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Abstract:  This paper proposes a new multivariable model reference adaptive controller (MIMO RMRAC), which 
consists of two parts: the first part involves the characterization of the integral structure of the modeled part of the 
plant, and the associated parameterization of the controller structure; and the second part involves the development 
of a robust adaptive law based on a modified least-squares algorithm for adjusting the controller parameters so that 
the closed-loop plant is globally stable despite the presence of unmodeled dynamics and bounded disturbances. 
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1   Introduction 
Adaptive continuous-time controllers for single-input 
single-output (SISO) plants have been developed in 
the literature. In last years, it has grown the amount 
of algorithms with robustness characteristics in the 
sense of stability as well as performance. In Ioannou 
and Tsakalis [1], a robust model reference adaptive 
controller (RMRAC) is presented, which has 
advantages over other algorithms when applied to 
adverse real situations [2]. This scheme requires 
some assumptions over the characteristics of the 
plant, as, for example, knowing the sign of the high 
frequency gain. Lozano and others [3] developed a 
controller that relaxes this assumption, applying a 
projection technique which avoids division by zero in 
the controller. Another advantage presented in [3] is 
the use of a modified least-squares algorithm, which 
presents faster parametric convergence characteristics 
than the gradient algorithm used in [1]. Other 
developments for SISO adaptive control are 
presented in [2]. In [4] it was developed an RMRAC-
RP controller, where RP is a repetitive control 
technique mixed to the RMRAC controller. 
Parallel to the SISO case, adaptive control techniques 
have been developed for multiple-input multiple-
output (MIMO) plants. The coupling and 
parameterization problem is focused in literature [5]-
[6], arriving to algorithms for the estimation of the 
interaction matrix [7]-[8]. 
If the multivariable plant to be controlled is weakly 
coupled, it is possible to develop a decentralized 
adaptive control, as described in [9] and [10]. In [11], 
it was developed a decentralized RMRAC for a three-
phase uninterruptible power supply, and in [12], the 
same algorithm was applied to develop a three-phase 
AC power source. In both works it was obtained 

encouraging practical results. Unfortunately this 
technique is not effective when applied to strongly 
coupled multivariable plants. In this case, centralized 
multivariable control, which deals directly with 
coupling, has to be applied. 
Tao and Ioannou present in [13] a MIMO RMRAC, 
which uses parameterization with base on the modified 
left interactor (MLI) matrix or the modified right 
interactor (MRI) matrix. This work solves the matrix 
commutability problem that arises in the development 
of a MIMO controller. The scheme developed uses a 
gradient adaptation algorithm for on-line update of the 
controller parameters, so that the closed-loop plant is 
globally stable despite the presence of unmodeled 
dynamics and bounded disturbances. 
This paper presents a MIMO RMRAC, which uses, 
differently from [13], a modified least-squares 
algorithm to provide faster parameter convergence 
characteristics. The adaptor uses σ -modification and 
normalization techniques. Inspired in [1] and [3], 
stability proofs are developed making the adequate 
considerations to the MIMO case. Hence, it is shown 
that the proposed algorithm presents robustness 
characteristics regarding additive and multiplicative 
stable plant perturbations. For limited small plant 
perturbations it is shown that the tracking error is small 
in the mean, and, in the absence of plant perturbations, 
tracking error tends asymptotically to zero. The 
controller is applicable to MIMO plants with the same 
number of inputs and outputs. Some of the assumptions 
of this scheme are the prior knowledge the MLI matrix 
of the modeled part of the plant and the knowledge of a 
lower bound of the norm of the high frequency gain 
matrix, which is assumed to be positive definite. 
Without satisfying these assumptions, the controller may 
become unstable due to the inversion of a singular matrix. 



This paper is organized as follows. In Section 2 we 
present the integral structure and parameterization of 
a multivariable system. Plant description and the 
control objective are presented in Section 3. The 
controller structure is given in Section 4. Section 5 is 
devoted to the parameter adaptation algorithm and its 
properties. In Section 6 the robustness properties are 
analyzed. 
 

2   System Integral Structure 
An important concept for designing MIMO model 
reference control schemes is the plant integral 
structure, which may be characterized by the plant 
interactor matrix. A full description of right and left 
interactor matrix can be found in [13]. In this paper it 
will be presented only the concepts involving the 
modified left interactor (MLI) matrix. All 
developments will be made supposing the use of the 
MLI matrix and filtering. The use of the modified 
right interactor (MRI) matrix and pre-compensation 
is equivalent, and will not be treated in this paper. 
The following lemma [13] serves to define the 
multivariable counterpart to high frequency gain and 
relative degree of MIMO plants. 
 

Lemma 2.1. [13] For any NN ×  strictly proper rational 
full rank transfer matrix )(0 sG  there exists a lower 

triangular polynomial matrix )(sm
lξ , defined as the 

modified left interactor (MLI) matrix of )(0 sG , of the form 
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Proof. The proof is presented in [13]. 
 

Remark 2.1. [13] Since the polynomials )(sd m
il  in (1) 

are Hurwitz, the MLI matrix )(sm
lξ  has stable inverse, 

and so it can be used for the design of MRC schemes. 
 

The following lemma employs the notion of the MLI 
matrix to give a parameterization for the plant with 
which it will be possible do design MRC schemes. 
 

Lemma 2.2. [13] The MIMO LTI plant 

usGy )(0=  (2) 

can be represented as  

f
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l=  (3) 

where )(0 sG l  is a NN ×  transfer matrix whose MLI 

matrix is Isf )(l , and )(sf l  is an arbitrary Hurwitz 

polynomial of degree ld , and ≥ld  the maximum 

degree of the elements of )(sm
lξ . Furthermore, the 

high-frequency gain matrix of )(0 sG l  is equal to m
pK l . 

 

Proof. [13] Equation (2) can be written as 
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is complete. 
 

3  Plant Description and Control Objective 
Consider the NN ×  MIMO LTI plant described by 

usGy )(= , [ ]{ })()()()( 0 ssIsGsG am ∆+∆+= µµ  (4) 

where Ny R∈ , Nu R∈ . )(0 sG  is the modeled part of 

the plant, and )(sm∆ , )(sa∆  are the respectively 
multiplicative and additive non-modeled parts of the plant. 
Consider that )(sm

lξ  is the modified left interactor (MLI) 

matrix of )(0 sG , and consider the following system 
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The constant 0ν  is a known higher bound for the 

observability index of )(0 sG , and lν  is a known 

higher bound for the observability index of )(0 sG l . 
 

We can now state the control objective as follows: 
 

Given the reference model 

rsWy mm )(=    (or equivalently rsWy mmf )(l= ) (6) 

where )(sWm  (or )()()()( 1 sWssfsW m
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an NN ×  strictly proper stable minimum phase 

transfer matrix to be selected, and Nr R∈  is a 
known uniformly bounded and piecewise continuous 
input reference signal, find in (4) (or (5)) the control 
input Nu R∈  so that the output Ny R∈  (or fy ) 

follows N
my R∈  (or m

m
mf yssfy )()(1 ll ξ−= ) in (6) as 

close as possible, and all signals in the closed-loop plant 
are uniformly bounded for any bounded initial conditions. 



In order to satisfy the control objective, it is 
necessary that the plant and the reference model 
satisfy the following assumptions: 

A1. )(sG  is strictly proper and full rank. 

A2. )(0 sG  is strictly proper, non-singular, it has 

stable zeros, and its MLI )(sm
lξ  is known. 

A3. )(sm∆  and )(sa∆  are rational transfer matrices, 

and )(sa∆  is strictly proper. 

A4. Let )(sf l  be a monic Hurwitz polynomial with 

degree ld , which is the maximum degree of 

)(sm
lξ , and let )(sf l  have all its roots in 
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for some 0>p , where )(sup)( ωω jXsX R∈
∆

∞
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A5. An upper bound lν  for the observability index 

lν  of )()()( 0
1 sGssf m

ll ξ−  is known. 

A6. A matrix lK  is known so that m
pKK ll  is 

positive definite, where m
pK l  is the high 

frequency gain matrix of )(0 sG  associated to 

the MLI matrix )(sm
lξ . 

A7. A lower bound ρ  for |||| m
pK l  is known. 

A8. An upper bound 0M  for |||| *θ  is known, so that 

03
* |||| M≤+δθ  for some 03 >δ , where *θ  is 

the desired parameter matrix of the controller. 
A9. The reference model )(sWm  has all its poles and 

zeros stable, and it is chosen so that 
)()( sWsf ml  is proper. Without loss of 

generality, we can choose 1))(()( −= ssW m
m lξ . 

 
4   Controller Structure 
The control input is computed from: 
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Lemma 4.1. Combining (4)-(6) and (11)-(15), the 
filtered tracking error can be expressed as 
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with 
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where )(sl∆  is a strictly proper transfer matrix. 
 

Proof. Considering (14) and (15), in view of the 
controllability of the modeled part of the plant, there 

exists a vector *θ , with m
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[ ] usrsWssfy m
mT

f )()()()(1
lll ∆++= − µξωφ  (19) 

where (20) 
)()]()([)()]()[()( 2

1
1

*
4

1 ssFsfIssFsfs am
l

l
l

l ∆++∆−−=∆ −− µθ . 

Thus, )(sl∆  is a strictly proper transfer matrix. 

Equations (16) and (17) are obtained from (6) and (19). � 
 

Finally, define the filtered augmented error 
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5   Parameter Adaptation Algorithm 
Consider the following modified least-squares algorithm 
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constant. 00 >p  is defined in assumption A4, and σ  
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where |||| *
0 θ>M  (Assumption A9), and 
22

0 2 Rµσ >  are project parameters. 
The following lemma gives an important property to 
the normalizing signal )(tm  which is necessary in the 
stability analysis, and the proof is similar to that 
presented to the SISO case in [1]. 
 
Lemma 5.1. Consider the system 
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where 1, ×∈ NRUz  and )(sW  is an )( NN ×  stable and 
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where tε  is a term which depends on the initial 
conditions and decays exponentially to zero with a 
rate at least as fast as )( 0 te δ− . 
 
Now we can establish the following lemma, which 
generalizes to the MIMO case the lemma stated in [3]. 

Lemma 5.2. The parameter adaptation algorithm in 
(23)-(28) and (21) subject to the Assumptions A2, A4 
and A9, has the following properties 
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where 1g , 2g , 1'g  e 2'g  are positive constants and 

jp  is the j-th line of P. 

 
Proof. The proofs of 1), 4), 5) and 6) are similar to 
that presented in [3] and will be omitted. 
2) Using matrix theory, we can define 
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From result of (28) and (38) we have for 03|||| M≥φ , 
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and (42) it follows that 0≤V&  for VV ≥  with V  as 
in (34). Thus, V is bounded by V . 



6   Stability Analysis 
Consider the following non-minimal state-space 
representation for (16), which has order 

NNc )1(2 −+= ll νν . It can be obtained using similar 

considerations to that made in [3] for the SISO case. 
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Lemma 6.1. The time derivative of W in (45) satisfies 
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The proof of this lemma is similar to the proof of 
Lemma 5.1 in [3] and will be omitted. 
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Hence, 00 =W  is exponentially stable and, therefore, 

)(0 tW  is limited. Using the comparison theorem, 

boundedness of )(0 tW  implies boundedness of )(tW , 

and therefore m and cfe  are bounded. Boundedness 

of m implies that all the signals in the adaptive loop 
are bounded. We can now establish the main result. 
 

Theorem 6.1. Consider the multivariable plant in (4) 
and its left representation in (5) using the MLI matrix 
in (1). Subject to the Assumptions A1-A9, the 
multivariable adaptive control structure in (6), (11)-
(17), (21), (22) together with the parameter adaptation 
algorithm in (23)-(28), with ρθ ≥|)0(| 4 , then 0* >µ  
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Proof. Boundedness of all the signals has already 
been proved. In order to prove (55), consider the 
following minimal state representation for (16): 
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where 0q , 5β , 6β  e 7β  are positive constants. Hence, 
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Substituting (51) and (60) in (59) we obtain (55) with 
( ) 0006 qh εβε = , )( 70161 ββγ µkqh +=  and 

)()( 0
2

0362 qh εβγ = . 
 

Corollary 6.1: In the absence of modeling error (i.e., 
when 0=µ ) and when we choose 0=µ , the 
adaptive control algorithm considered in Theorem 6.1 
guarantees boundedness of all the signals as well as 
convergence of the tracking error fe  to zero. 
 

Proof. The proof is similar to that presented in [3] 
and will be omitted. 
 
7   Conclusion 
This paper presented a new multivariable robust 
model reference adaptive controller, which uses a 
modified left interactor matrix and filtering to deal 
with coupling, and applies a direct model reference 
controller whose parameters are updated by a 
modified least-squares estimator. It was shown that 
for small multiplicative and additive plant 
perturbations the tracking error is small in the mean 
and all the signals in the closed-loop are bounded. 
A topic for future research is the use of a projection 
procedure to avoid singularities in the controller even 
without the knowledge of the high frequency gain matrix. 
A possible practical application for this algorithm is the 
control of the electrical currents in a three-phase induction 
motor, which is a challenge at certain frequencies of 
operation due to coupling and modeling errors. 
 
Appendix 
Theorem A.1. If 
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and 
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where 1g , 2g , 1'g  e 2'g  are positive constants, 
0>T , 0≥t , then 
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where 0h  to 4h  are positive constants and 

]1,0(0 ∈ε  is an arbitrary constant. 
 

The proof is inspired in [3] and is omitted. 
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