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Abstract: We find necessary and sufficient conditions for a scalar second-order hyperbolic equation
in the plane

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0
to admit an equation in involution of order k.

Key-Words: Hyperbolic PDE, equations in involution, generalized Laplace invariants, character-
istic systems.

1 Introduction
Loosely speaking, a system of differential equa-
tions is in involution if there are no integrabil-
ity conditions. This is trivially satisfied if one
of the equations is a differential consequence of
the other. A nontrivial example of equations in
involution is a system

uxy =
2u

(x + y)2
and uxx = − 2ux

x + y
+ φ(x),

where φ is an arbitrary function. This can be
easily verified by taking the total derivative of
the first equation with respect to x and the total
derivative of the second equation with respect to
y to conclude that these are the same modulo the
original equations. On the other hand, the equa-
tions uxy = u and uxx = 0 are not in involution as
the differentiation yields uy = 0 and furthermore
u = 0. If an equation admits sufficiently many
equations in involution one may find the general
solution by integrating a system of ordinary dif-
ferential equations. Such equations are called
Darboux integrable. A well known example of a
Darboux integrable equation is Goursat’s equa-
tion [3]

uxy +
2√uxuy

x + y
= 0. (1)

It admits two equations in involution
uxx

2
√

ux
+
√

ux

x + y
= f(x) and

uyy

2√uy
+
√

uy

x + y
= g(y),

where f(x) and g(y) are arbitrary functions. The
three equations give rise to the Frobenius system

∂p

∂x
= 2f(x)

√
p− 2p

x + y
,

∂p

∂y
= −2

√
pq

x + y
,

∂q

∂x
= −2

√
pq

x + y
,

∂q

∂y
= 2g(y)

√
q − 2q

x + y
,

where p = ux and q = uy. Integrating this system
we obtain the general solution of (1)

u = − (F (x) + G(y))2

x + y
+

∫
F ′(x)2dx +

∫
G′(y)2dy,

where F ′′(x) = f(x) and G′′(y) = g(y).
The objective of this paper is to find neces-

sary and sufficient conditions for a second-order
hyperbolic equation in the plane

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0 (2)

to admit at least one equation in involution. We
approach the problem by means of a series of
differential forms intrinsically adapted to hyper-
bolic equation (2) called the Laplace adapted
coframe [1].

2 The Laplace adapted coframe
Consider a non-degenerate, scalar equation in
the plane (2), i.e. (∂F/∂uxx, ∂F/∂uxy, ∂F/∂uyy)
6= 0. We assume that this equation is hyperbolic

1
4
(

∂F

∂uxy
)2 − ∂F

∂uxx

∂F

∂uyy
> 0. (3)
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Moreover, we assume that all geometric objects
(i.e. functions, forms, vector fields, etc.) in this
paper are smooth.

Anderson and Kamran [1] extended the clas-
sical Laplace transformation for hyperbolic lin-
ear equations

uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = 0,

and applied it to a formal linearization of a non-
linear hyperbolic equation (2) to derive a cofra-
me on the infinitely prolonged equation manifold
called the Laplace adapted coframe. We will
briefly recall the construction of this coframe
and its structure equations derived in [1] and
[5].

Let π : E → M denote the trivial bundle
with local coordinates π : (x, y, u) → (x, y) and
let π∞M : J∞(E) → M be the infinite jet bundle
of local sections of π. The second-order equa-
tion (2) together with all its differential conse-
quences, defines the infinitely prolonged equa-
tion manifold R∞ ↪→ J∞(E). There are two
non-proportional real roots (µ, λ) = (mx,my) and
(λ, µ) = (nx, ny) of the characteristic equation

∂F

∂uxx
λ2 − ∂F

∂uxy
λµ +

∂F

∂uyy
µ2 = 0

of (2) because the discriminant is positive (see
(3). We define characteristic total vector fields
on R∞ (more precisely characteristic directions)
by

X = mxDx + myDy and Y = nxDx + nyDy,

where Dx and Dy denote the total derivative op-
erators with respect to x and y restricted to R∞.
We have now developed enough terminology to
give a precise definition of an equation in invo-
lution.

Definition 2.1. We say that the kth-order equa-
tion

G(x, y, u, ux, uy, . . . uxk , uxk−1y, . . . , uxyk−1 , uyk) = 0

is in involution with a second-order hyperbolic
equation (2) if, restricted to the infinitely pro-
longed equation manifold R∞, X(G) = 0 or Y (G)
= 0.

We have

[ X,Y ] = PX + QY, (4)

for some functions P and Q on R∞. We denote
the horizontal one-forms dual to X and Y by σ
and τ (horizontal forms are forms spanned by dx
and dy), i.e.

σ(X) = 1, σ(Y ) = 0, τ(X) = 0, τ(Y ) = 1.

Restrictions of the contact one-forms

θ = du−ux dx−uy dy, θx = dux−uxx dx−uxy dy,

θy = duy − uxy dx− uyy dy, . . . ,

to R∞ generate the contact ideal C∞, and are
related by

∂F

∂uxx
θxx +

∂F

∂uxy
θxy +

∂F

∂uyy
θyy

+
∂F

∂ux
θx +

∂F

∂uy
θy +

∂F

∂u
θ = 0.

We rewrite this equation, using the characteris-
tic vector fields X and Y , as

XY (Θ) + A0 X(Θ) + B0 Y (Θ) + C0 Θ = 0, (5)

or as

Y X(Θ) + D0 X(Θ) + E0 Y (Θ) + G0 Θ = 0, (6)

where V (ω) denotes the Lie derivative of ω with
respect to the vector field V , Θ = ρθ for some
first-order function ρ = ρ(x, y, u, ux, uy) on R∞.
Explicit formulas for the coefficients A0, B0, . . . ,
G0 are found in [1]. Note that in [1] A0 is denoted
by A, B0 is denoted by B, etc. For convenience
we will denote Θ also by η0 and ξ0.
The first elements of the Laplace adapted cofra-
me are σ, τ, and Θ = η0 = ξ0. The next two
elements are defined by

η1 = Y (η0)+A0 η0 and ξ1 = X(ξ0)+E0 ξ0.

We have

X(η1) = −B0 η1 + H0 η0, Y (ξ1) = −D0 ξ1 + K0 ξ0.

It is interesting to note that in terms of the co-
efficients of the forms (5) and (6) we have

H0 = X(A0)+A0B0−C0, K0 = Y (E0)+E0D0−G0.
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We now proceed by induction. Assume that
η1, . . . , ηi has been constructed. Then, provided
H0 6= 0, H1 6= 0, . . . , Hi−1 6= 0, We set

Ai = Ai−1 − Y (lnHi−1)− P, ηi+1 = Y (ηi) + Ai ηi.

The equation

X(ηi+1) = −Bi ηi+1 + Hi ηi

defines Hi. This process continues until Hp = 0
for some p ≥ 0, (Ai+1 is not defined), in which
case we define

ηp+i+1 = Y (ηp+i) for all i ≥ 1.

Similarly, assuming that ξ1, . . . , ξi has been
defined and provided K0 6= 0, K1 6= 0, . . . , Ki−1 6=
0, we set

Ei = Ei−1 −X(lnKi−1) + Q, ξi+1 = X(ξi) + Eiξi.

We define Ki by the equation

Y (ξi+1) = −Di ξi+1 + Ki ξi.

This process continues until Kq = 0 for some
q ≥ 0, and we set

ξq+i+1 = X(ξq+i) for all i ≥ 1.

The forms σ, τ, Θ, η1, ξ1, η2, ξ2, . . . , define a cofra-
me on R∞ called the Laplace adapted coframe.
The functions H0,H1, . . . , and K0,K1, . . . , are
relative contact invariants called the generalized
Laplace invariants [1]. These invariants play a
key role in Darboux integrability. In fact a hy-
perbolic equation (2) is Darboux integrable if
and only if Hp = 0 and Kq = 0 for some p, q ≥ 0
[5].

It is useful to split the exterior derivative d
on R∞ into two components

d = dH + dV ,

where
dHω = σ ∧X(ω) + τ ∧ Y (ω). (7)

dH is called the horizontal differential and dV is
referred to as vertical differential. Notice that
this splitting does not occur on any finitely pro-
longed equation manifold. These two differen-
tials define a double complex called the varia-
tional bicomplex associated with R∞.

From (4) we have

dHσ = −P σ ∧ τ, dHτ = −Qσ ∧ τ,

and the rest of the dH structure equations fol-
low readily from the defining equations of the
Laplace adapted coframe and (7). In [5] we de-
rived the dV structure equations

dV Θ ≡ 0 mod{Θ },
dV ηi ≡ 0 mod{ ξ1, Θ, η1, . . . , ηi } i ≥ 1,

dV ξi ≡ 0 mod{ η1, Θ, ξ1, . . . , ξi } i ≥ 1.

Moreover, we proved that the horizontal forms
σ and τ satisfy

dV σ = σ∧µ1+τ∧α and dV τ = σ∧β+τ∧µ2, (8)

where α, β, µ1, µ2 are contact one forms; α and
β are in the span of Θ, ξ1,η1, ξ2, and η2 and the
following relations hold:

dV P = X(α)− Y (µ1) + Pµ2 −Qα,

dV Q = X(µ2)− Y (β) + Qµ1 − Pβ,

dV β = β ∧ (µ2 − µ1), dV µ2 = α ∧ β = −dV µ1,

dV α = α ∧ (µ1 − µ2).

We shall also need commutation rules for X, Y
and dV . By Ωn(α1, . . . , αs) denote the module
generated by the set of all n-fold exterior prod-
ucts αi1 ∧ . . .∧αin , 1 ≤ i1,≤ . . . ≤ in ≤ s, over the
ring of smooth functions on R∞. Moreover, we
denote Ω∗(α1, . . . , αs) =

⋃∞
n=0 Ωn(α1, . . . , αs). For

ω ∈ Ω∗(Θ, η1, ξ1, . . . ) we have

dV [X(ω)]−X(dV ω) = µ1 ∧X(ω) + β ∧ Y (ω),
dV [Y (ω)]− Y (dV ω) = α ∧X(ω) + µ2 ∧ Y (ω).

To hyperbolic equation (2) we associate two
characteristic Pfaffian systems of order k, Ck(X)
and Ck(Y ) defined by

Ck(X) = Ω1(τ, Θ, ξ1, η1 . . . , ξk, ηk) and
Ck(Y ) = Ω1(σ,Θ, ξ1, η1, . . . , ξk, ηk).

Since

dG = dHG + dV G = X(G)σ + Y (G)τ mod C∞,
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then X(G) = 0 if and only if dG ∈ Ck(X) and
Y (G) = 0 if and only if dG ∈ Ck(Y ), provided G
is of order k. Thus we have proved

Theorem 2.2. A kth-order equation G = 0 is in
involution with a second-order hyperbolic equa-
tion (2) if dG restricted to the infinitely pro-
longed equation manifold R∞ belongs to one of
the two characteristic Pfaffian systems Ck(X) or
Ck(Y ).

3 Integrable subsystems of
characteristic systems

The question of finding equations in involution
transforms into a question of finding integrable
subsystems of characteristic systems. Let C(∞)

k

(X) and C(∞)
k (Y ) denote the maximal integrable

subsystems of Ck(X) and Ck(Y ), respectively. In
[5], Theorem 5.1, page 367 we completely char-
acterized C(∞)

k (X), k ≥ 1 for hyperbolic equations
with Hp = 0, for some p ≥ 0.

Theorem 3.1. ([5]) Let Hp = 0, τ̂ = τ − Υ and
let Υ ∈ Ω1(Θ, η1, ξ1, . . . , ξl, ηl) for some integer l
(l ≤ p). Let k ≥ 1.

If p ≥ 2, then C(∞)
k (X) = Ω1(τ̂ , ηp+1, . . . , ηk) for

k ≥ p, C(∞)
k (X) = Ω1(τ̂) if l ≤ k ≤ p, and C∞k (X) =

{0} if k < l.

If p = 1, then C(∞)
k (X) = Ω1(τ̂ , η2, . . . , ηk) for k ≥

2, C(∞)
1 (X) = Ω1(τ̂) if Mτ = 0, and C(∞)

1 (X) = {0}
if Mτ 6= 0.

If p = 0, then C(∞)
k (X) = Ω1(τ̂ , η1, . . . , ηk) for k ≥

2, C(∞)
1 (X) = Ω1(τ̂ , η1) if Mτ = 0, and C(∞)

1 (X) =
{0} if Mτ 6= 0.

In the above the one-form Υ = Υp and the
quantity Mτ will be defined later in the text. So,
in fact, we only need to be concern with the case
when Hi 6= 0 for all i ≥ 0. But this requires the
same arguments as assuming that

H0 6= 0, H1 6= 0, . . . , Hk−1 6= 0.

From now on we assume that the above condi-
tions are satisfied. This way we will also prove
part of Theorem 3.1 using different arguments
then in [5].

The dH structure equations immediately im-
ply that dim C(∞)

k (X), is 0 or 1. If dim C(∞)
k (X) =

1, then again using the dH structure equations
we deduce

C∞k (X) = Ω1(τ−Σ), d(τ−Σ) ≡ 0mod{ τ−Σ },

for some contact one-form Σ that lies in the span
of {Θ, η1ξ1, . . . , ηk−1, ξk−1, ηk }. Splitting the dif-
ferential into the horizontal and vertical compo-
nents and using equation (8) we easily conclude
that the necessary and sufficient conditions for

d(τ − Σ) ≡ 0 mod { τ − Σ }

are

X(Σ)+QΣ = β and dV Σ = Σ∧(µ2−Y (Σ)).

Let V be a vector field on R∞. A form ω is
called a relative V invariant form if V (ω) = λω
for some function λ. The following simple lemma
plays a key role in our arguments.

Lemma 3.2. Let Σ be a contact form on R∞
such that

X(Σ) + QΣ− β = 0. (9)

Then
dV Σ− Σ ∧ (µ2 − Y (Σ)) (10)

is a relative X invariant contact form.

Proof: Using the dV structure equations togeth-
er with the commutation rules for X, Y , and dV ,
we deduce that

0 = dV (X(Σ) + QΣ− β) = X(dV Σ) + QdV Σ
+ β ∧ [Y (Σ)− µ2] + [X(µ2)− Y (β)− Pβ] ∧ Σ
+ µ1 ∧ [X(Σ) + QΣ− β].

From Equation (9) we substitute for β into the
last equation to conclude

X(dV Σ− Σ ∧ (µ2 − Y (Σ)))
+ Q [dV Σ− Σ ∧ (µ2 − Y (Σ))] = 0.

q.e.d.

At this point recall Proposition 4.5, page
286 [1] describing the relative X invariant con-
tact forms.

Proposition 3.3. If Hi 6= 0 for all i ≥ 0 then
there are no nonzero relative X invariant forms.
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If Hp = 0 for some p ≥ 0 and if ω ∈ Ω∗(Θ, ξ1, η1, ξ2,
η2, . . . ) is a relative X invariant form, then

ω ∈ Ω∗(ηp+1, ηp+2, ηp+3, . . . ).

Let Σ be a contact form of adapted order
≤ k satisfying (9). If Hp = 0 for some p ≥ k,
then

dV Σ− Σ ∧ (µ2 − Y (Σ)) ∈ Ω2(ηp+1, ηp+2, . . . ).

From the dV structure equations it easily follows
that

dV Σ− Σ ∧ (µ2 − Y (Σ))
≡ 0 mod {Θ, ξ1, η1, . . . , ξk, ηk }.

Comparing the last two statements we deduce
that

dV Σ− Σ ∧ (µ2 − Y (Σ)) = 0.

If Hi 6= 0 for all i ≥ 0 then again by Lemma
3.2 and Proposition 3.3 we conclude that the
one-form (10) vanishes. Summarizing, we have
proved

Lemma 3.4. If H0 6= 0, H1 6= 0, . . . , Hk−1 6= 0,

then dim C(∞)
k (X) = 1 if and only if

X(Σ) + QΣ− β = 0,

for some one-form Σ ∈ Ω1(Θ, ξ1η1, . . . , ξk, ηk).
Moreover, in this case C(∞)

k (X) = Ω1(τ − Σ).

We write β defined by Equation (8) as
β = b2ξ2 + b1ξ1 + c0Θ + c1η1 + c2η2,

for some functions b1, b2, c0, c1, c2. Note that c2 =
Mτ is a relative contact invariant that vanishes
for a Monge–Ampère equation (see [4], sec. 8).
The reader can find explicit formulas for Mτ in
[4], sec. 9.

Let H0 6= 0,H1 6= 0, . . . , Hk−1 6= 0, k ≥ 1. We
write

Σ =
k−1∑

j=1

gjξj + f0Θ +
k∑

i=1

fiηi.

Using the defining equations for the Laplace-
adapted coframe we compute

X(Σ) + QΣ− β = gk+1ξk+1

+
k∑

j=1

(X(gj)− (Ej −Q)gj + gj−1 − bj) ξj

+
k−1∑

i=0

(X(fi)−Bifi + Hifi+1 − ci) ηi

+ (X(fk)−Bkfk) ηk,

where g0 = f0 and bi = ci = 0 for i ≥ 3. Setting
the above expression to zero and using Lemma
3.4 we obtain

Theorem 3.5. Let H0 6= 0,H1 6= 0, . . . , Hk−1 6= 0,
k ≥ 1.

(i) The rank of C(∞)
1 (X) 6= 0 if and only if I1 = 0

and Mτ = 0. In this case C(∞)
1 (X) = Ω1( τ −Υ1 ).

(ii) If k ≥ 2, then the rank of C(∞)
k (X) 6= 0 if and

only if Ik = 0. In this case C(∞)
k (X) = Ω1( τ−Υk ).

Here

Υk = b2ξ1+
k∑

i=0

Fi ηi, and Ii = X(Fi)−BiFi−ci

where

F0 = −X(b2) + (E1 −Q)b2 + b1 and

Fi+1 = − 1
Hi

(X(Fi)−BiFi − ci) for 0 ≤ i < k,

and as before we set ci = 0 for i ≥ 3.

Theorems 3.1 and 3.5 combine to establish
the following result.

Corollary 3.6. The hyperbolic equation (2) ad-
mits at least one nontrivial equation in involu-
tion G(x, y, u, ux, uy . . . , uxk , uxk−1y, . . . , uyk) = 0
of order k, such that restricted toR∞ dG ∈ Ck(X)
if and only if

(i) k = 1: Mτ = 0 and either H0 = 0 or I1 = 0;

(ii) k ≥ 2: either Hi = 0 for some i = 1, 2, . . . , k−
1 or Ik = 0.

Similar results hold for the second charac-
teristic system Ck(Y ).

We now consider an equation of the form

uxy = f(x, y, u, ux, uy). (11)

It is a classical result that the hyperbolic Equa-
tion (2) is contact equivalent to Equation (11)
if and only if there are two non-zero first-order
functions g1 and g2, such that dg1 ∈ C1(X) and
dg2 ∈ C1(Y ); the contact transformation being
determined by x̄ = g1 and ȳ = g2. Combining
Corollary 3.6 together with a similar result for
Ck(Y ) (case k = 1) immediately yields a charac-
terization of equations of type (11).
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Theorem 3.7. A hyperbolic equation (2) is con-
tact equivalent to Equation (11) if and only if
Mσ = Mτ = 0 (by the results of [4] the equation
is Monge-Ampère) and the following two condi-
tions are satisfied:

(i) Either H0 = 0 or I1 = 0.

(ii) Either K0 = 0 or J1 = 0.

Here J1 is an analogue of I1 and Mσ is an ana-
logue of Mτ . To define these quantities recall
that the one-form α defined by Equation (8) is
in the span of Θ, ξ1, η1, ξ2, and η2. We write

α = d2η2 + d1η1 + e0Θ + e1ξ1 + Mσξ2,

Furthermore, we set

G0 = −Y (d2) + (B1 + P )d2 + d1,

G1 = − 1
K0

(Y (G0)−BG0 − e0), and

J1 = Y (G1)− E1G1 − e1.

4 Open problems
Due to the results of [5] the hyperbolic equation
is Darboux integrable (at level (p, q)) if and only
if there are nonnegative integers p and q such
that Hp = 0 and Kq = 0. We say that the hy-
perbolic equation is semi-Darboux integrable if
Hp = 0 for some p ≥ 0 or Kq = 0 for some q ≥ 0.

1. Find an algorithm that will decide whether
a hyperbolic equation (2) is Darboux integrable
(at any level). More interestingly, find an al-
gorithm that will decide whether a hyperbolic
equation (2) is semi-Darboux integrable. The
first result in this direction is due to Lie [6]. Lie
showed that there are only two Darboux inte-
grable equations of type uxy = f(u); namely the
wave equation uxy = 0 and the Lioville equa-
tion uxy = eu. Moutard’s theorem (see [2] chap-
ter XV) characterizes hyperbolic equations (2)
which solutions u(x, y) can be written in an ex-
plicit form depending on two arbitrary functions
φ(x), ψ(y) and their derivatives. Goursat [3] clas-
sified all equations of type (11) Darboux inte-
grable at levels (0,1) and (1,1). His findings were
rederived by Vessiot [9] in a more systematic
way. A new approach to this classical problem
was developed by Vassiliou [8]. A recent break-
through is a paper [7] by Sokolov and Zhiber

in which the authors succeeded in classifying all
nonlinear Darboux integrable equations of type
(11).
2. Find an algorithm that will determine if a
given hyperbolic equation (2) will admit an eq-
uation in involution (of any order).
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