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Abstract: - Support vector machines (SVMs) tackle classification and regression problems by non-linearly
mapping input data into high-dimensional feature spaces, wherein a linear decision surface is designed. In a
previous work, we have conceived ensembles of SVMs (E-SVMs) in order to alleviate the performance
bottlenecks incurred with the “kernel function choice” problem, that is, the necessity of choosing a priori the
type of kernel function to realize the non-linear mapping. By this new approach, different component networks
(single SVMs) with distinct kernel functions, such as polynomials or radial basis functions, may be created and
properly combined into the same neural structure. E-SVMs have already been applied to a number of regression
problems, yielding significantly improved generalization performance. In this paper, we extend the E-SVM
methodology to also address classification tasks. Some experiments are conducted to assess E-SVM capabilities
over a well-known classification problem with a reduced training set, namely, the two-intertwined spirals.
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1   Introduction
Support vector machines (SVMs) [1]-[4] are
powerful tools for producing data classification and
regression. In the classification problem, one attempts
to classify points belonging to two (or more) given
sets in ℜm by a linear or nonlinear separating surface.
The learning process utilizes several training input
data samples and the categories they belong to as the
only information required for the creation of the
decision surface. The produced surface is then tested
on unseen (test) data. The main aim is to generate the
lowest generalization error. From a statistical learning
theory viewpoint, such a support vector machine will
minimize the empirical error of the training data as
well as the error bound for the unseen data [1].

Two key elements in any SVM implementation
are the type of kernel functions and the techniques of
mathematical programming. The SVM parameters
are found by solving a quadratic programming (QP)
problem with linear equality and inequality
constraints rather than by solving a non-convex,
unconstrained optimization problem. The flexibility
behind the kernel functions allows the SVM to search
a wide variety of hypothesis spaces. Experimentally,
SVMs have outperformed other neural network (NN)
configurations, e.g. in pattern recognition [3] and
time series prediction [4].

By other means, in the last years, ensemble
methods have shown their effectiveness in many

application domains and constitute one of the main
current directions in Machine Learning research.
Ensembles of neural networks (ENNs) [5][6] involve
the generation and linear/non-linear combination of a
pool of individual NNs designed to produce
redundant solution models to the same task that are
complementary in terms of generalization. This is
typically done through the variation of some
configuration parameters and/or division of training
data. The generalization capabilities of ensembles of
learning machines have been interpreted in the
framework of Statistical Learning Theory and in the
related theory of Large Margin Classifiers.

There are several ways to use more than one
classifier in a classification problem. A first
"averaging" approach consists of generating multiple
hypotheses from a single or multiple learning
algorithms, and combining them through majority
voting or alternate linear and nonlinear combinations.
A "feature-oriented" approach is based on methods to
build ensembles of learning machines by subdividing
the input space (e.g., random subspace methods,
multiple sensors fusion, feature transformation
fusion). "Divide-and-conquer" methodologies isolate
the regions in input space on which each classifier
presents better performance, and direct new input
accordingly, or subdivide a complex learning
problem into a set of simpler subtasks, recombining
them using suitable decoding methods. A "sequential-
resampling" approach builds multiple classifier



systems using bootstrap methods in order to reduce
variance (bagging) or jointly bias and unbiased
variance (boosting).

Previously [7], we introduced the concept of
ensembles of SVMs, employing the combination
criteria proposed in the work of Hashem [8][9]
together with the selection criteria proposed by
Perrone and Cooper [10]. In such work, we applied
the E-SVM approach for regression problems, with
simple averaging (equal weights for all SVM
components) and weighted averaging (MSE-OLC) as
combination criteria. There, we showed that the E-
SVM approach promotes the automatic configuration
and tuning of SVMs, and it yields better
generalization capability when compared with the
conventional best single SVM (S-SVM) approach.

In this work, we extend the concept of E-SVMs
for classification tasks, employing as combination
criterion the majority voting (i.e. each SVM classifier
in the E-SVM contributes with the same strength for
the final classification) and as selection criterion an
extension of the one proposed by Perrone and Cooper
[10] (to improve its generalization capabilities). The
E-SVM performance is compared with the one
produced by S-SVM in some experiments with the
"intertwined spirals" problem [11]. In the testing
samples, the desired pattern is made known in such a
way as to measure the E-SVM accuracy regarding the
number of misclassified points.

The paper is organized as follows. Section 2
presents the main E-SVM aspects. In Section 3, we
formalize the combination problem and describe the
selection criterion. Experimental results are discussed
in Section 4, and Section 5 brings final remarks.

2   Ensembles of Support Vector
Machines
A nice overview of SVMs may be found in [1]-[4][7],
including formulations devoted to linearly and
nonlinearly separable classification problems. As an
extension to this conventional view, where a typical
SVM archetype employs only one network
configuration (as the classifier hyperplane or linear
regression surface) in a high-dimensional space, we
have investigated the combination of M networks as
an ensemble of SVMs [7]. In this approach, the
weighted output is given by:
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where wk, bk are, respectively, the weights and bias of
the k-th component network. This formulation is akin
to the one proposed by Kwok [12] in the mixture of
experts context, although there are two differences

that are worth to be mentioned: i) in eq. (1), πk is not
a function of x; and ii) there exists a distinct φk for
each support vector network (otherwise, eq. (1) may
be replaced by a single SVM). As in [13][14], eq. (1)
yields a smooth classification/regression surface in
the mapped high-dimensional space governed by φk,

Mk ,,1�= .
In what follows, the E-SVM training process is

formalized as a QP problem, similarly to what is done
in the conventional case. We address the linearly non-
separable case, i.e. when training set cannot be
divided without error in the ℜn, which gives birth to
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where iξ measures the difference between iy  and the

SVM output, for each of the N training samples,
whereas C is a constant value indicating the
contribution of each term in the optimization process.
Then, the resulting QP problem may be written as:

∑∑ −=
N

kji
jikjkijiji

N

i
i xxKyyW

,,
),(

2

1
)(max ππαααα (2)

subject to (i) 01 =∑ =
N
i kiii y πα , for Mk ,,1�= ; (ii)

Ci ≤≤ α0 , for Ni ,,1�= . For the training samples
along the decision boundary, their corresponding
coefficients si 'α  are greater than zero, as ascertained
by the Kuhn-Tucker Theorem. These samples are
known as support vectors whose number tends to be
small and proportional to the generalization error of
the classifier.

3   Combination and selection criteria
In this section, we concentrate on the combination
criterion of majority voting, and the selection
criterion proposed by Perrone and Cooper [10].

4.1 Majority voting
Voting is the most common method used to

combine classifiers. As pointed out by Ali and
Pazzani [15], this strategy is motivated by the
Bayesian learning theory which stipulates that, in
order to maximize the predictive accuracy, instead of
using just a single learning model, one ideally use all
admissible models in the hypothesis space. In
majority voting method the decision is made such
that the label that receives more than half of the votes
is taken as the final output.



4.2 Selection of the component networks
The idea of selecting nets for ensemble combination
was raised by Perrone and Cooper [10], when they
suggested discarding near identical nets. There are
different ways in which such selection can be
undertaken. Our approach has been based upon the
method proposed by Perrone and Cooper, with
adaptations to deal with classification problems.

For the ensemble of classifiers, as we increase the
size of the component NN population, the assumption
that )()()( xfxfxm ii −≡  (the deviations from the true
solution) are mutually independent does not hold
anymore. When this assumption fails, adding more
NNs to the group incurs loss of computational
resources, since this will not improve the ensemble
performance. Moreover, this can be harmful in the
sense that we include NNs with very bad
performance, jeopardizing the execution of the whole
resulting classifier.

Hence, the best choice would be to find out the
optimal subset of the population over which we could
calculate the majority voting. However, looking at all

12 −M  non-empty subsets might be unfeasible for large
values of M. Instead, a more promising alternative is
to order the population elements in consonance with
the growth in the number of examples misclassified
and then generate a set of classifiers by progressively
combining the ordered elements. In this way, we can
ascertain that the classifier is as good as the best
component NN.

This process may be refined by considering the
difference in the number of misclassified patterns
when we pass from a ensemble of classifiers with a
population of K elements to another with a population
of K+1 elements. From this comparison, a new
component NN is only included to the group if the
following inequality is satisfied:
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where ]ˆ[ NfNMP  is the number of misclassified
patterns produced by the ensemble of classifiers with
M NNs, and ][ inewmmNMP  is the number of
misclassified patterns produced by the i-th (not yet
tested) NN. If this criterion is not satisfied, we
discard the current NN and apply the same
comparative process to the next NN in the sequence.

4   Results
Here, we assess E-SVMs regarding specifically the
classification problem of two intertwined spirals
[11][16]. Three data sets were generated: one for
training; another for the selection of the component
NNs; and another to test the E-SVM performance.

The “two-spirals” problem (Fig. 1), addressed by
Lang and Witbrock [11], consists of two intertwined
rings whose equations are given below:

Spiral #1
x = 1 + (r +0.1) * cos(t)
y = 1+ (r+0.1) * sin(t)

Spiral #2
x = 1 - (r +0.2) * cos(t)
y = 1- (r+0.2) * sin(t)

where r is defined in the range [0-1] and t is defined
in the range [0-3π]. The idea is to categorize input
patterns into one of two classes (50% of patterns
should belong to each class).
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Figure 1. The "two intertwined spirals" problem

In the literature, there already exist some
approaches employing SVMs for this problem, such
as in the work of Suykens and Vandewalle [16]. In
our case, instead of only achieving 100% of correct
classification for the training data set (194 points), we
have also looked for good performance of E-SVMs
on data that had not been previously observed during
the training phase; this is what we call here test data
set. The test data points were located somewhere
between the training data points, and both sets were
uniformly sampled and noiseless. The selection data
set was also noiseless but randomly sampled.

For assessing the E-SVM proposal, we adopted
the following algorithm:
1. Generate and train (using the training data set) an

E-SVM wherein each kernel type is assigned to a
different NN component and the combination
weights are all equal (in this process, the
parameters, weights and bias, of each NN are
discovered according to the problem solution).

2. Calculate the NN outputs for the selection data
set.

3. Select the best NNs based on the selection
criteria.

4. Calculate the weight factors (π's) using, for
instance, the MSE-OLS method. In this paper, the
weight factors (π's) are all equal to one.

5. Obtain the output of the E-SVM (and,
consequently, the output of the NN components)
using majority voting for the training and test
data sets.



Table 1 - Test Results for the "two-spirals" experiment. N relates to the size of the training and
test data sets, whereas NSV indicates the number of SVs found by each component NN. For
each type of S-SVM (columns 3 to 10), we denote the number of training/test misclassified

points, whereas bold values sign the best achieved S-SVM. The last column shows the indices
of those component SVMs that integrate the final ensemble.

SVM KERNEL TYPE

LINEAR POLY RBF ERBF SIGMOID FOURIER SPLINE BSPLINE

E-SVM

Train 24 23 0 0 0 3 0 0 0
Test 374 367 15 0 89 111 32 0 0

N = 60

NSV 60 60 31 60 51 45 36 38 [viii]
Train 18 18 0 0 2 4 0 0 0
Test 374 366 131 4 239 272 95 0 0

N = 48

NSV 48 48 23 48 41 36 41 36 [viii]
Train 18 17 0 0 0 3 0 0 0
Test 379 369 133 22 201 386 99 30 0

N = 44

NSV 44 44 30 44 33 32 34 31 [viii]
Train 16 17 0 0 0 4 0 0 0
Test 374 366 172 11 138 360 60 10 0

N = 40

NSV 40 40 25 40 31 32 29 30 [iv,viii,i]
Train 14 14 0 0 0 10 0 0 0
Test 374 364 113 0 213 383 109 0 0

N = 36

NSV 36 36 23 36 30 28 27 30 [iv]
Train 14 13 0 0 0 8 0 0 0
Test 376 366 223 23 287 352 97 76 23

N = 32

NSV 32 32 20 32 27 29 26 28 [iv]

The classification quality was evaluated by
comparing the output values of the E-SVM structures
with the desired ones available in the test data set.
Below, we list the various kernels adopted during the
simulation experiments. A more detailed discussion
on these kernels may be found elsewhere [2].
i. Linear
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Several simulations were performed by varying
the training data sets. Table 1 brings the most
expressive results. The purpose here is to show that
the E-SVM approach can outperform S-SVM in the
generalization capability. In such effort, we decided
to employ the uniform-majority voting scheme for
combining NNs mainly for its simplicity, even
though other methods (such as the weighted-
majority) could produce better results. In some
simulations, as we obtained classifiers with equal
generalization capability, the decision was to favor
those with less support vectors.

In Table 1, we emphasize the training sets with
smaller sizes (given by N); this is due to the fact that,
with large training sets, at least one of the kernels had
already achieved fully-correct classification, bringing
about an E-SVM with only one component. In this
table, we present the number of misclassified patterns
for each kernel type, both for the training (Train) and
test (Test) data sets, as well as their associated
number of SVs (NSV). As well, for each training size,
the column with bold values indicates the single
component SVM with best results. In these trials, the
selection and test sets were composed of 384 and 944
samples, respectively.

From the results, we observe that N=36 can be
regarded as a threshold for the E-SVM performance,
since for lower values of this parameter the approach
could not achieve good generalization ability. This



Figure 2. The "two intertwined spirals" problem as a 2D plane with x = [x1 x2] taken as input to the E-SVM
classifier. All training data (small unfilled squares and circles) are correctly classified. Big filled squares and

circles indicate the samples chosen as SVs. NSV and KT are the number of SVs and the kernel type, respectively.

owes mainly to the high-degree of correlation
between the SVM components, as there were some
patterns for which all NNs showed poor classification
skills. Thus, the combination of such bad classifiers
could not eliminate such errors. Another threshold
would be for N=48, as for higher values than this
number there is always at least one fully-successful
single SVM classifier. Figures 2(a)-(g) bring the
decision surfaces presented by the achieved E-SVMs,
for all values of N.

In these figures, the "two-intertwined spirals"
classification problem is represented as a 2D-plane
with x = [x1 x2] taken as input for the E-SVM
classifier. All training data (relative to two classes
indicated by a black unfilled square and a red unfilled
circle) are correctly classified. The big filled squares
and circles indicate which training points were
considered as SVs.

For N=36, the resulting E-SVM was formed by
only one kernel type and all training samples were
regarded as support vectors. Both kernel types viii
and iv could achieve fully correct classification for
the test data set (refer to Fig. 2d). For this training set

size, a trial-and-error approach might produce the
same final outcome. This would not be true for N=40,
where all individual SVM classifiers had produced
misclassifications in at least 10% of the patterns.
Conversely, the resulting E-SVM was still very
successful, and it was formed by kernel types iv, viii ,
and i (order by which they were inserted in). All the
training samples were used as SVs, since the number
of SVs for the kernel type i was 40. Even producing
several misclassifications, the last kernel type's
contribution was paramount for the classification
points located at the outside boundaries (as we can
see, most of the support vectors produced in all
experiments reside inside the central region wherein
the curves are more interlaced). We believe that with
other combination criteria, such as the weighted-
majority, this kernel type could be excluded from the
ensemble, as the contribution of the others would be
better calibrated by the weights.

Analyzing the decision surfaces at Figs. 2c and
2d, we can observe that there exist some few
discrepancies between them, located, mainly, near the
outside extremities (that is, out of the central region),



where most of the classification errors appeared.
These variations owed to the small sizes of the
training data sets, as any change in the samples
distribution could imply an alteration in the decision
boundary. This is why we could achieve a good E-
SVM for N=36, but not for N=40. Nevertheless, for
N=36, many of the correctly-classified points are
located very closely to the decision border, and so by
changing the training data set for just a few samples,
this would entail new misclassifications. That is why
we consider this configuration as a threshold for E-
SVM in the "two-spirals" problem.

4.1 Discussion
Some further discussion aspects come as follows:
• The E-SVM approach, in opposition to the
conventional SVM method, is not prone to the size of
the training data set.
• Amongst the employed kernel types, we can
observe that kernels iv, viii  were the most frequently
chosen (at least one of them appears in the final E-
SVM configurations of all experiments), which
corroborates with the assumption that their generic
format provides more flexibility to the classification
process.
• The extra computational time required for the
generation and combination of the ensemble is
chiefly influenced by the number of points and the
number of networks to be combined. Although more
computationally expensive, the E-SVM approach,
combined with the selection strategies, guide to better
results, since they allow the automatic determination
of those kernel types that are more appropriate to the
classification problem at hand, being a more effective
alternative to the common trial-and-error process.

5   Conclusion
In this paper, we have shown that the employment of
ensembles of SVMs may significantly improve the
classification accuracy when compared with the
conventional, single SVM method. In classification
problems, the training of E-SVMs leads to a QP
formalization very similar to the one conceived for
single SVMs.

Moreover, albeit there are some extra
computational requirements underlying E-SVM
simulations, they are justified in the light of the good
performance achieved (see Table 1). As future work,
we will continue to investigate other possibilities of
automatically combining different kernel functions
into the same neural structure, as well as to compare
E-SVM with other ensemble approaches. Large data

sets containing multiple classes will also be
considered in further experiments.
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