horizontal one-forms dual to X and Y by σ and τ (horizontal forms are forms spanned by dxand dy), i.e.

$$\sigma(X)=1, \quad \sigma(Y)=0, \quad \tau(X)=0, \quad \tau(Y)=1.$$

Restrictions of the contact one-forms

$$\theta = du - u_x \, dx - u_y \, dy, \quad \theta_x = du_x - u_{xx} \, dx - u_{xy} \, dy,$$
$$\theta_y = du_y - u_{xy} \, dx - u_{yy} \, dy, \ \dots,$$

to \mathcal{R}^{∞} generate the *contact ideal* \mathcal{C}^{∞} , and are related by

$$\frac{\partial F}{\partial u_{xx}} \theta_{xx} + \frac{\partial F}{\partial u_{xy}} \theta_{xy} + \frac{\partial F}{\partial u_{yy}} \theta_{yy}$$
$$+ \frac{\partial F}{\partial u_x} \theta_x + \frac{\partial F}{\partial u_y} \theta_y + \frac{\partial F}{\partial u} \theta = 0.$$

We rewrite this equation, using the characteristic vector fields X and Y, as

$$XY(\Theta) + A_0 X(\Theta) + B_0 Y(\Theta) + C_0 \Theta = 0, \quad (5)$$

or as

$$YX(\Theta) + D_0 X(\Theta) + E_0 Y(\Theta) + G_0 \Theta = 0, \quad (6)$$

where $V(\omega)$ denotes the Lie derivative of ω with respect to the vector field V, $\Theta = \rho\theta$ for some first-order function $\rho = \rho(x, y, u, u_x, u_y)$ on \mathcal{R}^{∞} . Explicit formulas for the coefficients A_0, B_0, \ldots , G_0 are found in [1]. Note that in [1] A_0 is denoted by A, B_0 is denoted by B, etc. For convenience we will denote Θ also by η_0 and ξ_0 .

The first elements of the Laplace adapted coframe are σ , τ , and $\Theta = \eta_0 = \xi_0$. The next two elements are defined by

$$\eta_1 = Y(\eta_0) + A_0 \eta_0$$
 and $\xi_1 = X(\xi_0) + E_0 \xi_0.$

We have

$$X(\eta_1) = -B_0 \eta_1 + H_0 \eta_0, \quad Y(\xi_1) = -D_0 \xi_1 + K_0 \xi_0.$$

It is interesting to note that in terms of the coefficients of the forms (5) and (6) we have

$$H_0 = X(A_0) + A_0 B_0 - C_0, \quad K_0 = Y(E_0) + E_0 D_0 - G_0.$$

We now proceed by induction. Assume that η_1, \ldots, η_i has been constructed. Then, provided $H_0 \neq 0, H_1 \neq 0, \ldots, H_{i-1} \neq 0$, We set

$$A_i = A_{i-1} - Y(\ln H_{i-1}) - P, \quad \eta_{i+1} = Y(\eta_i) + A_i \eta_i$$

The equation

$$X(\eta_{i+1}) = -B_i \eta_{i+1} + H_i \eta_i$$

defines H_i . This process continues until $H_p = 0$ for some $p \ge 0$, $(A_{i+1} \text{ is not defined})$, in which case we define

$$\eta_{p+i+1} = Y(\eta_{p+i}) \quad \text{for all } i \ge 1.$$

Similarly, assuming that ξ_1, \ldots, ξ_i has been defined and provided $K_0 \neq 0, K_1 \neq 0, \ldots, K_{i-1} \neq 0$, we set

$$E_i = E_{i-1} - X(\ln K_{i-1}) + Q, \quad \xi_{i+1} = X(\xi_i) + E_i \xi_i.$$

We define K_i by the equation

$$Y(\xi_{i+1}) = -D_i \,\xi_{i+1} + K_i \,\xi_i.$$

This process continues until $K_q = 0$ for some $q \ge 0$, and we set

$$\xi_{q+i+1} = X(\xi_{q+i}) \qquad \text{for all } i \ge 1.$$

The forms $\sigma, \tau, \Theta, \eta_1, \xi_1, \eta_2, \xi_2, \ldots$, define a coframe on \mathcal{R}^{∞} called the Laplace adapted coframe. The functions H_0, H_1, \ldots , and K_0, K_1, \ldots , are relative contact invariants called the generalized Laplace invariants [1]. These invariants play a key role in Darboux integrability. In fact a hyperbolic equation (2) is Darboux integrable if and only if $H_p = 0$ and $K_q = 0$ for some $p, q \ge 0$ [5].

It is useful to split the exterior derivative don \mathcal{R}^{∞} into two components

$$d = d_H + d_V,$$

where

$$d_H \omega = \sigma \wedge X(\omega) + \tau \wedge Y(\omega). \tag{7}$$

 d_H is called the horizontal differential and d_V is referred to as vertical differential. Notice that this splitting does not occur on any finitely prolonged equation manifold. These two differentials define a double complex called the variational bicomplex associated with \mathcal{R}^{∞} . From (4) we have

$$d_H \sigma = -P \, \sigma \wedge \tau, \qquad d_H \tau = -Q \, \sigma \wedge \tau,$$

and the rest of the d_H structure equations follow readily from the defining equations of the Laplace adapted coframe and (7). In [5] we derived the d_V structure equations

$$\begin{array}{ll} d_V \Theta \equiv 0 & \mod\{\Theta\}, \\ d_V \eta_i \equiv 0 & \mod\{\xi_1, \Theta, \eta_1, \dots, \eta_i\} & i \geq 1, \\ d_V \xi_i \equiv 0 & \mod\{\eta_1, \Theta, \xi_1, \dots, \xi_i\} & i \geq 1. \end{array}$$

Moreover, we proved that the horizontal forms σ and τ satisfy

$$d_V \sigma = \sigma \wedge \mu_1 + \tau \wedge \alpha \quad \text{and} \quad d_V \tau = \sigma \wedge \beta + \tau \wedge \mu_2, \ (8)$$

where α , β , μ_1 , μ_2 are contact one forms; α and β are in the span of Θ , ξ_1, η_1 , ξ_2 , and η_2 and the following relations hold:

$$\begin{split} d_V P &= X(\alpha) - Y(\mu_1) + P\mu_2 - Q\alpha, \\ d_V Q &= X(\mu_2) - Y(\beta) + Q\mu_1 - P\beta, \\ d_V \beta &= \beta \wedge (\mu_2 - \mu_1), \quad d_V \mu_2 = \alpha \wedge \beta = -d_V \mu_1, \\ d_V \alpha &= \alpha \wedge (\mu_1 - \mu_2). \end{split}$$

We shall also need commutation rules for X, Yand d_V . By $\Omega^n(\alpha^1, \ldots, \alpha^s)$ denote the module generated by the set of all *n*-fold exterior products $\alpha^{i_1} \wedge \ldots \wedge \alpha^{i_n}, 1 \leq i_1, \leq \ldots \leq i_n \leq s$, over the ring of smooth functions on \mathbb{R}^{∞} . Moreover, we denote $\Omega^*(\alpha^1, \ldots, \alpha^s) = \bigcup_{n=0}^{\infty} \Omega^n(\alpha^1, \ldots, \alpha^s)$. For $\omega \in \Omega^*(\Theta, \eta_1, \xi_1, \ldots)$ we have

$$d_{V}[X(\omega)] - X(d_{V}\omega) = \mu_{1} \wedge X(\omega) + \beta \wedge Y(\omega),$$

$$d_{V}[Y(\omega)] - Y(d_{V}\omega) = \alpha \wedge X(\omega) + \mu_{2} \wedge Y(\omega).$$

To hyperbolic equation (2) we associate two characteristic Pfaffian systems of order k, $C_k(X)$ and $C_k(Y)$ defined by

$$\mathcal{C}_k(X) = \Omega^1(\tau, \Theta, \xi_1, \eta_1, \dots, \xi_k, \eta_k) \quad \text{and} \\ \mathcal{C}_k(Y) = \Omega^1(\sigma, \Theta, \xi_1, \eta_1, \dots, \xi_k, \eta_k).$$

Since

$$dG = d_H G + d_V G = X(G)\sigma + Y(G)\tau \mod \mathcal{C}^{\infty},$$

then X(G) = 0 if and only if $dG \in \mathcal{C}_k(X)$ and Y(G) = 0 if and only if $dG \in \mathcal{C}_k(Y)$, provided G is of order k. Thus we have proved

Theorem 2.2. A k^{th} -order equation G = 0 is in involution with a second-order hyperbolic equation (2) if dG restricted to the infinitely prolonged equation manifold \mathcal{R}^{∞} belongs to one of the two characteristic Pfaffian systems $\mathcal{C}^{k}(X)$ or $\mathcal{C}^{k}(Y)$.

3 Integrable subsystems of characteristic systems

The question of finding equations in involution transforms into a question of finding integrable subsystems of characteristic systems. Let $C_k^{(\infty)}(X)$ and $C_k^{(\infty)}(Y)$ denote the maximal integrable subsystems of $C_k(X)$ and $C_k(Y)$, respectively. In [5], Theorem 5.1, page 367 we completely characterized $C_k^{(\infty)}(X)$, $k \ge 1$ for hyperbolic equations with $H_p = 0$, for some $p \ge 0$.

Theorem 3.1. ([5]) Let $H_p = 0$, $\hat{\tau} = \tau - \Upsilon$ and let $\Upsilon \in \Omega^1(\Theta, \eta_1, \xi_1, \dots, \xi_l, \eta_l)$ for some integer l $(l \leq p)$. Let $k \geq 1$.

If $p \geq 2$, then $\mathcal{C}_k^{(\infty)}(X) = \Omega^1(\widehat{\tau}, \eta_{p+1}, \dots, \eta_k)$ for $k \geq p$, $\mathcal{C}_k^{(\infty)}(X) = \Omega^1(\widehat{\tau})$ if $l \leq k \leq p$, and $\mathcal{C}_k^{\infty}(X) = \{0\}$ if k < l.

If p = 1, then $\mathcal{C}_k^{(\infty)}(X) = \Omega^1(\hat{\tau}, \eta_2, \dots, \eta_k)$ for $k \geq 2$, $\mathcal{C}_1^{(\infty)}(X) = \Omega^1(\hat{\tau})$ if $M_{\tau} = 0$, and $\mathcal{C}_1^{(\infty)}(X) = \{0\}$ if $M_{\tau} \neq 0$.

If p = 0, then $\mathcal{C}_k^{(\infty)}(X) = \Omega^1(\widehat{\tau}, \eta_1, \dots, \eta_k)$ for $k \ge 2$, $\mathcal{C}_1^{(\infty)}(X) = \Omega^1(\widehat{\tau}, \eta_1)$ if $M_\tau = 0$, and $\mathcal{C}_1^{(\infty)}(X) = \{0\}$ if $M_\tau \neq 0$.

In the above the one-form $\Upsilon = \Upsilon_p$ and the quantity M_{τ} will be defined later in the text. So, in fact, we only need to be concern with the case when $H_i \neq 0$ for all $i \geq 0$. But this requires the same arguments as assuming that

$$H_0 \neq 0, \ H_1 \neq 0, \ \dots, \ H_{k-1} \neq 0.$$

From now on we assume that the above conditions are satisfied. This way we will also prove part of Theorem 3.1 using different arguments then in [5]. The d_H structure equations immediately imply that $\dim \mathcal{C}_k^{(\infty)}(X)$, is 0 or 1. If $\dim \mathcal{C}_k^{(\infty)}(X) = 1$, then again using the d_H structure equations we deduce

$$\mathcal{C}^\infty_k(X) = \Omega^1(\tau - \Sigma), \qquad d(\tau - \Sigma) \equiv 0 \operatorname{mod} \{ \tau - \Sigma \},$$

for some contact one-form Σ that lies in the span of $\{\Theta, \eta_1\xi_1, \ldots, \eta_{k-1}, \xi_{k-1}, \eta_k\}$. Splitting the differential into the horizontal and vertical components and using equation (8) we easily conclude that the necessary and sufficient conditions for

$$d(\tau - \Sigma) \equiv 0 \mod \{\tau - \Sigma\}$$

are

$$X(\Sigma) + Q\Sigma = \beta$$
 and $d_V\Sigma = \Sigma \land (\mu_2 - Y(\Sigma)).$

Let V be a vector field on \mathcal{R}^{∞} . A form ω is called a relative V invariant form if $V(\omega) = \lambda \omega$ for some function λ . The following simple lemma plays a key role in our arguments.

Lemma 3.2. Let Σ be a contact form on \mathcal{R}^{∞} such that

$$X(\Sigma) + Q\Sigma - \beta = 0.$$
⁽⁹⁾

Then

$$d_V \Sigma - \Sigma \wedge (\mu_2 - Y(\Sigma)) \tag{10}$$

is a relative X invariant contact form.

Proof: Using the d_V structure equations together with the commutation rules for X, Y, and d_V , we deduce that

$$0 = d_V(X(\Sigma) + Q\Sigma - \beta) = X(d_V\Sigma) + Qd_V\Sigma + \beta \wedge [Y(\Sigma) - \mu_2] + [X(\mu_2) - Y(\beta) - P\beta] \wedge \Sigma + \mu_1 \wedge [X(\Sigma) + Q\Sigma - \beta].$$

From Equation (9) we substitute for β into the last equation to conclude

$$\begin{split} X(d_V \Sigma - \Sigma \wedge (\mu_2 - Y(\Sigma))) \\ + Q \left[d_V \Sigma - \Sigma \wedge (\mu_2 - Y(\Sigma)) \right] &= 0. \\ q.e.d. \end{split}$$

At this point recall Proposition 4.5, page 286 [1] describing the relative X invariant contact forms.

Proposition 3.3. If $H_i \neq 0$ for all $i \geq 0$ then there are no nonzero relative X invariant forms.

If $H_p = 0$ for some $p \ge 0$ and if $\omega \in \Omega^*(\Theta, \xi_1, \eta_1, \xi_2, \eta_2, \ldots)$ is a relative X invariant form, then

$$\omega \in \Omega^*(\eta_{p+1}, \eta_{p+2}, \eta_{p+3}, \dots)$$

Let Σ be a contact form of adapted order $\leq k$ satisfying (9). If $H_p = 0$ for some $p \geq k$, then

$$d_V \Sigma - \Sigma \wedge (\mu_2 - Y(\Sigma)) \in \Omega^2(\eta_{p+1}, \eta_{p+2}, \dots).$$

From the d_V structure equations it easily follows that

$$d_V \Sigma - \Sigma \wedge (\mu_2 - Y(\Sigma))$$

$$\equiv 0 \mod \{\Theta, \xi_1, \eta_1, \dots, \xi_k, \eta_k\}.$$

Comparing the last two statements we deduce that

$$d_V \Sigma - \Sigma \wedge (\mu_2 - Y(\Sigma)) = 0.$$

If $H_i \neq 0$ for all $i \geq 0$ then again by Lemma 3.2 and Proposition 3.3 we conclude that the one-form (10) vanishes. Summarizing, we have proved

Lemma 3.4. If $H_0 \neq 0$, $H_1 \neq 0$, ..., $H_{k-1} \neq 0$, then dim $C_k^{(\infty)}(X) = 1$ if and only if

$$X(\Sigma) + Q\Sigma - \beta = 0,$$

for some one-form $\Sigma \in \Omega^1(\Theta, \xi_1\eta_1, \dots, \xi_k, \eta_k)$. Moreover, in this case $\mathcal{C}_k^{(\infty)}(X) = \Omega^1(\tau - \Sigma)$.

We write β defined by Equation (8) as

$$\beta = b_2 \xi_2 + b_1 \xi_1 + c_0 \Theta + c_1 \eta_1 + c_2 \eta_2,$$

for some functions b_1 , b_2 , c_0 , c_1 , c_2 . Note that $c_2 = M_{\tau}$ is a relative contact invariant that vanishes for a Monge–Ampère equation (see [4], sec. 8). The reader can find explicit formulas for M_{τ} in [4], sec. 9.

Let $H_0 \neq 0, H_1 \neq 0, ..., H_{k-1} \neq 0, k \ge 1$. We write

$$\Sigma = \sum_{j=1}^{k-1} g_j \xi_j + f_0 \Theta + \sum_{i=1}^{k} f_i \eta_i.$$

Using the defining equations for the Laplaceadapted coframe we compute

$$\begin{aligned} X(\Sigma) + Q\Sigma - \beta &= g_{k+1}\xi_{k+1} \\ &+ \sum_{j=1}^{k} (X(g_j) - (E_j - Q)g_j + g_{j-1} - b_j)\xi_j \\ &+ \sum_{i=0}^{k-1} (X(f_i) - B_i f_i + H_i f_{i+1} - c_i)\eta_i \\ &+ (X(f_k) - B_k f_k)\eta_k, \end{aligned}$$

where $g_0 = f_0$ and $b_i = c_i = 0$ for $i \ge 3$. Setting the above expression to zero and using Lemma 3.4 we obtain

Theorem 3.5. Let $H_0 \neq 0, H_1 \neq 0, \dots, H_{k-1} \neq 0, k \ge 1.$

(i) The rank of $C_1^{(\infty)}(X) \neq 0$ if and only if $I_1 = 0$ and $M_{\tau} = 0$. In this case $C_1^{(\infty)}(X) = \Omega^1(\tau - \Upsilon_1)$. (ii) If $k \geq 2$, then the rank of $C_k^{(\infty)}(X) \neq 0$ if and only if $I_k = 0$. In this case $C_k^{(\infty)}(X) = \Omega^1(\tau - \Upsilon_k)$. Here

$$\Upsilon_k = b_2 \xi_1 + \sum_{i=0}^k F_i \eta_i$$
, and $I_i = X(F_i) - B_i F_i - c_i$

where

$$F_0 = -X(b_2) + (E_1 - Q)b_2 + b_1 \quad \text{and}$$

$$F_{i+1} = -\frac{1}{H_i}(X(F_i) - B_iF_i - c_i) \quad \text{for} \quad 0 \le i < k,$$

and as before we set $c_i = 0$ for $i \ge 3$.

Theorems 3.1 and 3.5 combine to establish the following result.

Corollary 3.6. The hyperbolic equation (2) admits at least one nontrivial equation in involution $G(x, y, u, u_x, u_y, \dots, u_{x^k}, u_{x^{k-1}y}, \dots, u_{y^k}) = 0$ of order k, such that restricted to $\mathcal{R}^{\infty} dG \in \mathcal{C}_k(X)$ if and only if

(i) k = 1: $M_{\tau} = 0$ and either $H_0 = 0$ or $I_1 = 0$; (ii) $k \ge 2$: either $H_i = 0$ for some i = 1, 2, ..., k-1 or $I_k = 0$.

Similar results hold for the second characteristic system $C_k(Y)$.

We now consider an equation of the form

$$u_{xy} = f(x, y, u, u_x, u_y).$$
(11)

It is a classical result that the hyperbolic Equation (2) is contact equivalent to Equation (11) if and only if there are two non-zero first-order functions g_1 and g_2 , such that $dg_1 \in C_1(X)$ and $dg_2 \in C_1(Y)$; the contact transformation being determined by $\bar{x} = g_1$ and $\bar{y} = g_2$. Combining Corollary 3.6 together with a similar result for $C_k(Y)$ (case k = 1) immediately yields a characterization of equations of type (11). **Theorem 3.7.** A hyperbolic equation (2) is contact equivalent to Equation (11) if and only if $M_{\sigma} = M_{\tau} = 0$ (by the results of [4] the equation is Monge-Ampère) and the following two conditions are satisfied:

- (i) Either $H_0 = 0$ or $I_1 = 0$.
- (ii) Either $K_0 = 0$ or $J_1 = 0$.

Here J_1 is an analogue of I_1 and M_{σ} is an analogue of M_{τ} . To define these quantities recall that the one-form α defined by Equation (8) is in the span of Θ , ξ_1 , η_1 , ξ_2 , and η_2 . We write

$$\alpha = d_2 \eta_2 + d_1 \eta_1 + e_0 \Theta + e_1 \xi_1 + M_\sigma \xi_2,$$

Furthermore, we set

$$\begin{aligned} G_0 &= -Y(d_2) + (B_1 + P)d_2 + d_1, \\ G_1 &= -\frac{1}{K_0}(Y(G_0) - BG_0 - e_0), \quad \text{and} \\ J_1 &= Y(G_1) - E_1G_1 - e_1. \end{aligned}$$

4 Open problems

Due to the results of [5] the hyperbolic equation is Darboux integrable (at level (p,q)) if and only if there are nonnegative integers p and q such that $H_p = 0$ and $K_q = 0$. We say that the hyperbolic equation is semi-Darboux integrable if $H_p = 0$ for some $p \ge 0$ or $K_q = 0$ for some $q \ge 0$. 1. Find an algorithm that will decide whether a hyperbolic equation (2) is Darboux integrable (at any level). More interestingly, find an algorithm that will decide whether a hyperbolic equation (2) is semi-Darboux integrable. The first result in this direction is due to Lie [6]. Lie showed that there are only two Darboux integrable equations of type $u_{xy} = f(u)$; namely the wave equation $u_{xy} = 0$ and the Lioville equation $u_{xy} = e^{u}$. Moutard's theorem (see [2] chapter XV) characterizes hyperbolic equations (2)which solutions u(x, y) can be written in an explicit form depending on two arbitrary functions $\phi(x), \psi(y)$ and their derivatives. Goursat [3] classified all equations of type (11) Darboux integrable at levels (0,1) and (1,1). His findings were rederived by Vessiot [9] in a more systematic way. A new approach to this classical problem was developed by Vassiliou [8]. A recent breakthrough is a paper [7] by Sokolov and Zhiber

in which the authors succeeded in classifying all nonlinear Darboux integrable equations of type (11).

2. Find an algorithm that will determine if a given hyperbolic equation (2) will admit an equation in involution (of any order).

References

- I. M. Anderson and N. Kamran, The variational bicomplex for second order scalar partial differential equations in the plane, *Duke Math. J.* 87 No. 2, 1997, pp. 265–319.
- [2] A. Forsyth, Theory of differential equations, Vol. 1, Dover Press, New York, 1959.
- [3] E. Goursat, Leçon sur l'intégration des équations aux dérivées partielles du second ordre á deux variables indépendantes, Tome 2, Hermann, Paris 1896.
- [4] M. Juráš, Ph.D. Thesis, Utah State University, Logan, Utah, 1997.
- [5] M. Juráš and I. M. Anderson, Generalized Laplace invariants and the method of Darboux, *Duke Math. J.* 89, No. 2, 1997, pp. 351–375.
- [6] S. Lie, Discussion der Differentialgleichung s = f(z), Archiv. Math. **6**, Christiana, 1880, pp. 112–124.
- [7] V. V. Sokolov and A. V. Zhiber, Exactly integrable hyperbolic equations of Liouville type, *Russian Mathematical Surveys*, 56, No 1, 2001, pp. 61–101.
- [8] P. J. Vassiliou, Vessiot structure for manifolds of (p,q)-hypebolic type: Darboux integrability and symmetry, Trans. Amer. Math. Soc., 353, 2001, pp. 1705–1739.
- [9] E. Vessiot, Sur les équations aux dérivées partielles du second ordre F(x, y, z, p, q, r, s, t) = 0, intégrables par la méthode de Darboux, J. Math. Pure Appl. 21, 1942, pp. 1–66.