Ensembles of Support Vector Machines for Classification Tasks with
Reduced Training Sets

CLODOALDO AP. M. LIMA, ANDREL. V. COELHO, FERNANDOJ. VON ZUBEN
Department of Computer Engineering and Industrial Automation (DCA)
School of Eletrical and Computer Engineering (FEEC)
State University of Campinas - Unicamp
BRAZIL
{moraes,coelho,vonzuben}@dca.fee.unicamp.br http://www.dca.fee.unicamp.br/~vonzuben

Abstract: - Support vector machines (SVMs) tackle classification and regression problems by non-linearly
mapping input data into high-dimensional feature spaces, wherein a linear decision surface is designed. In ¢
previous work, we have conceivethsembles of SVME-SVMs) in order to alleviate the performance
bottlenecks incurred with the “kernel function choice” problem, that is, the necessity of chaqwiiogi the

type of kernel function to realize the non-linear mapping. By this new approach, different component networks
(single SVMs) with distinct kernel functions, such as polynomials or radial basis functions, may be created and
properly combined into the same neural structure. E-SVMs have already been applied to a number of regressio
problems, yielding significantly improved generalization performance. In this paper, we extend the E-SVM
methodology to also address classification tasks. Some experiments are conducted to assess E-SVM capabilitit
over a well-known classification problem with a reduced training set, namely, the two-intertwined spirals.

Key-Words: -Support vector machines, ensemble of support vector machines, classification problems.

1 Introduction application domains and constitute one of the main

Support vector machines (SVMs) [1]]4] are current directions in Machine Learning re_search.
powerful tools for producing data classification and Ensembles of neural networks (ENNs) [5][6] involve
regression. In the classification problem, one attemptdh€ generation and linear/non-linear combination of a
to classify points belonging to two (or more) given PoOl of individual NNs designed to produce
sets in7™ by a linear or nonlinear separating surface, '¢dundant solution models to the same task that are
The learning process utilizes several training inputcOMPlementary in terms of generalization. This is
data samples and the categories they belong to as tfiPically done through the variation of some
only information required for the creation of the configuration parameters and/or division of training
decision surface. The produced surface is then testel2f@ The generalization capabilities of ensembles of
on unseen (test) data. The main aim is to generate tH€2rMiNg machines have been interpreted in the
lowest generalization error. From a statistical learningff@mework of Statistical Learning Theory and in the
theory viewpoint, such a support vector machine will "élated theory of Large Margin Classifiers.
minimize the empirical error of the training data as . 1"€ré are several ways to use more than one
well as the error bound for the unseen data [1]. classifier in a classification problem. A first
Two key elements in any SVM implementation averaging approach consists of generating mult_lple
are the type of kernel functions and the techniques of'YPotheses from a single or multiple learning
mathematical programming. The SVM parametersalgor'thms' and combining them through majority

are found by solving a quadratic programming (Qp)voting or alternate linear and nonlinear combinations.
problem with linear equality and inequality A "feature-oriented" approach is based on methods to

constraints rather than by solving a non-convex build ensembles of learning machines by subdividing

unconstrained optimization problem. The flexibility t€ input space (e.g., random subspace methods,
behind the kernel functions allows the SVM to searchMultiple sensors  fusion, feature transformation
a wide variety of hypothesis spaces. Experimentally,'usion). "Divide-and-conquer” methodologies isolate
SVMs have outperformed other neural network (NN) the regions in input space on Whlch_ each clas_smer
configurations, e.g. in pattern recognition [3] and Presents better performance, and direct new input
time series prediction [4]. accordlngly, or subdl_vlde a complex Iearmng
By other means, in the last years, ensemblgProblem into a set of simpler subtasks, recombining

methods have shown their effectiveness in manythem us?ng suitable decoding methods_. A“seque_n_tial-
resampling” approach builds multiple -classifier



systems using bootstrap methods in order to reduceéhat are worth to be mentioned: i) in eq. (@&)s not
variance (bagging) or jointly bias and unbiaseda function ofx; and ii) there exists a distingi for
variance (boosting). each support vector network (otherwise, eq. (1) may
Previously [7], we introduced the concept of pe replaced by a single SVM). As in [13][14], eq. (1)
ensembles of SVMsemploying the combination yields a smooth classification/regression surface in
criteria proposed in the work of Hashem [8][9] the mapped high-dimensional space governedxby
together with the selection criteria proposed by _;... .
Perrone and Cooper [10]. In such work, we applied |, \yhat follows, the E-SVM training process is
the E-SVM approach for regression problems, with tormalized as a QP problem, similarly to what is done
simple averaging (equal weights for all SVM i the conventional case. We address the linearly non-

components) and weighted averaging (MSE-OLC) asgeparaple case, i.e. when training set cannot be
combination criteria. There, we showed that the E- i\ .q4ad without error in thel™ which gives birth to

SVM approach promotes the automatic configuration = = ) .

and tuning of SVMs, and it vyields better MNIMIzING %Z|Wk| +Cy & subject to

generalization capability when compared with the

conventional best single SVM (S-SVM) approach. Y, EZ T (WI% (%) + bk)EIE]-_fi
In this work, we extend the concept of E-SVMs . D

for classification tasks, employing as combination ¢20fori=1---,N

criterion the majority voting (i.e. each SVM classifier whereé, measures the difference betwegnand the

in the E-SVM contributes with the same strength for SyMm output, for each of thé\ training samples,

the final classification) and as selection criterion anwhereas C is a constant value indicating the

extension of the one proposed by Perrone and Coope&fontribution of each term in the optimization process.

[10] (to improve its generalization capabilities). The Then, the resulting QP problem may be written as:

E-SVM performance is compared with the one NN

produced by S-SVM in some experiments with the ~— MW@ =34 "Ei%kyi Y00, T KO . X; ) @)

"intertwined spirals" problem [11]. In the testing : N _ _ g

samples, the desired pattern is made known in such gubject to (i) 3 =, a;yimg = 0, for k _]“M (0

way as to measure the E-SVM accuracy regarding thdd<a; <C, for i =1..-,N. For the training samples

number of misclassified points. along the decision boundary, their corresponding
The paper is organized as follows. Section 2coefficientsa,'s are greater than zero, as ascertained

presents the main E-SVM aspects. In Section 3, Wayy the Kuhn-Tucker Theorem. These samples are
formalize the combination problem and describe theknown assupport vectorsvhose numbetends to be
selection criterion. Experimental results are discussedmall andproportional to the generalization error of

in Section 4, and Section 5 brings final remarks. the classifier.
2 Ensembles of Support Vector 3 Combination and selection criteria
Machines In this section, we concentrate on the combination

A nice overview of SVMs may be found in [1]-[4][7], criterion of majority voting, and the selection

including formulations devoted to linearly and criterion proposed by Perrone and Cooper [10].

nonlinearly separable classification problems. As an

extension to this conventional view, where a typical

SVM archetype employs only one network 4.1 Majority voting

configuration (as the classifier hyperplane or linear Voting is the most common method used to

regression surface) in a high-dimensional space, weombine classifiers. As pointed out by Ali and

have investigated the combination Mf networks as  Pazzani [15], this strategy is motivated by the

an ensemble of SVMs [7]. In this approach, theBayesian learning theory which stipulates that, in

weighted output is given by: order to maximize the predictive accuracy, instead of

_¥ ¥ (T 1 using just a single learning model, one ideally use all

y_kzlnkfk(x)_glnk(wk(q‘(x)+bK) M) admissible models in the hypothesis space. In

wherew, by are, respectively, the weights and bias of majority voting method the decision is made such

thek-th component network. This formulation is akin that the label that receives more than half of the votes
to the one proposed by Kwok [12] in the mixture of is taken as the final output.
experts context, although there are two differences



4.2  Selection of the component networks The “two-spirals” problem (Fig. 1), addressed by

The idea of selecting nets for ensemble combinatiorlLang and Witbrock [11], consists of two intertwined

was raised by Perrone and Cooper [10], when theyings whose equations are given below:

suggested discarding near identical nets. There are Spiral #1 Spiral #2

different ways in which such selection can be x=1+(r+0.1)*cos(t) x=1-(r+0.2)*cos(t)

undertaken. Our approach has been based upon they = 1+ (r+0.1) * sin(t) y = 1- (r+0.2) * sin(t)

method proposed by Perrone and Cooper, withwherer is defined in the range [0-1] ands defined

adaptations to deal with classification problems. in the range [0-8]. The idea is to categorize input
For the ensemble of classifiers, as we increase theatterns into one of two classes (50% of patterns

size of the component NN population, the assumptionshould belong to each class).

that m (x) = f(x) - f, () (thedeviations from the true .

solution) are mutually independendoes not hold
anymore. When this assumption fails, adding more
NNs to the group incurs loss of computational
resources, since this will not improve the ensemble
performance. Moreover, this can be harmful in the os
sense that we include NNs with very bad
performance, jeopardizing the execution of the whole 0
resulting classifier.

Hence, the best choice would be to find out the 0 o5 : i 2 25
optimal subset of the population over which we could
calculate the majority voting. However, looking at all

2" non-empty subsets might be unfeasible for large |n the literature, there already exist some
values ofM. Instead, a more promising alternative is approaches employing SVMs for this problem, such
to order the population elements in consonance withys in the work of Suykens and Vandewalle [16]. In
the growth in the number of examples misclassifiedoyr case, instead of only achieving 100% of correct
and then generate a set of classifiers by progressively|assification for the training data set (194 points), we
combining the ordered elements. In this way, we camave also looked for good performance of E-SVMs
ascertain that the classifier is as good as the besin data that had not been previously observed during
component NN the training phase; this is what we call here test data
This process may be refined by considering theset. The test data points were located somewhere
difference in the number of misclassified patterns petween the training data points, and both sets were
when we pass from a ensemble of classifiers with gniformly sampled and noiseless. The selection data
population ofK elements to another with a population get was also noiseless but randomly sampled.
of K+1 elements. From this comparison, a new Eqor assessing the E-SVM proposal, we adopted
component NN is only included to the group if the the following algorithm:

following inequality is satisfied: 1. Generate and train (using the training data set) an

Figure 1. The "two intertwined spirals" problem

(2K +)NMP[ ] >2 5 NMP[m (3)

i#Znew

where NMP[fN] is the number of misclassified

patterns produced by the ensemble of classifiers with
M NNs, and NMP[m,m] is the number of

newmi ] + N M P[ mnew]

misclassified patterns produced by fth#h (not yet 2.

tested) NN. If this criterion is not satisfied, we

discard the current NN and apply the same3.

comparative process to the next NN in the sequence.

4.

4 Results

Here, we assess E-SVMs regarding specifically the>-

classification problem of two intertwined spirals

[11][16]. Three data sets were generated: one for
training; another for the selection of the component
NNs; and another to test the E-SVM performance.

E-SVM wherein each kernel type is assigned to a
different NN component and the combination
weights are all equal (in this process, the
parameters, weights and bias, of each NN are
discovered according to the problem solution).
Calculate the NN outputs for the selection data
set.

Select the best NNs based on the selection
criteria.

Calculate the weight factorsrt¢) using, for
instance, the MSE-OLS method. In this paper, the
weight factors {fs) are all equal to one.

Obtain the output of the E-SVM (and,
consequently, the output of the NN components)
using majority voting for the training and test
data sets.



Table 1 - Test Results for the "two-spirals" experimBinelates to the size of the training and
test data sets, whergd§Vindicates the number of SVs found by each component NN. For
each type of S-SVM (columns 3 to 10), we denote the number of training/test misclassified
points, whereas bold values sign the best achieved S-SVM. The last column shows the indices
of those component SVMs that integrate the final ensemble.

SvM KERNEL TYPE E-svm
LINEAR | PoLy RBF ERBF | $smoID | FOURIER| SPLINE | BSPLINE
N=60| Train 24 23 0 0 0 3 0 0 0
Test 374 367 15 0 89 111 32 0 0
NSV 60 60 31 60 51 45 36 38 [viii]
N=48| Train 18 18 0 0 2 4 0 0 0
Test 374 366 131 4 239 272 95 0 0
NSV 48 48 23 48 41 36 41 36 [viii]
N=44| Train 18 17 0 0 0 3 0 0 0
Test 379 369 133 22 201 386 99 30 0
NSV 44 44 30 44 33 32 34 31 [viii]
N=40| Train 16 17 0 0 0 4 0 0 0
Test 374 366 172 11 138 360 60l 10 0
NSV 40 40 25 40 31 32 29 30 [iv, viii,i]
N=36| Train 14 14 0 0 0 10 0 0 0
Test 374 364 113 0 213 383 109 O 0
NSV 36 36 23 36 30 28 27 30 [iv]
N=32| Train 14 13 0 0 0 8 0 0 0
Test 376 366 223 23 287 352 97 76 23
NSV 32 32 20 32 27 29 26 28 [iv]

The classification quality was evaluated by
comparing the output values of the E-SVM structuresthe training data sets. Table 1 brings the most
with the desired ones available in the test data setexpressive results. The purpose here is to show that
Below, we list the various kernels adopted during thethe E-SVM approach can outperform S-SVM in the
simulation experiments. A more detailed discussiongeneralization capability. In such effort, we decided

on these kernels may be found elsewhere [2].
i. Linear

K(x y) =xy
ii. Polynomial
K(x y) = (x[y+1)°
iii. Gaussian Radial Basis Function (forl)

K(xy) = expk &2 )2')2 %
20

iv. Exponential Radial Basis Function

K(x,y) = ex u@
20

v. Sigmoid (forb=1, c=0)
K(x,y) =tanhp(x¥) +c)
vi. Fourier Series
K(x, y) = SN+ 2)(x)
sin; (x—y)
vii. Linear Splines
K(x,y) =1 xy+ xyming, ) =25 i y)

+2 (maxtc )
viii. Bn-splines
K(X! y) = BZn+1 (X_ y)

Several simulations were performed by varying

to employ the uniform-majority voting scheme for
combining NNs mainly for its simplicity, even
though other methods (such as the weighted-
majority) could produce better results. In some
simulations, as we obtained classifiers with equal
generalization capability, the decision was to favor
those with less support vectors.

In Table 1, we emphasize the training sets with
smaller sizes (given b); this is due to the fact that,
with large training sets, at least one of the kernels had
already achieved fully-correct classification, bringing
about an E-SVM with only one component. In this
table, we present the number of misclassified patterns
for each kernel type, both for the traininiydin) and
test Tes) data sets, as well as their associated
number of SVsNSV). As well, for each training size,
the column with bold values indicates the single
component SVM with best results. In these trials, the
selection and test sets were composed of 384 and 944
samples, respectively.

From the results, we observe tHdt36 can be
regarded as a threshold for the E-SVM performance,
since for lower values of this parameter the approach
could not achieve good generalization ability. This
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Figure 2. The "two intertwined spirals" problem as a 2D plane with x; ] taken as input to the E-SVM
classifier. All training data (small unfilled squares and circles) are correctly classified. Big filled squares and

circles indicate the samples chosen as 8N8/andKT are the number of SVs and the kernel type, respectively.

owes mainly to the high-degree of correlation size, a trial-and-error approach might produce the

between the SVM components, as there were someame final outcome. This would not be trueNsw40,

patterns for which all NNs showed poor classification where all individual SVM classifiers had produced
skills. Thus, the combination of such bad classifiers misclassifications in at least 10% of the patterns.

could not eliminate such errors. Another threshold Conversely, the resulting E-SVM was still very

would be forN

48, as for higher values than this successful, and it was formed by kernel typewiii,

number there is always at least one fully-successfubandi (order by which they were inserted in). All the

single SVM classifier.

Figures 2(a)-(g) bring the training samples were used as SVs, since the number

decision surfaces presented by the achieved E-SVMf SVs for the kernel typewas 40. Even producing

for all values ofN.

last kernel type's

the

misclassifications,

several

In these figures, the "two-intertwined spirals" contribution was paramount for the classification
classification problem is represented as a 2D-plangoints located at the outside boundaries (as we can

with x = [x; X] taken as input for the E-SVM

see, most of the support vectors produced in all

classifier. All training data (relative to two classes experiments reside inside the central region wherein
indicated by a black unfilled square and a red unfilledthe curves are more interlaced). We believe that with

circle) are correctly classified. The big filled squares other combination criteria, such as the weighted-

and circles indicate which training points were majority, this kernel type could be excluded from the

considered as SVs.

ensemble, as the contribution of the others would be

36, the resulting E-SVM was formed by better calibrated by the weights.

only one kernel type and all training samples were
regarded as support vectors. Both kernel tyypés

For N

Analyzing the decision surfaces at Figs. 2c and
2d, we can observe that there exist some few

and iv could achieve fully correct classification for discrepancies between them, located, mainly, near the
the test data set (refer to Fig. 2d). For this training sebutside extremities (that is, out of the central region),



where most of the classification errors appearedsets containing multiple classes will also be
These variations owed to the small sizes of theconsidered in further experiments.

training data sets, as any change in the samples

distribution could imply an alteration in the decision

boundary. This is why we could achieve a good E-6 Acknowledgements
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