A Simulation and a Study of Random Walks

Mohamed Hamada
Language Processing Lab.

The University of Aizu
Aizu Wakamatsu, Japan
E-mail: hamada@u-aizu.ac.jp

Abstract: - Random walk model has many useful applications in the study of stochastic
(probabilistic) processes including: modeling the transport of molecules in physics, model-
ing the locomotion of organisms in biology, and modeling the behavior over time of financial
markets in economy. In this paper we introduce a visualized simulation of a random walk
in d-dimensional lattice. We also introduce a numerical analysis of the d-dimensional lattice
walk. A two- and three-dimension off-lattice walks are also discussed. In addition to simu-

lating self-avoiding walks.

Key-Words: - On-lattice random walk, self-avoiding walk, simulation, visualization.

1 Introduction

In this paper we are concerned about off-
lattice and on-lattice random walks. The
off-lattice random walk goes back to Karl
Pearson who published a query in Nature en-
titled The Problem of the Random Walker
[7], asking for the probability of a random
walker, with equal distance walks in any di-
rection, (after n steps) to be at a distance,
from the starting point, bounded by certain
values. We will study and implement this
model for two and three dimension. We also
consider on-lattice random walk (in the se-
quel referred as lattice random walk). We
study the general form of this model, that is
called d-dimensional lattice walk. For sim-
plicity we will assume that the length of
steps are fixed and equal to the unity. Now
let a point walk around at random on this
lattice. Upon reaching any vertex of the
graph, the probability of choosing any one
of the 2d edges leading out of that vertex is
1/2d. When d = 1, i.e. one-dimensional ran-
dom walk, the lattice is just an infinite line
divided into segments of length one. When

d = 2, i.e. two-dimensional random walk,
the lattice looks like an infinite network of
streets and avenues. When d = 3, i.e. three-
dimensional random walk, the lattice looks
like an infinite “jungle gym.” It is worth
noting that when d = 3, the wandering of
our walking point could be regarded as an
approximate representation of the random
path of a molecule diffusing in an infinite
cubical crystal. We also consider another
model of random walks, that is, self-avoiding
walk (SAW). SAW differs from other models
of random walks in such a way that it never
visits a previously visited point.

In spite of the simplicity of the notion
of the random walk it is remarkable that
the general idea, as well as ramifications and
specific implementations of the general idea,
play such a crucial role in so many scientific
disciplines.

The paper is organized as follows. In sec-
tion 2 we introduce the implementation of
two- and three-dimensional off-lattice walk.
The implementation of d-dimensional lattice
walk will be given in section 3. In section 4
we discus the numerical analysis of both ran-

dom walks and introduce implementation to
compute related values such as mean square
end to end distance and radius of gyration.
In section 5 a visualization of several walks is
introduced. The simulation of SAW is given
in section 6. Finally, in section 7 we conclude
our paper and show other related works. In
this paper we use the powerful system Math-
ematica version 4 in our implementation. So
we will assume some familiarity with Mathe-
matica. A comprehensive guide can be found
in [8]. For recent work and applications on
randomness we refer to [9].

2 Off-Lattice Random

Walk

In this section we discuss the off-lattice ran-
dom walk. In this model the walker starts at
any point and walk in any direction for a unit
distance. Then he turns for any angle what-
ever and walk for another unit distance. He
repeats this process n times. We will study
this model in two and three dimensions.

2.1 Off-lattice walk in 2-

dimension

The off-lattice random walk model in two-
dimension (it is also called Pearson’s ran-
dom walk) can be described as follows. A
walker starts from a point p and walks one
unit in a straight line, he then turns through
any angle (between 0 and 360 degrees (27))
whatever and walks another unit in a sec-
ond straight line. He repeats this process n
times. To implement this model we need to
use polar coordinates instead of the Carte-
sian one. A point (x,y) in Cartesian coor-
dinates can be transformed into polar coor-
dinates as follows: x = r.cos(¢) and y =
r.sin(¢), where r is the distance walked and
¢ is the angle of motion. Since we use the
unit distance, r = 1. Hence the Cartesian

coordinates point (z,y) will be represented
by the polar coordinates (cos(¢), sin(¢)).

The corresponding Mathematica pro-
gram can be given as follows.

2.1.1 The program

OffLatticeWalk2D[steps_] :=
Map[Flatten,
FoldList[Plus, {0.0, 0.0},
Map[{Cos[#], Sin[#]}&,

Table[{Random[Real,
{0, N[2Pi]}]1},
{steps}]]

]

]
A typical run of this program for 10 steps is:
OffLatticeWalk2D[10]
which produce the following list of steps:

{{0., 0.3}, {-0.919224, 0.393734},
{-1.68058, 1.0421}, {-1.5205, 0.054},
{-0.5231, 0.1257}, {-0.8532, 1.069},
{-0.9396, 2.0659}, {-1.2547, 3.0149},
{-1.75684, 2.1501}, {-2.024, 3.1138},
{-1.03713, 2.95233}}

Here the first point in the list (i.e.,{0., 0.})
represents the starting point (i.e. the origi-
nal). The other 10 points represent the ran-
dom 10 steps in the walk.

2.2 Off-lattice walk in 3-

dimension

The off-lattice random walk model in three-
dimension can be described as follows. A
walker starts from a point p and walks one
unit in a straight line in the space, he then
turns through any angle (between 0 and 360
degrees (27)) whatever and walks another
unit in a second straight line. He repeats this
process n times. To implement this model
we need to use spherical coordinates instead
of the Cartesian one. A point (z,y,z) in
Cartesian coordinates can be transformed

into spherical coordinates as follows (see fig-
ure 1 below): = = r.sin(b).cos(a), y =
r.sin(b).sin(a), and z = r.sin(b), where r
is the distance walked, 0 < a < 27 is the an-
gle between the positive z-axis and the pro-
jection onto the (x,y) plane (also called ge-
ographical longitude), and 0 < b < 7 is the
angle between the polar axis (positive z-axis)
and the latitude coordinate. Since we use
the unit distance, r = 1. Hence the Carte-
sian coordinates point (z,y,z) will be rep-
resented in the spherical coordinates by the
point (sin(b).cos(a), sin(b).sin(a), cos(b)).

z

X

Fig. 1 Spherical vs. Cartesian coordinates

The corresponding program can be writ-
ten in Mathematica as follows.

2.2.1 The program

OffLatticeWalk3D[steps_] :=
FoldList[Plus, {0.0, 0.0, 0.0},
Apply[{Sin[#]Cos[#],
Sin[#]Sin[#], Cos[#]}%&,
Table[{Random[Real,
{0, N[2Pi]}],
Random[Real,
{0, N[Pil}] 1},
{steps}],
{1}]1]

A typical run of this program for 10 steps
is:

OffLatticeWalk3D[10]

which produces the following list of steps:

{{0., 0., 0.}, {0.2979, 0.901, 0.3137},
{0.191, 1.8909, 0.421},

{0.32076, 1.90709, -0.570369},
{-0.162251, 2.27786, 0.222871},
{0.178655, 2.41209, -0.707593%},
{0.525812, 3.27193, -0.3338},
{0.331571, 3.3112, 0.64696%,
{0.310621, 4.31076, 0.667914},
{0.64044, 5.18655, 1.02035},
{0.345477, 5.28282, 0.0696997}}

3 d-Dimensional Lattice
Walk

In this section we introduce the implemen-
tation of the d-dimensional lattice walk.
We will consider lattice walks on the d-
dimension. Following [1], the d-dimensional
lattice walk can be constructed as follows.
To construct a d-dimensional lattice, we
take as vertices those points (z1,:--,xq)
of RY all of whose coordinates are inte-
gers, and we join each vertex by an undi-
rected line segment to each of its 2d near-
est neighbors. These connecting segments,
which represent the edges of our graph, each
have unit length and run parallel to one of
the coordinate axes of R?. This walk con-
sists of steps of uniform length. At any
lattice point, the walk is randomly taken
in one of the possible 2d directions. The
list of possible increments for a step in this
walk are then given by the following list:
{{1,0,---,0},{0,1,---,0},{0,0,--- ,1},---
{{-1,0,---,0},{0,-1,---,0},{0,0,---,—1}}.
To implement this in Mathematica we intro-
duce the following program.

3.1 The program

WalkNdimension[dimension_, steps_]:=
FoldList[Plus,Table[0,{dimension}],
Union[IdentityMatrix[dimension],
-IdentityMatrix[dimension]]

[[Table[Random[Integer,
{1, 2xdimension}], {steps}]]]
]

A typical run of this program for 10 steps
in 2-, 3-, and 4-dimension respectively is:

WalkNdimension[2, 10]
WalkNdimension[3, 10]
WalkNdimension[4, 10]

which, respectively, produce the following
lists of steps:

{{O, O}; {_1, 0}, {_1, 1}; {_1; 2};
{-1, 1}, {-1, o}, {-1, 1}, {-1, 2},
{-2, 2}, {-1, 2}, {-1, 1}}

{{o, o, o}, {0, 1, 0}, {0, 1, 1},

{-1, 1, 1},{-1, o0, 1}, {-1, 0, O},

{-1, -1,0},{-1, -2, o},{-1, -2, -1},
{-1, -3, -1}, {0, -3, -1}}

{{0, 0, 0, 0%}, {0, 0, -1, 0},

{1, o, -1, o}, {0, O, -1, O},

{o, o, -1, -1}, Ao, o, -1, -2},

{0, 1, -1, -2} , {0, 1, -2, -2},
{-1, 1, -2, -2}, {-1, 1, -1, -2},
{-2, 1, -1, -2}}

4 Numerical Analysis of
Random Walks

In this section we introduce an implementa-
tion to compute some useful values related
to random walks, namely: mean square end-
to-end distance and radius of gyration.

4.1 Mean square end-to-end
distance

The square end-to-end distance, denoted by

r?, of a d-dimensional lattice walk is given

by (1 — f1)* + (22— fo)* + -+ (T — fm)?
where (x1,2y,---2,,) is the starting point
(the origin) of the walk and (fi, f2, - fm)

is the final point of the walk. Choosing
the origin to be (0,0,---0) as the starting
point of the walk simplifies the formula to

JEAfit et o

4.1.1 The program

A program for computing the mean square
end-to-end distance, denoted by < 72 >,
for numberQfWalks trails of steps-steps in a
dimension-dimensional lattice can be writ-
ten as follows.

MeanSquarEndToEndDistance[dimension_,
steps_, numberOfWalks_]:=
Module [{WalkNdimension},
WalkNdimension[dimensionl_,
stepsl_] :=
FoldList[Plus,
Table[0, {dimensionl}],
Union[

IdentityMatrix[dimensionl],
-IdentityMatrix[dimension1]]

[[Table[Random[Integer,
{1, 2xdimensionil}],
{steps1}111];
N[Sum[Apply[Plus,
Last[WalkNdimension
[dimension, steps]]~2],
{number0fWalks}]/ numberOfWalks]]

A typical run of this program for for
25 trails of 10-step walks in 2-, 3-, and 5-
dimension respectively, is given as follows.

MeanSquarEndToEndDistance[2,10,25]
8.8

MeanSquarEndToEndDistance[3,10,25]
11.36

MeanSquarEndToEndDistance[5,10,25]
10.32

For the off-lattice walk, the mean square
end-to-end distance is given, in [4], as the
simple formula < 7? >= na?, where n is
the number of steps and a is the length of
the step. In our case here we consider walks
with unit length (i.e., a = 1) so this formula
becomes trivial one.

4.2 Mean square radius of gy-
ration

The mean square radius of gyration of a
d-dimensional lattice walk, denoted by <
G? >, is the sum of the squares of the dis-
tances of the step locations from the center
of mass, divided by the number of step lo-
cations. The center of mass is the sum of
the step locations divided by the number of
step locations. This can be expressed by the
following Mathematica program.

4.2.1 The program

MeanSquarRadiusGyration[dimension_,
steps_, number0fWalks_]:=
Module [{squareRadiusGyration},
squareRadiusGyration[stepsl_]:=
Module[{locations,centerOfmass,
choices=Union[
IdentityMatrix[dimension],
-IdentityMatrix[dimension]]},
locations=FoldList[Plus,
Table[0, {dimension}],
choices[[Table[
Random[Integer,
{1, 2xdimension}],
{steps}]111];
centerOfmass =
N[Apply
[Plus,locations]/ (stepsi+1)];
Apply[Plus,Flatten
[(Transpose[locations]-
centerOfmass) “2]]
/(stepsi+1)];
N[Sum[squareRadiusGyration
[numberO0fWalks],{steps}]/steps]]

]

A typical run of this program for for 50
trails of 15-step walks in 2-; 3-, and 10-
dimension respectively, is given as follows.

MeanSquarRadiusGyration[2,15,50]
1.23

MeanSquarRadiusGyration[3,15,50]
1.642

MeanSquarRadiusGyration[10,15,50]
1.93

For the off-lattice walk, the mean square
radius of gyration is given, in [4], by the for-
mula < G? >= tna*(1 — %), where n is the
number of steps and a is the length of the
step. In our case here we consider walks with
unit length (i.e., @ = 1) so the formula can
be simplified to < G* >= tn(1 — ;) which
can simply implemented in Mathematica.

5 Visualization of the

random walk

5.1 Graphic visualization

The lattice and off-lattice random walks can
be visualized graphically by the following
program. Note that, in practice, walks with
dimension greater than 3 can not be vi-
sualized. In such case the program will
output the message: Sorry, I can’t show
dimensions other than 2 and 3.

5.1.1 The program

ShowWalk [walkProgram_,options___]:=
Switch[Length[First[walkProgram]],
2, Show[Graphics[Line[walkProgram],
options, AspectRatio ->Automatic]l],
3, Show[Graphics3D[Line[walkProgram],
options, AspectRatio ->Automaticl],
_, Print[‘‘Sorry,

I can’t show dimensions
other than 2 and 3]]

5.1.2 Simulation

A simulation of 3-dimension lattice walk
with 250 steps is shown in figure 2 below.

ShowWalk[WalkNdimension[3,250]]

Fig.2 A simulation of 3-dimension lattice
walk with 250 steps.

A simulation of 3-dimension off-lattice
walk with 50 steps and 2-dimension off-
lattice walk with 2500 steps are shown in
figure 3 below.

ShowWalk [0ffLatticeWalk3D[50]]
ShowWalk [0ffLatticeWalk2D [2500]]

Fig.3 Simulation for a 3-dimension off-lattice
walk with 50 steps (up) and 2-dimension off-
lattice walk with 2500 steps (down).

6 Self Avoiding Walk

Self Avoiding Walk (SAW for short) is an-
other model of random walks in which a
walker, at any point, moves at random (for
one unit) in any direction such that it never
visits a previously visited site. One of the
most important applications of SAW model
is in polymer science where linear polymer
molecules in chemical physics can be mod-
eled as a SAW [6], one simple example is
polyethylene. 'There is two algorithms ex-
plain the behavior of SAW: the Slithering
Snake algorithm and the Pivot algorithm.

In the slithering snake algorithm, the
walker acts like a snake. The snake slith-
ers randomly and swaps its head and tail if
he finds its body in front. It has a problem
in that sometimes the snake is not able to go
anywhere.

The pivot algorithm has no walker. It
just acts like a bent wire. if the bended
wire touches itself, the bending is canceled.
In this algorithm the wire length does not
change.

In this section we study the pivot algo-
rithm.

6.1 The Pivot Algorithm

The pivot algorithm is an efficient dynamic
algorithm for generating d-dimensional
SAWs in a canonical ensemble. It based
on randomly selecting one of the 2¢d! sym-
metry operations on a d-dimensional lattice
and applying the operation to the section of
the SAW beyond a randomly selected step
location. In 2-dimension it is sufficient to
consider just three (rotation of -90, 490, and
180 degrees on X-Y plane) of the eight (22.2!)
symmetry operations. The implementation
of the 2-dimensional case was given in [3]. In
this section we extend this implementation
to the 3-dimensional case.

6.1.1 The Program

The Mathematica program for the pivot al-
gorithm in 3-dimensional is given as follows.

Pivot3DSAW[n_Integer, m_Integer] :=
Module [{squaredist,twistAndShout},
squaredist = n"2;
twistAndShout =
(Module[{ball, fixsec, movesec,
rotchoice,newsec, newconfig,
rot = {
{{0,1,0},{-1,0,0},{0,0,1}},
{{0,-1,0},{1,0,0},{0,0,1}},
{{-1,0,0},{0,-1,0},{0,0,1}},
{{0,0,1},{0,1,0},{-1,0,0}},
{{0,0,-1},{0,1,03},{1,0,0}3}}},
ball = Random[Integer, {1, n-1}];
fixsec = Take[#, balll;
movesec =
Take[#, ball - (n + 1)];
rotchoice =

rot [[Random[Integer,{1,5}11];
newsec =
Map[Functionl[y,#[[ball]] +
(y-#[[ball]l]l) .rotchoice],
movesec] ;

If [Intersection
[newsec,fixsec]\[Equall{},
newconfig =

Join[fixsec, newsec];
squaredist +=
Apply[Plus,

Last [newconfig] "2];
newconfig,
squaredist +=
Apply[Plus, Last[#]72];
#11)&;
Nest [twistAndShout,
Table[{j,0,0},{j, O, n}l, ml;
N[squaredist/(m + 1)]]

7 Conclusion

In this paper we introduced a visual simula-
tion of two types of random walks, that is,
the on-lattice random walk in d-dimensional
space and the off-lattice walk in 2- and 3-
dimensions. We also give an implementation
of two numerical values related to these ran-
dom walks, namely, the mean square end-to-
end distance and the mean square radius of
gyration. An implementation of SAW was
also introduced. This work is a generaliza-
tion of the work given in [3] in which random
walks in 1- and 2-dimensions are considered.
A similar work was also given in [2, 5] for
2-dimensions random walk so our work sub-
sumes these work.

In this work we considered only single
walker, for future work, we plan to consider
several walkers with a possibility of interact-
ing with each other.

References

1]

2]

4]

P. G. Doyle and J. L. Snell, Ran-
dom Walks and Electric Networks. The
Mathematical Association of America,
Inc., Third printing, 1999.

R. J. Gaylord and K. Nishidate, Mod-
eling Nature: Cellular Automata Sim-

ulations with Mathematica. Springer-
Verlag New York, 1996.

R. J. Gaylord and P. R. Wellin,
Computer Simulations with Mathemat-
ica: Explorations in Complex Physical

and Biological Systems. Springer-Verlag
New York, 1995.

B. D. Hughes, Random Walks and Ran-
dom Environments, Vol.l: Random
Walks. Oxford University Press, 1995.

[5]

M. Hamada, A Visual Simulation
and Analysis of Random Walks in d-
Dimensional Lattice. Proceedings of the
4th St. Petersburg Conference on Simu-
lation, pp. 245-252, St. Petersburg State
University, 2001.

N. Madras and G. Slade, The Self-
Avoiding Walk. Birkhauser Boston
Press, 1996.

K. Pearson, The Problem of the Ran-
dom Walker. Nature, 72, 294, 1905.

S. Wolfram, The Mathematica Book,
WolframMedia Inc. Champaign, Illi-
nois, USA, and Cambridge University
Press 2000.

S. Wolfram, A new kind of Science
WolframMedia Inc. Champaign, Illi-
nois, USA, and Cambridge, 2002.

