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Abstract: — One of the possible generalizations of the classical numerical range of a given linear opera-
tor in an indefinite inner product space is the so-called J, C-tracial range. We present an algorithm to
generate this generalized numerical range and give simple examples for illustration.
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1 Introduction

A complex matrix of order n is called pseudo-
unitary matriz of signature (k,1) if the correspond-
ing linear transformation preserves the quadratic
hermitian form

q(x) = Jaa* + - |z
7|117k+1‘2 — e — ‘:Bn‘z, k—l—l:n

The group of pseudo-unitary matrices of signa-
ture (k,l) is denoted by Uy .

Let {E11, E12,- -+, Epp } denote the standard ba-
sis in M, the algebra of nxn complex matrices, that
is, E;; is the matrix with entries 0 except the (4, )
entry which is 1. In the sequel the matrix

>

j=1

Ejj — Ejj S Uk,l
j=k+1
will be denoted by J. It can be easily seen that

U is a pseudo-unitary matrix in Uy, if and only if
U*Ju = J.

The J-numerical range of A € M, is defined and
denoted by

If J € Uny, Vi(A) reduces to the classical nu-
merical range usually denoted by W (A)

o Ax
e Jr

Vi(4)

xeC”, a:*Jx#O}.

r* Ax _
T*r

={z"Az: z€C", "z

W (A)

xeC x¥x # 0}
1}.

This concept, is very useful for studying matri-
ces and operators, and has a lot of applications in
different areas.

We consider the sets

VHA)={z*Az: z€C", z*Jz =1}

and

Vi(A) ={2z"Az: 2z C", 2" Jz = -1}
which have been studied by other researchers ([1,2,3]).
Evidently we have V', (A4) = V; (A) and

Vi(A) = V;H(A) u-VT(A).

Motivated by theory and applications, there are
many generalizations of the classical numerical range,

such as the C-numerical range of A defined for A, C €
M, by
Weo(A) ={Te(CU*AU) : U*U =1}. (1)

This concept motivates the definition of the J,C-
tracial range of A for A,C € M,

V5c(A) = {Tx(CU*AU) : U*JU = J}.

It is clear that for U = [x1, - -, &,], we have U*JU =
(z7Jx;). HU € Uy, and J = (li;), then

(2)
Let C = Z?Zl c;Ei;. It can be easily checked that

% .
z;Jz; =li;, 4,7=1,---,n.

Vic(A) = {Z cix; Az o x; € €7 satisfying (2)}.

i=1

If ' = Ej;, it follows that

7
Vg, (A) = {z* Az : 2 € €', 2" Jz = £1} = VF(A).

2 Problem Formulation

The characterization of V¢ (A) seems to be a
difficult problem. Our aim is to present some of its
basic properties as well as its characterization for
matrices of small orders. We also present an algo-
rithm for generating V;(A) and give some examples
for illustration. Since the pseudo-unitary group Uy,
in M, is connected and the mapping from Uy to €
defined by R — Tr(CR*AR) is continuous, V¢ (A)
is connected for any A, C' € M,,. The following prop-
erties of V; ¢(A) can be easily verified.

3 Problem solution
3.1 Basic properties
Proposition 3.1.1

(i) For any T € Uy, and for any A € M,,
Vyc(T*AT) =V, c(A).

(it) For any A,C € M,, Vjc-(A*) = Vic(A).

(iii) For any A,C € M,

Vi5c(A) = V;4(0),

that is, the roles of A and C in V;c(A) are sym-
metric.

() For any o, 3 € € and for any A,C € M,,
Vic(ad + BA) = aTe(JC) + BV c(A).



Proposition 3.1.2 Let A € M,, and £ € C.
The following conditions are equivalent:
(a) For all C € M,,

Vio(4) = {ETe(JO)};

(b) A=¢J.
Proof (b) = (a) If A= ¢J for some £ € €, then

Vic(A) = {Te(CU*(ENU): U*JU = J}
= {¢TX(CU*JU) : U*JU = J}

={Te(JC)}, VC € M,.

(a) = (b) Firstly, let us consider the case £ = 0,
that is, V;c(A) = {0} for all C € M,,. Suppose
that A # 0. We shall prove that there exists a
matrix C' € M, such that V;c(A) # {0}, a contra-
diction.

Consider C' = Ej;. Then V,c(A) = V}(A) or
Vyc(A) = VT, (A). Since A # 0, it can easily be
seen that V; (A4) # {0} and VT,(4) # {0}.

Now, we consider the case £ # 0. Assume that
Vy5c(A) = {Tr(JC)} for all C € M,,. By Proposi-
tion 3.1.1 v, we have

Vic(A—¢&J) =V;c(A) - {Te(JC) = {0},
vC € M,.

By the first part of the proof we can conclude that
A €] =0. O

We denote by H,, the real space of n x n Her-
mitian matrices.

Proposition 3.1.3 For any C € H,,, V; c(A) C
R if and only if A € H,.

Proof: (<) Let A and C be Hermitian matrices.
If z € V;c(A), then there exists a pseudo-unitary
matrix U such that

2 =Tr(CU*AU) = Te(C*U* A*V)
— To(CU*AU)* = Z,

and so V; c(4) C R.

(=) Let z € Vjc(A). Since we are assuming
that V;c(A) C R, then

z = To(CU*AU) = Te(CU*AU) = Tr(CU* AU)*
= Te(CU*A*U), VU € Ug,1-

Thus

Te(CU*(A— A*)U) =0, VC € H,.

Recalling that Tr(PQ) is an inner product in H,,,
we conclude that A — A* = 0. O

A matrix A € M, is said J-normal if AJA*
A*JA. A matrix A € M, is said essentially J-
Hermitian if pA + vJ is Hermitian for some 0 #
u,v € C, that is, 4 is J-normal with collinear eigen-
values.

Proposition 3.1.4 For any C € H,, V;c(A)
is o subset of a straight line if and only if A is es-
sentially J- Hermitian.

Proof: (<) If A is essentially J-Hermitian, then
1A + vJ is Hermitian for some 0 # p,v € €. By
Proposition 3.1.1 v and Proposition 3.1.3 the im-
plication follows.

(=) By Proposition 3.1.1 v, we may rotate and
translate Vo (A) so that it becomes a subset of the
real line. That is, there exist u,v € €, such that
Vic(pA+vJ) C R. By Proposition 3.1.3, pA+vJ

is Hermitian and so A is essentially J ~Hermitian.[]
3.2 The 2 x 2 case

The elliptical range theorem is an important re-
sult in the theory of the classical numerical range
and its generalizations. In the studies in this area,
a useful technique is reducing the problems to the
case of matrices of order 2. For instance, convex-
ity results are proved using such reduction tech-
niques. The elliptical range theorem asserts that
the numerical range of a 2 x 2 matrix A with eigen-
values A1 and Ag is an elliptical disk with foci A\q
and A9, and with the length of minor axis equal
to 1/Tr(A*A) — [A1]2 — [A2]2. In Theorem 3.2.2, we
give a detailed description of the J, C-tracial range
of order 2 matrices and J € Uj ;1. In particular, it
is shown that except for the degenerate cases when
these generalized numerical ranges are a subset of a
line, a half plane or the whole complex plane, they
are bounded by a branch of a hyperbola.

Lemma 3.2.1 will be used in the proof of Theo-
rem 3.2.2.

Lemma 3.2.1 (Hyperbolic range theorem)
The V;(A) numerical range of a 2 x 2 matriz A
such that the eigenvalues of JA are A1 and Ao, and
A #£ M\J, is bounded by a hyperbola with foci Ay and
A2, and with the length of imaginary axis equal to

V-Te(A*JAT) + A1) + | A2

In particular, for the degenerate cases of the hy-



perbola, V;(A) is a singleton, a line, a subset of a
line or the whole complex plane.

Proof. Suppose A # AJ, for some A € C. (If
A = A\J, it is obvious that V;(A) = {\}.)

Firstly, consider TrA = 0. Taking into account
Proposition 3.1.1 iv, by a translation we can take A

in the form
0 ¢
A<d 0).

If c =d =0, V;(A) reduces to the origin. If ¢ or
d is different from 0, it can be easily checked that
V;(A) is the complex plane.

Now, consider the case TrA # 0. Using a multi-
plication by a unimodular complex number, every
v € €2 can be brought to the form

()

for some z € €. On the other hand, performing a

suitable transformation of the form A’ = ﬁ(A -

Tr(AJ)J), by Proposition 3.1.1 iv we may assume

without loss of generality that the principal entries

of A are equal to 1. Moreover, we may concentrate

on the V;(M) numerical range of the 2 x 2 matrix
deia

1
MZ(feia 1 >>

by performing a multiplication on the left and on
the right of A’ by a convenient unimodular pseudo-
unitary diagonal matrix. Thus, we consider the set

Vi(M) =
(1 z)u(})
z
— s ze@C,1—22#0
1—22
(3)
Let z = pe'®, where 1 —p? # 0 and D = }—fé After
some computations, it can be seen that tﬁe set of
points in (3) is given by
((x — D)sina — y cos a)?
(f —d)y?
((# —D)cosa+ysina)?  D?—1 (1)
(d+ f)? 4

Using a standard procedure for evaluating the enve-
lope of the family of curves given in (4), we obtain
the general equation of a conic

Ax? + Cy® +2Bxy + F =0, (5)

where
A=d?+ 2 - 2df cos2a;

B = —2df sin 2¢;
C = —4+d?+ f? + 2df cos 2w
F =1/4((d* — f%)? + 4(d* + f*)? — 8df cos 2a).
Reducing the conic in (3.3) to its principal axis,
we get the equation

2 x3 1

a2 b2

(6)

where

a? =2 — (d® + %) + 2¢/1 + d2f2 — 2df cos 2a;

b = =2+ (d* + ) + 2¢/1 + d2f2 — 2df cos 2
(7)

and
c=+va?+ b2

is the focal length. We now discuss the equation
(6). We can assume that one of the following cases
holds:

Case 1: d= f and a = 0.

Under the hypothesis, we have b = 0 in (7).
As can be easily seen this case corresponds to the
case of the matrix M being Hermitian. After some
routine computations, we conclude that A = B =
F =01in (3) and so V(M) is contained in the real
line. If a? > 0, then

V(M) =] — 00, —a/2] U [a/2, +00].

If a? < 0, then V(M) is the whole real line.

Case 2: d # f or a # 0.

In this case b # 0. If a® > 0, (6) represents a hy-
perbola. If a? = 0, the hyperbola in (6) degenerates
in a line, and V(M) is the whole complex plane.
If a®> < 0, (6) reduces to an imaginary ellipse and
V(M) is again the complex plane.

We observe that the eigenvalues of JM, say,
A1y Ab, are of the form +£4/1 — dfe?’® and that

Te(MJM*J) =2 —d? — f2.
Notice also that
b = [ALJ2 + [Ny )2 — Te(MJM*J),

and that the direction of the real axis of the hyper-
bola is given by the vector

(7)

Y

( —1+df cos(2a) + /1 + d? f? — 2df cos(2a)
2df sin(2a)

).



O

Theorem 3.2.2 Let C' = diag(v,v2) € M,
and let (A1, A2) be the eigenvalues of JA, A € Mo.
The V;c(A) numerical range of A is bounded by
a branch of hyperbola with foci v1A1 — A2 and
Y1A2 — Y21, and with the length of imaginary axis
equal to

This completes the proof of the Lemma.

TrC/—Tr(A*JAT) + |M]2 + | A2)2.

In particular, for the degenerate cases of the hy-
perbola, V; c(A) is a singleton, a line, a subset of a
line, a half-plane or the whole complex plane.

Proof. For any A € My, it is not difficult to
verify that

Vic(A) = (m +7%)Vie, (4) — 7Tr(JA),

and that
Vic(A) = (1 +72)Vi g (A) + nTe(JA).

Using Lemma 3.2.1 and performing some computa-

O

tions the Theorem follows.
3.3 Algorithm and Examples

In this section, we describe an algorithm for gen-
erating the V;(A) range.

Before we describe the algorithm, we give the
following definition:

Definition Consider a set of points {Py,- -+, P,}
and let {; = =1 be the sign associated with the point
P;. The pseudo-convex hull of the points Py,---, P,
is defined by

Co(Py,---,P,) =
> i1 6igiPi -
=020, G #0,.
{ Zi:l Ci%’ ;

Step 1. Choose some matrix A € M,,.

Step 2. Determine the matrix A(f) = Ae®?, § €
[0,27], and its Hermitian part Re(A(6)) = 2(A(6)+
A(9)").

Step 3. Determine the eigenvectors vg(6) of
JRe(A(0)),

JRe(A(0))vg(0) = Apvp(9), k=1,--- n.

Step 4. For each eigenvector vy(6), determine
the interval I}, C [0, 27] such that vg(8)* Jv(0) # 0
for 8 € I..

Step 5. For each eigenvector v (), draw the
curves with parametric equations

vk(Q)*Avk(Q) ’Uk(9>*A’Uk(9)
z = Re , = dm———,

vk(Q *J’U}c(e) ’U]c(9>*J’Uk(9)
0ecl, k=1,---,n.

(For each curve, the sign of v, (0)* Juk(8) should
be retained.) These are the generating curves of the
boundary of V;(A), which is the pseudo-convex hull
of the curves.

Example 1
Let
1 0 a
A=1 0 0b 0 |, abelR.
0 01
Thus
cos 0 %aew
Re(A(9)) = 0 bcosd 0
%ae_w 0 cos 8

The eigenvectors of JRe(A(#)), J = diag(1,-1,1),
are

0 1 —et?
vi(0) = (1) » () = 7 (1) ;
. it
v2(0) 7 (1)
We have

v1(0)Jvi(0) = —1,

1 .
vi(0)Avy(0) = b, v3(0)Avy(F) =1 — 5ae*“’,

v5(0)Av3(0) =1+ %ae*w.

Hence, the singleton {—b} and the circle (z — 1) +
y? = iaz (more precisely, two superimposed circles)
are the generating curves of the boundary of V;(A),
which is the pseudo-convex hull of these curves. If
1—2la| < =b < 1+ 3lal, V;(A) reduces to the
whole complex plane.



Example 2
Let, again,
1 0 a
A= 0 b 0 |, abelR,
0 0 1
cos 0 %aew
Re(A(9)) = 0 bcosd 0
Lae=% 0 cos @

However, now take J = diag(—1,1,1). The eigen-
vectors of JRe(A(0)), are

0 _% 0
’Ul(9> = 1 s @'2(9) = 0 5
0 f(0)

0

..

—ge
v3(0) = 0 )
1)

= cosf + 4/cos? 6 — %. We have

v () Ty (0) =

\/cos20f —
v3(8)Jvs(8) = —2f(0) \/00529— —

v (0) Avy (9) —

v3(0) Ave(0) = f(6) (2 cosf — (;_Qe—i(?) 7

where f(0)

(G)JIQ

v5(0)Avs(0) = f(0) (2 cosf — “2—2ei9> .

Therefore, the singleton {b} and the two branches
of the hyperbola

l‘2 2

=1
a2
11—«

H@Nl@

are the generating curves of the boundary of V;(A4),
which is the pseudo-convex hull of these curves.
(The + sign is associated to one of the branches and
the — sign to the other.) If £ “ > 1,orif —14+4 ® > p,
V5 (A) reduces to the Whole complex plane.

4 Conclusions

The previous developments give light to the pro-
duction of algorithms and computer programs for
generating generalized numerical ranges in indefi-
nite inner product spaces. The design of an effi-
cient algorithm or computer program to generate

V,.c(A) for general C' and A seems the next step of
this research program.
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