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Abstract.- The design of a low-voltage current-mode Morlet Wavelet, using MOS transistors in weak inversion, is 
presented. The proposed design is based on two translinear building blocks: a normalized gaussian-function generator and 
a four-quadrant analog-multiplier. Simulation results using BSIM3.v3 model for a 0.6µm AMS process parameters, in a 
CADENCE environment, are presented. 
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1. Introduction 
 

Wavelets have been a very popular research topic in 
scientific and engineering fields. Since wavelets theory 
is a resourceful tool along a strong mathematical 
background, it can be applied in a wide variety of 
engineering applications [1]. Wavelets transforms were 
early applied to engineering by Grossman and Morlet [1, 
2], and their results are related to the continuous 
wavelets transform (CWT) [2]. The CWT is based on a 
complex method of interpolation and intermediate-
spaces, which provides a tool to describe spaces of 
functions and their approaches [2]. 
Nowadays, analog wavelets have been reported as an 
alternative to highly-complex digital implementations 
[3]. Moreover, the fast development of sub micron 
technologies, and the increment demand of portable 
electronic systems has been leading to a reduction in 
supply voltages, encouraging analog implementations. 
For that reason, several design techniques for low-
voltage low-power analog circuits has been proposed in 
recent literature [4 - 8]. 

In this work, the design of a current-mode Morlet 
CWT, using MOS-translinear circuits, is presented. In 
section 2, a review of the CWT is depicted. A 
description of Morlet Wavelets, which are based on 
gaussian-functions, is presented in section 3. A four-
quadrant translinear-multiplier is presented in section 4. 
The complete realization and the simulation-observed 
results are presented in section 5 and 6. Finally, the 
conclusions are summarized in section 7. 

 

2. Continuous Wavelet Transform 
 
The CWT is defined as the correlation between a signal 
to be processed, and a family of modulated functions, 
which are composed by arbitrary windowed functions, 
and generated by a mother wavelet. Lets consider a 
continuous time function ψ(t) with the following 
properties [1,2]: 
 
1. The function integrates to zero: 
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2. It is square integrable or has finite energy. 
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If the function satisfies both properties, ψ(t) can be 
considered as a mother wavelet. Property 2 implies that 
most of the energy in ψ(t) is confined to a time-finite 
interval, while property 1 is suggestive of an oscillatory 
function. If f(t) is any square integrable function, the 
CWT of f(t) respect to ψ(t) can be defined as [3]: 
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Where a and b are real numbers, and * denotes complex 
conjugation. Consequently, the wavelet transform can be 
written in a more compact form by defining ψa,b(t) as: 
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combining (2.3) and (2.4), we obtain: 
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The normalizing factor of a/1 ensures that the energy 

becomes the same for all a and b, that is: 
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For any given value of a, the function ψa,b(t) represents a 
shift of b along the time axis of ψa,0(t). Hence, the 
variable b represents either a time-shift or a translation, 
such that: 
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From (2.7), it follows that ψa,0(t) is a time and amplitude 
scaled version of ψ(t), where a is the scale or dilatation 
variable. The CWT is generated using dilatations and 
translations of the single function ψ(t). The mother 
wavelet is a modulated function composed by two 
components in quadrature, it is characterized by 
equation [3]: 
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Although a windowed function must satisfy (1) and (2) 
to be considered as a mother wavelet, it is possible to 
have wavelets that are not supported compactly. For 
example, a Morlet Wavelet, which is constructed by 
modulating a sinusoidal function by a gaussian function 
[4, 10] is not a finite-time function. However, most of 
the energy in this wavelet is confined to a finite interval. 
In this work, Morlet wavelets are considered for short 
time and no stationary signal analysis [2]. 

 
3. Morlet Wavelets 
From the concept of Mother Wavelet, introduced in the 
previous section, the required oscillatory condition leads 
us to consider sinusoidal building blocks. On the other 
hand, we also need a quick decaying condition as a 
tapering or windowing operation. Both conditions must 
simultaneously be satisfied for the wavelet function [3], 
and the basic Morlet wavelet can be expressed as 
follows: 
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The Fourier transform for the real part of (3.1) is given 
by: 
 

















+π=ωψ









 ω+ω
−









 ω−ω
−

22
Real   

2

oo

ee)(
         (3.2) 

It can be noticed that property (1) is not satisfied in 
equation (3.2). Nevertheless, if ω0 is large enough, e.g. 
ω0>5, the Fourier transform expressed in (10) valued at 
the origin, can be practically considered as zero and the 
Morlet function given by (3.2) can be used as a mother 
wavelet [1]. The equation that governs a gaussian 
function [2] is given as: 
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Figure 1. Functional blocks for the implementation of  
               the imaginary component of a Morlet wavelet. 
 
Since the term S/1  denotes a scaling factor to preserve 
the energy in different scales, equation (3.3) represents a 
normalized gaussian-function, where τ represents the 
translation in time, and S relates different scale positions 
for the analysis of the signal. From (3.3), the Morlet 
wavelet is given by: 
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From (2.8) and (3.3), it can be noticed that a gaussian 
function, sinusoidal generators, as well as energy 
normalization, are needed for the implementation of 
Morlet wavelets. The functional block diagram of the 
imaginary component of the Morlet wavelet is sketched 
in figure 1. A circuit that generates a normalized 
gaussian function is shown in figure 2 [3, 9]. The circuit 
is composed of four blocks, namely: the quadrature 
circuit, the active resistor, the gaussian function 
generator circuit, and the normalizing gain element. 
 

 
 

Figure 2. Normalized Gaussian-Function. 



4. A Four Quadrant Analog Multiplier  
 
In figure 3, the basic architecture of the multiplier cell is 
illustrated. It is composed of two translinear loops, to 
perform true current-mode analog multiplication. Let’s 
consider the first translinear loop, which is formed by 
transistors M1-M2-M3-M4. Using the translinear theory, 
the following equation arises: 
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Figure 3. Four-quadrant current-mode analog multiplier. 
 
Similarly, the resulting equation of the second loop, 
formed by transistors M1-M2-M5-M6, becomes: 
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The differential output current (Ix-Iy) is equal to: 
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By setting: 
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Replacing (4.4a) and (4.4b) into (4.3), it results: 
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Solving for Id4 and Id6 in terms of Ix1, Ix2, Iy1, Iy2 , and 
then (4.6) becomes: 
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For a four quadrants multiplier, one may define the 
following conditions. 
 

bx iII += 11  , ( DC + AC )                     (4.8.a) 

bx iII −= 12
,  ( DC + AC )                     (4.8.b) 

ay iII += 11
,  ( DC + AC )                      (4.8.c) 

12 II y = ,   ( DC  )                             (4.8.d) 
 
By substituting (4.8a)-(4.8d) into (4.7), it results the 
equation: 
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where the following conditions  
 

01 >+ biI  and  01 >+ aiI                    (4.10) 

should be satisfied. That topology inherently minimizes 
the body effect due to the two translinear loops [7, 8].  
The drain-current of the NMOS transistors can be 
modeled [5 -8], such as: 
 

( )







+−=

−




 −−

0

1

1
V

V
eeeI

L

W
I DSVt

V
nVt

VV

nVt

Vn

DOD

DSTHGSBS        (4.11) 

 
where VGS is the gate-source voltage, VDS is the drain-
source voltage, VBS is the bulk-source voltage (body 
effect), VTH is the threshold voltage, Vt is the thermal 
voltage, V0 is the voltage Early and n is the slope factor. 
ID0 is a current related to the transconductance parameter 
K’  and is given by [3]: 
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5. Morlet Wavelet Generation. 
 
The block diagram circuit realization is given in figure 
4. It involves the output current multiplication of the 
train of normalized gaussian functions with a sinusoidal 
current signal. Output currents ia and ib are the 
sinusoidal current source and the train of normalized 
gaussian functions, respectively. Modulated gaussian 
windows, corresponding to Morlet wavelets, are 
obtained at the multiplier output, such that: 
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Figure 4. Block diagram for the imaginary-component of  
               the Morlet wavelet. 
 



6. Simulated Results. 
Simulation results of the normalized gaussian function 
are shown in figure 5, where it can be observed the 
variation of the maximum value and the standard 
deviation when Iy is varying. In table 1, the ranges of the 
control currents are listed. The DC transfer function of 
the current multiplier is shown in figure 6. The input 
current ib goes from -100nA to 100nA in steps of 25nA, 
while ia is a continuous-signal varying from -100nA to 
100nA.  
 

 
 
Figure 5. Output-current of the normalized gaussian 
               function. 
 

 
Figure 6. DC-transfer characteristics. 

The imaginary component of the Morlet wavelet, which 
is found as the output current of the analog multiplier, is 
presented in figure 7. The final design of the Morlet 
wavelet is totally programmable. All simulation results 
were obtained using a BSIM3.v3 model for 0.6µm AMS 
process parameters, in a CADENCE environment. A 
single power supply of 1.5V it was used, with power 
consumption of 2.2 µW. 
 

 
 

Figure 7. Imaginary-component of the Morlet wavelet. 

 

7. Conclusions 
The implementation of a fully-programmable current-
mode low-voltage Morlet wavelet, using MOS 
transistors working in weak inversion, has been 
presented. A translinear gaussian function generator 
circuit, and a four-quadrant analog multiplier, which 
topology inherently minimizes the body effect has been 
presented, and used for the design of Morlet wavelets. 
Finally, some nonlinear effects were observed in the 
simulations, mainly due to the body effect, which can be 
minimized using a double well technology.  
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Table 1. 
Bias conditions for the normalized gaussian-function 

 

VDD 1.5 V 

Power Consumption 1.534 PW 

ID 40n  --  160n 

Iy -160n --  160n 

I1 40n 


