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Abstract.- The design of a low-voltage current-mode Morlet Wavelet, using MOS transistors in weak inversion, is
presented. The proposed design is based on two translinear building blocks: a normalized gaussian-function generator and
a four-quadrant analog-multiplier. Simulation results using BSIM3.v3 model for a 0.6um AMS process parameters, in a

CADENCE environment, are presented.
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1. Introduction

Wavelets have been a very popular research topic in
scientific and engineering fields. Since wavelets theory
is a resourceful tool along a strong mathematical
background, it can be applied in a wide variety of
engineering applications [1]. Wavelets transforms were
early applied to engineering by Grossman and Morlet [1,
2], and their results are related to the continuous
wavelets transform (CWT) [2]. The CWT is based on a
complex method of interpolation and intermediate-
spaces, which provides a tool to describe spaces of
functions and their approaches [2].

Nowadays, analog wavelets have been reported as an
aternative to highly-complex digital implementations
[3]. Moreover, the fast development of sub micron
technologies, and the increment demand of portable
electronic systems has been leading to a reduction in
supply voltages, encouraging analog implementations.
For that reason, several design techniques for low-
voltage low-power analog circuits has been proposed in
recent literature [4 - 8.

In this work, the design of a current-mode Morlet
CWT, using MOS-trandlinear circuits, is presented. In
section 2, a review of the CWT is depicted. A
description of Morlet Wavelets, which are based on
gaussian-functions, is presented in section 3. A four-
guadrant tranglinear-multiplier is presented in section 4.
The complete realization and the simulation-observed
results are presented in section 5 and 6. Finaly, the
conclusions are summarized in section 7.
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2. Continuous Wavelet Transform

The CWT is defined as the correlation between a signa
to be processed, and a family of modulated functions,
which are composed by arbitrary windowed functions,
and generated by a mother wavelet. Lets consider a
continuous time function ¢(t) with the following
properties[1,2]:

1. The function integrates to zero:

[w(bdt=0 (21)
2. Itissguare integr:abl e or hasfinite energy.
J’\w(t)\ 2dt < 0 (2.2)

If the function satisfies both properties, ¢(t) can be
considered as a mother wavelet. Property 2 implies that
most of the energy in ¢At) is confined to a time-finite
interval, while property 1 is suggestive of an oscillatory
function. If f(t) is any square integrable function, the
CWT of f(t) respect to ¢At) can be defined as[3]:

W(ab) = I f(t) L% (233
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Where a and b are real numbers, and * denotes complex
conjugation. Consequently, the wavel et transform can be
written in amore compact form by defining ¢, (t) as:

_ (2.4)
Woo(t) = ﬁngg



combining (2.3) and (2.4), we obtain:

W(a.b) = [ (00,0 (25

The normalizing factor of 4, 4 ensures that the energy

becomes the samefor all aand b, that is:
2

I Wa(t)dt = I u(ty dt (2.6)

For any given value of a, the function ¢, 1(t) represents a
shift of b along the time axis of ¢4(t). Hence, the
variable b represents either a time-shift or a translation,

such that:
0= LR @)
WYao(t) ﬁwmu

From (2.7), it follows that ¢, o(t) is atime and amplitude
scaled version of ¢(t), where a is the scale or dilatation
variable. The CWT is generated using dilatations and
trandations of the single function ¢(t). The mother
wavelet is a modulated function composed by two
components in quadrature, it is characterized by
equation [3]:

Was(t) = ézoswog‘jb% jsinwo%j?b%wab(t) (2.8)

Although a windowed function must satisfy (1) and (2)
to be considered as a mother wavelet, it is possible to
have wavelets that are not supported compactly. For
example, a Morlet Wavelet, which is constructed by
modulating a sinusoidal function by a gaussian function
[4, 10] is not a finite-time function. However, most of
the energy in thiswavelet is confined to afinite interval.
In this work, Morlet wavelets are considered for short
time and no stationary signal analysis[2].

3. Morlet Wavelets
From the concept of Mother Wavelet, introduced in the
previous section, the required oscillatory condition leads
us to consider sinusoidal building blocks. On the other
hand, we also need a quick decaying condition as a
tapering or windowing operation. Both conditions must
simultaneously be satisfied for the wavelet function [3],
and the basic Morlet wavelet can be expressed as
follows:
t2 t?
Y(t) =e'“'e 2 =(cout + jsinwt)e 2 (3.1)
The Fourier transform for the real part of (3.1) is given
by:
0 fo-w.f _fore,f
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(3.2)

It can be noticed that property (1) is not satisfied in
equation (3.2). Nevertheless, if uy is large enough, e.g.
wp>5, the Fourier transform expressed in (10) valued at
the origin, can be practically considered as zero and the
Morlet function given by (3.2) can be used as a mother
wavelet [1]. The equation that governs a gaussian
function [2] isgiven as:

_ipergf
h,, (t) = ie 208 O (3.3

Figure 1. Functional blocks for the implementation of
the imaginary component of a Morlet wavelet.

Since the term 1/./S denotes a scaling factor to preserve
the energy in different scales, equation (3.3) represents a
normalized gaussian-function, where 1 represents the
trandation in time, and Srelates different scale positions
for the anaysis of the signal. From (3.3), the Morlet
wavelet is given by:

ll‘a,b (t) = hs,r (t) (3-4)
From (2.8) and (3.3), it can be noticed that a gaussian
function, sinusoidal generators, as well as energy
normalization, are needed for the implementation of
Morlet wavelets. The functional block diagram of the
imaginary component of the Morlet wavelet is sketched
in figure 1. A circuit that generates a normalized
gaussian function is shown in figure 2 [3, 9]. The circuit
is composed of four blocks, namely: the quadrature
circuit, the active resistor, the gaussian function
generator circuit, and the normalizing gain element.
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Figure 2. Normalized Gaussian-Function.



4. A Four Quadrant Analog Multiplier

In figure 3, the basic architecture of the multiplier cell is
illustrated. It is composed of two trandinear loops, to
perform true current-mode analog multiplication. Let's
consider the first translinear loop, which is formed by
transistors M1-M2-M3-M4. Using the translinear theory,
the following equation arises:
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Figure 3. Four-quadrant current-mode analog multiplier.

Similarly, the resulting equation of the second loop,
formed by transistors M1-M2-M5-M6, becomes:

_lu (4.2)
I d2 I ds I X2
The differential output current,fl,) is equal to:

|d1:|d6

L=l = lgg+lgs = las = lge (4.3)
By setting:
Ly = lgst g, (4.4a)
lyo = lgs +lge (4.4b)
Replacing (4.4a) and (4.4b) into (4.3), it results:
|0:|y1+|y2_2(|d4+|d6) (4.6)

Solving forlg andlgs in terms ofly, I, ly, 1y, , and
then (4.6) becomes:

(l yi _lyle xi _lxz)
(I I

For a four quadrants multiplier, one may define the

following conditions.

4.7)

lo

l,=1,+i,,(DC+AC) (4.8.a)
l,=1,-i,, (DC+AC) (4.8.b)
l, =1, +i,, (DC+AC) (4.8.c)

(DC ) (4.8.d)

I

By substituting (4.8a)-(4.8d) into (4.7), it results the
equation:

|,=la o (4.9)
ly
where the following conditions
I, +i,>0and I, +i, >0 (4.10)

should be satisfied. That topology inherently minimizes
the body effect due to the two translinear loops [7, 8].
The drain-current of the NMOS transistors can be
modeled [5 -8], such as:

o =I00e%£ﬂ”§§-e3“ +£E (4.11)
L b

where Vgs is the gate-source voltag®¥ys is the drain-

source voltage\Vss is the bulk-source voltage (body

effect), Vo4 is the threshold voltagéy; is the thermal

voltage,V, is the voltage Early andlis the slope factor.

Ipo is a current related to the transconductance parameter

K" andisgiven by [3]:

2K’ (nVt)
eZ

.0 (4.12)

5. Morlet Wavelet Generation.

The block diagram circuit realization is given in figure
4. It involves the output current multiplication of the
train of normalized gaussian functions with a sinusoidal
current signal. Output currents i, and i, are the
sinusoidal current source and the train of normalized
gaussian functions, respectively. Modulated gaussian
windows, corresponding to Morlet wavelets, are
obtained at the multiplier output, such that:

Sty el DLl e_EZ*(I‘X;‘U)g sin wo(t)g G

B/l

Iom

IlM IlM

Figure 4. Block diagram for the imaginary-component of
the Morlet wavelet.



6. Simulated Results.

Simulation results of the normalized gaussian function
are shown in figure 5, where it can be observed the
variation of the maximum value and the standard
deviation when Iy is varying. In table 1, the ranges of the
control currents are listed. The DC transfer function of
the current multiplier is shown in figure 6. The input
current iy goes from -100nA to 100nA in steps of 25nA,
while i, is a continuous-signal varying from -100nA to
100nA.

Figure 5. Output-current of the normalized gaussian
function.
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Figure 6. DC-transfer characteristics.

The imaginary component of the Morlet wavelet, which
is found as the output current of the analog multiplier, is
presented in figure 7. The final design of the Morlet
wavelet is totally programmable. All simulation results
were obtained using a BSIM3.v3 model for 0.6um AMS
process parameters, in a CADENCE environment. A
single power supply of 1.5V it was used, with power
consumption of 2.2 pW.

Figure 7. Imaginary-component of the Morlet wavelet.

7. Conclusions

The implementation of a fully-programmable current-
mode low-voltage Morlet wavelet, using MOS
transistors working in weak inversion, has been
presented. A trandinear gaussian function generator
circuit, and a four-quadrant analog multiplier, which
topology inherently minimizes the body effect has been
presented, and used for the design of Morlet wavelets.
Finally, some nonlinear effects were observed in the
simulations, mainly due to the body effect, which can be

minimized using a double well technology.
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Tablel.
Bias conditions for the normalized gaussian-function
Vb 15V
Power Consumption 1.534 uW
lot 40n -- 160n
ly -160n -- 160n
11 40n




