A New Multivariable Robust Model Reference Adaptive Controller

CARLOS MENDESRICHTER, HUMBERTO PINHEIRO, HELIO LEAESHEY,
JOSE RENES PINHEIRO AND HILTON ABILIO GRUNDLING
GEPOC — Group of Power Electronics and Control
UFSM — Federal University of SantaMaria
UFSM/CT/NUPEDEE, Campus Universitario, Santa Maria, 97.105-900
BRAZIL

carlos.richter@terra.com.br

ghilton@ctlab.ufsm.br

http://www.uf sm.br/gepoc

Abstract: This paper proposes a new multivariable model reference adaptive controller (MIMO RMRAC), which
consists of two parts. the first part involves the characterization of the integral structure of the modeled part of the
plant, and the associated parameterization of the controller structure; and the second part involves the development
of arobust adaptive law based on a modified least-squares algorithm for adjusting the controller parameters so that
the closed-loop plant is globally stable despite the presence of unmodeled dynamics and bounded disturbances.
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1 Introduction

Adaptive continuous-time controllers for single-input
single-output (SISO) plants have been developed in
the literature. In last years, it has grown the amount
of algorithms with robustness characteristics in the
sense of stability as well as performance. In loannou
and Tsakalis [1], a robust model reference adaptive
controller (RMRAC) is presented, which has
advantages over other algorithms when applied to
adverse rea situations [2]. This scheme requires
some assumptions over the characteristics of the
plant, as, for example, knowing the sign of the high
frequency gain. Lozano and others [3] developed a
controller that relaxes this assumption, applying a
projection technique which avoids division by zero in
the controller. Another advantage presented in [3] is
the use of a modified least-squares agorithm, which
presents faster parametric convergence characteristics
than the gradient algorithm used in [1]. Other
developments for SISO adaptive control are
presented in [2]. In [4] it was developed an RMRAC-
RP controller, where RP is a repetitive control
technique mixed to the RMRAC controller.

Parallel to the SISO case, adaptive control techniques
have been developed for multiple-input multiple-
output (MIMO) plants. The coupling and
parameterization problem is focused in literature [5]-
[6], arriving to agorithms for the estimation of the
interaction matrix [7]-[8].

If the multivariable plant to be controlled is weakly
coupled, it is possible to develop a decentralized
adaptive control, as described in [9] and [10]. In [11],
it was developed a decentralized RMRAC for athree-
phase uninterruptible power supply, and in [12], the
same agorithm was applied to develop a three-phase
AC power source. In both works it was obtained
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encouraging practical results. Unfortunately this
technique is not effective when applied to strongly
coupled multivariable plants. In this case, centralized
multivariable control, which deals directly with
coupling, hasto be applied.

Tao and loannou present in [13] a MIMO RMRAC,
which uses parameterization with base on the modified
left interactor (MLI) matrix or the modified right
interactor (MRI) matrix. This work solves the matrix
commutability problem that arises in the development
of a MIMO controller. The scheme developed uses a
gradient adaptation algorithm for on-line update of the
controller parameters, so that the closed-loop plant is
globally stable despite the presence of unmodeled
dynamics and bounded disturbances.

This paper presents a MIMO RMRAC, which uses,
differently from [13], a modified least-squares
agorithm to provide faster parameter convergence
characterigics. The adaptor uses s -modification and
normalization techniques. Inspired in [1] and [3],
sability proofs are developed making the adequate
considerations to the MIMO case. Hence, it is shown
that the proposed dgorithm presents robustness
characterigtics regarding additive and multiplicative
gsable plant perturbations. For limited smal plant
perturbations it is shown that the tracking error is small
in the mean, and, in the absence of plant perturbations,
tracking error tends asymptoticaly to zero. The
controller is gpplicable to MIMO plants with the same
number of inputs and outputs. Some of the assumptions
of this scheme are the prior knowledge the MLI matrix
of the modeled part of the plant and the knowledge of a
lower bound of the norm of the high frequency gain
matrix, which is assumed to be postive definite.
Without satisfying these assumptions, the controller may
become ungtable dueto the inversion of asingular matrix.



This paper is organized as follows. In Section 2 we
present the integral structure and parameterization of
a multivariable system. Plant description and the
control objective are presented in Section 3. The
controller structure is given in Section 4. Section 5is
devoted to the parameter adaptation algorithm and its
properties. In Section 6 the robustness properties are
analyzed.

2 System Integral Structure

An important concept for designing MIMO model
reference control schemes is the plant integra
structure, which may be characterized by the plant
interactor matrix. A full description of right and left
interactor matrix can be found in [13]. In this paper it
will be presented only the concepts involving the
modified left interactor (MLI) matrix. All
developments will be made supposing the use of the
MLI matrix and filtering. The use of the modified
right interactor (MRI) matrix and pre-compensation
is equivalent, and will not be treated in this paper.
The following lemma [13] serves to define the
multivariable counterpart to high frequency gain and
relative degree of MIMO plants.

Lemma 2.1. [13] Forany N* N dgrictly proper retiona
full rank transfer matrix G,(s) there exigs a lower
triangular  polynomia matrix X" (s), defined as the
modified | eft interactor (MLI) metrix of G, (s) , of theform
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polynomias, and dfi(s)=s£"+als +..+ag,

i=1...,N, areHurwitz arbitrary polynomials so that
limgy X{" (s)Go(s) = Ky, isfinite and non-singular.

Proof. The proof is presented in [13].

Remark 2.1. [13] Since the polynomiasd’;(s) in (1)
are Hurwitz, the MLI matrix X" (s) has stable inverse,
and so it can be used for the design of MRC schemes.

The following lemma employs the notion of the MLI
matrix to give a parameterization for the plant with
which it will be possible do design MRC schemes.

Lemma 2.2. [13] The MIMO LTI plant
Yy =Go(s)u )

can be represented as

yELEK )y, v, =Gols)u 3)
where G (s) isa N” N transfer matrix whose MLI
matrix is f(s)/, and f{(s) is an arbitrary Hurwitz
polynomia of degree d,, and d,* the maximum
degree of the elements of x"(s). Furthermore, the

high-frequency gain matrix of Gé‘ (s) isequa to Ky, .

Proof. [13] Equation (2) can be written as
¥ = f )X () (5)) %[ (5)Go(s)u . Defining
Go ()= (f1 () ™X["(5)Go(s) and  y, =Gy (s)u,
and noting that f, (s)Gy (s) =X[" (s)G,(s) , the proof
is complete.

3 Plant Description and Control Objective
Considerthe N™ N MIMO LTI plant described by

y=G(s)u, G(s) ={G,(s)[1 + D, ()] + D, (s)} (4)

where yT RY, ul R"Y. G,(s) isthe modded part of
the plant, and D, (s), D,(s) ae the respectively
multiplicative and additive non-modeed parts of the plant.
Consider that x " (s) isthe modified I€ft interactor (MLI)

matrix of G, (s), and consder thefollowing system
¥, =G(u, 6,()={Gs [ +mD,@]+ml )} ()

where v, = (£, () X7 (). y= £ k6] y,
Go ()= fi " (9)X{"(s)Go(s), D, (s)=D,(s) and
D, (s) = f; (9)X{" (5)D, (s) .

The constant n, is a known higher bound for the
observability index of Gy(s), and n, is a known
higher bound for the observability index of Gé‘ (s) .

We can now state the control objective as follows:
Given the reference model

Y =W, (s)r (orequivdently y, = an (s)r) (6)

where 7, (s) (or W, (s)= £, (s)X{" ()W, (s)) is
an N° N drictly proper stable minimum phase

transfer matrix to be selected, and »1 R" is a
known uniformly bounded and piecewise continuous
input reference signal, find in (4) (or (5)) the control

input uT R" o that the output yI R" (or y,)
follows y, T RY (or y,, =/, s)X{(s)y,) in () a

close as possible, and dl signds in the closed-loop plant
are uniformly bounded for any bounded initia conditions.



In order to satisfy the control objective, it is
necessary that the plant and the reference model
satisfy the following assumptions:

Al. G(s) isstrictly proper and full rank.

A2. G,(s) is strictly proper, non-singular, it has
stable zeros, and its MLI X" (s) isknown.

A3. D,,(s) and D, (s) arerational transfer matrices,
and D, (s) isstrictly proper.

Ad4. Let f(s) beamonic Hurwitz polynomial with
degree d,, which is the maximum degree of
X"(s), and let fi(s) have al its roots in
Re[s] <- p,, and define

D, =SI(|®rQ D,(s)s , -!(larg 70 D, (s)s . (7)
then there exists constants %, , k£,, >0 so that
| [0, | <k, ®
(B (s - po) - D, )s + P, <k, ()
e 1 0
‘(éfﬁ (s- po) D, (s- po)- D, %(s+p) ) (10)

for some p >0, where | X (s)] , 2 sup, ; »|lX Gw).

AS. An upper bound n for the observability index
n, of £, " (s)X" (s) Go(s) isknown.

A6. A matrix K, is known so that K K, is

is the high

frequency gain matrix of G,(s) associated to

the MLI matrix x " (s) .

positive definite, where K}{’p

A7. A lower bound r for || K7, || isknown.

A8. Anupper bound M, for ||q” || isknown, so that

g || +ds £ M, for some d, >0, where g~ is
the desired parameter matrix of the controller.
A9. Thereference model W, (s) hasall its poles and
zeros stable, and it is chosen so that
fi(s)W,(s) is proper. Without loss of

generality, we can choose 7, (s) = (x{" (s))"*

4 Controller Structure
The control input is computed from:

qTW+X£"(s)Wm(s)r=0

T T T m (11)
Oy Wy +0, Wy +03 v, +0qu +X{" ()W, (s)r =0

where ¢ :[qlT’qzr’an’da and w :[W1T 1W2fT vyfTv“T]T :
The order of the filtersis M =@ - YN, and they
can be represented by
w, =L (s) A(s)u Wy, = L™(s) A(s) Yy (12
where L (s) is an arbitrary Hurwitz polynomia with
degree (7, - 1), and A(s) =[1s" 2, Is" 3, 15, 1]"
is a polynomia (M N)  marix, and
A, :[Q111"',Q1(ﬁﬁ-n] » Oz :[qzlv"'v%(ﬁﬁ-n]T; QquijT RV,
We have also that q,, q,T RV ™; wy,w,, 1 RM 1
ql RV ? andwl R” ', where p=2M +2N =2 N.
If wewrite
f=q-q° (13)
* «T «T «T * T
where q =[q; .9, .03 ,d4] have the same
dimensions as q , then (11) can be written as
WX () W, () =] 0y - B()- B(6)Go)] v (14)
where F,(s) and F,(s) are (N~ N) matrices:
o A(s) o .7 A(s)
F, 25 Fy(s)2q
2 Lis)  ° L (s)

Lemma 4.1. Combining (4)-(6) and (11)-(15), the
filtered tracking error can be expressed as

=, s)f "'w +mh (16)

+qs . (15)

D
€r=Vr = Y
with
h=D(s)u (17)
where D, (s) isastrictly proper transfer matrix.
Proof. Considering (14) and (15), in view of the
controllability of the modeled part of the plant, there

- * - *T
existsavector q ,withq, =-K¢, ,suchthat

€ « T A(s) T A(s
£ L
Using (14) and (18), (5) can be rewritten as

= £ OF WA 9w, )] + D) (19)
where (20)
D(s) = /i ' ()F- s - ()]0, () +nil + £, (9 F, ()P, (s).
Thus, D,(s) is a strictly proper transfer matrix.
Equations (16) and (17) are obtained from (6) and (19). O

Gy(s)- as Go<s)LJ fi()Go(s) (18)

Finally, define the filtered augmented error
e, Ze, +h7fﬁfl(s)w— fﬁfl(s)qu]:f 'z +mh (21)
with e, T R !, and where

z = f{ (s)w. (22)



S Parameter Adaptation Algorithm
Consider the following modified least-squares algorithm

T

.o Pze
f=q=-sPq- m; (23)
._ Pzz'P P*9
p=-122 é P- _2:m2 (24)
m R [/}

where P=P" isa (M~ M) matrix so that

0<PO)<I| R, nfEk m (25)
and
i =-dgm+dy(lull+1ly, 1+1), m(©)*dy/d,  (26)
where | , m, R?, d, and d, are positive constants
and d, satisfies

do +d, £min[pg,q,] (27)

where ¢, >0 is such that the poles of W, (s- g,)
and L(s- ¢q,) are stable and d, is a positive

constant. p, >0 isdefined in assumption A4, and S
in (23) isgiven by

i 0 if la ll< M,
1 aa |
= 1— it M, £|q || 2M, 28
::: gMo ' ’ ’ (8)
f So it llal>2Mm,
where M, >||q" || (Assumption A9), and

s, >2m’/R? are project parameters.

The following lemma gives an important property to
the normalizing signal m(¢) whichisnecessary in the
stability analysis, and the proof is similar to that
presented to the SISO casein [1].

Lemma 5.1. Consider the system
z=W(s)U (29)
where z, UT RY * and W(s) isan (N~ N) stableand
strictly proper transfer matrix, whose poles p; stisfy
do +d2£mjin|Re(pj)| (30)

and U@ | Edm(r) foor  some d,>0
(U@ IENu@ I+ y@) | +m@)) "3 0. Then
there exists a constant ¢; >0 such that
|[E{O]
£c
o (31)

where e, is a term which depends on the initial
conditions and decays exponentially to zero with a
rate at least asfast as e %" .

Now we can establish the following lemma, which
generalizesto the MIMO case the lemmastated in [3].

Lemma 5.2. The parameter adaptation algorithm in
(23)-(28) and (21) subject to the Assumptions A2, A4
and A9, has the following properties

1) IfIRZEPEI[IR? + g2 /) (32)
where g, isthe upper bound for ||z ||/m .
2) s tr(f Tq)3 0. (33)

3) v=wuf’pr)

éﬁl‘?’ngSZ 9M029

T 2max for m>0 (34)

i
_QI ! 2 =
£V—: 8 I | R p
7 7 (0) for m=0
where g. isthe upper bound for |[h ||/m .
4) If 1€k 221 R?V . (35)
Loratt 'z |’ 0, &
5 = +s trif 'q )t £22+nfg,,
)FQT g sl e Rt
1,30, T>0.
1w T(pj ) gl 2
6) 79 m—dt £2l+mig), (37)

30, T>O, j=L....M
where g,, g,, g‘l e g’ are positive constants and
p; isthej-thlineof P.

Proof. The proofs of 1), 4), 5) and 6) are similar to
that presented in [3] and will be omitted.
2) Using matrix theory, we can define

tr(4” 4) =|| A||* for every matrix 4. Also, using the
property tr (f “q) =tr(q’f) we can arriveto
2s trft 7a)o s (1f 17 - 1o 1) (38)
Similarly, using (28) and Assumption A8,
2strf7a)es(laiP-1a 1% 0. (39

3) Define the positive definite function

V=@t "Pf) (40)
Using (21), (24), thetime derivative of Vaong (23) is
T_ 12 T 2
V=-s tr(f Tq)_ EM- E f_2+@ +
4 m 4| m m
> - (41)
LI L] ||f li
m
; r > Ilh |I m* I 17
V£—str(f q)—mIV+m2 —+ (42
m 2R

From result of (28) and (38) we havefor ||f ||® 3M,,
s tr(f 7q)- m*||f |?/2R?3 0. Therefore, from (25)
and (42) it follows that 7 £0 for V3 V' with ¥ as
in (34). Thus, Visbounded by V.



6 Stability Analysis
Consider the following non-minima state-space
representation  for  (16), which has order
N, =n +2( - DN . It can be obtained using similar
considerationsto that made in [3] for the SISO case.

¢, =Ae, +B.(f'wW)+mB h +mB,h,  (43)

e, =Ceey +mh (44)
where 4, is a stable matrix, h, =D\ (s)u and
h,=D. (s)u, D,(s) is a proper matrix, and the

polesof D! (s- p,) arestable.
To andyze (43) and (44), consider the positive

definite function
2

W= kle;}_’ e, t % (45)
where &k, >0 is an arbitrary constant and
P=P" >0 satisfies

PA +A'P=-1. (46)

Lemma 6.1. The time derivative of 7in (45) satisfies
T,

i e-bw, +b, Wy 4y, (47)

m
for each m [0,my], where b, b,, b, e m, are
positive constants.

The proof of this lemma is similar to the proof of
Lemma5.1in [3] and will be omitted.

Define W, as
: f'w
Wo:'bWo"'bs” . ”W0+b4 (48)
with W, (t,) =W (¢,) . The homogeneous part of (48) is
= > If "wil
Wy=-bW,+b, w, (49)
and
A W(to)expgr b(t- 1) +b, (‘)"f Wi 4 (50)
m

From Theorem A.l, stated in the Appendix we have
A W”dt £§h0f+hlm+h mZ+h3 —T+ (51)
e

0
where h, to h, arepostive constantsand eol (0,1] is
an arbitrary congant. Introducing (51) in (50), it follows

that WO =0 isan exponentidly stable equilibrium point if
a&e m? 0

b3 bgého\/gwlm T +h3ﬁ2j. (52)
€ g

Let us chose €, such that

0<e, £min((b/5bh, )%, 1) and take

2 2 o
mEm :min@ b ogeb o @b 0 € » nq) (53)
§5b hg §5b RN

If mE k,MEk, M, then

u"

W(r)zSW(to)@qoge—uexp8 - o)y 131t (54)

Hence, W0 =0 is exponentialy stable and, therefore,
Wy(t) is limited. Using the comparison theorem,
boundedness of W, (¢) implies boundedness of W (),
and therefore m and e, are bounded. Boundedness

of m implies that all the signals in the adaptive loop
are bounded. We can now establish the main result.

Theorem 6.1. Consider the multivariable plant in (4)
and its | eft representation in (5) using the MLI matrix
in (1). Subject to the Assumptions A1-A9, the
multivariable adaptive control structure in (6), (11)-
(17), (22), (22) together with the parameter adaptation
dgorithm in (23)-(28), with |q,(0)|3 r , then M >0
in (53) can be computed so that for each ml [0,k .M )
al the signals in the closed-loop system are bounded
for any initial conditions. Furthermore, the tracking
error belongs to the residual set

Ilmsup§;ael +T"e ot )||dt QE

i
Def 2,:\€f -
(55)

£ (é +g,M+g,m

Proof. Boundedness of al the signals has aready
been proved. In order to prove (55), consider the
following minimal state representation for (16):

eor =A,eq, +B,(f 'w) (56)

ey =C,eqp + MO (57)

where 4,,, B, e C, have respective dimensions
(N,”N,), (N,”N) ad (N N,), with

N,, =d N . Therefore,
lle, II€bs lleq, lEXPl-go(t - 25)] +

+bo¢y B "w| expl-go(¢- )%t +mb;

where ¢,, bs, by e b, arepositive constants. Hence,

(58)

1 @7 1b
=0 lleslldt £ Z=leg,(t) [ +1, + mb 59
7Q le T g " corfollI™ s, 7 (59)
where

+T1

I _—bﬁoo ogﬂf ) wt)| expl- gt - t)]—dt%dt

=~bg () io gr TE)wt)| expl- gt - t)]—dt%dt

0

Nk N



1 o7& 21 0
= t t —dt . 60
3 ng Owol = (60)
Substituting (51) and (60) in (59) we obtain (55) with
é:(behox/a) 9o glz(behl/%"'kmbﬁ and
9, = (behs)/ (€5 o) -

Corollary 6.1: In the absence of modeling error (i.e.,
when m=0) and when we choose m=0, the

adaptive control algorithm considered in Theorem 6.1
guarantees boundedness of all the signals as well as
convergence of the tracking error e, to zero.

Proof. The proof is similar to that presented in [3]
and will be omitted.

7 Conclusion

This paper presented a new multivariable robust
model reference adaptive controller, which uses a
modified left interactor matrix and filtering to deal
with coupling, and applies a direct model reference
controller whose parameters are updated by a
modified least-squares estimator. It was shown that
for smal multiplicative and additive plant
perturbations the tracking error is small in the mean
and all the signals in the closed-loop are bounded.

A topic for future research is the use of a projection
procedure to avoid singularities in the controller even
without the knowledge of the high frequency gain matrix.

A possible practical application for this dgorithm is the
control of the eectrical currentsin athree-phaseinduction
motor, which is a challenge at certain frequencies of
operation due to coupling and modeling errors.

Appendix
Theorem A.1. If

1 7 &f Tz ||2
e 2

5
+s tr (f Tq)idt £ % +nfg, (61)

T m 7]
and
+ Z
1QtT(pj ) dt Egl +m2g'2,j=l,,..,M (62)
T m?

where g,, g,, g e g', are postive constants,
T7>0,t30,then

o |If Tw|

dtféhoﬁwmwnmg QF? (63)

where h, to h, ae postive constants and

e,l (0,1] isan arbitrary constant.

The proof isinspired in [3] and is omitted.
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