
 1

A Transformational Approach for Legacy Systems’ evolution

Maseud Rahgozar and Farhad Oroumchian

Control and Intelligent Processing Center of Excellence
Department of Electrical and Computer Engineering,

University of Tehran, Tehran , Iran
(rahgozar@ut.ac.ir, foroumchian@acm.org)

Abstract: - The evolution of the Legacy Information Systems (LIS) is a critical issue for many organizations world wide. A
Large number of organizations for their daily activities depend on the business critical applications that have been developed
over the last two decades or more. They mostly run on old software and hardware technology tools and environments. They are
hard to modify, expensive to maintain and difficult to integrate with new technology tools and programs. They need to be
evolved into modern environments. This paper suggests guidelines for an optimal transformation of legacy systems into Unix-
RDBMS architectures, based on many years of professional experiences of the authors in the area.

Key-Words: - Legacy Applications, Legacy Databases, Transformation, Migration, Normalization, Evolution.

1 Introduction
A large number of existing applications running on mini and
mainframe platforms are programs developed since 1970’s.
These applications are mostly written in 3GL programming
languages such as: COBOL, RPG, PL1, FORTRAN,
BASIC, PASCAL, C, etc. [1][19]. Others are written in 4GL
programming languages like: PACBAS, DELTA, etc.. Some
of these languages again generate the mentioned 3GL
programs before compilation. All these applications, called
Legacy Information Systems (LIS), are using either the
simple data implementations such as indexed file systems or
the old database technologies such as IDMS, CODASYL,
NETWORK, etc., [11][9][8][12].

These invaluable assets of encoded “business logic”
represent many years of coding, developments, real-life
experiences, enhancements, modifications, debugging, etc.
[12]. Unfortunately, they represent also many years of bad
documentation or no documentation at all. They are well
known by their dominant characteristics of "resisting
modification and evolution", and "running on obsolete
hardware that is slow and expensive to maintain" [2]. Even
if, the applications’ documentation was perfectly up to date,
redeveloping these systems would still be estimated
unaffordable in terms of time, costs, and needed human
resources. [19]. Since, they are vitally important for
enterprise business continuation, they need to be evolved in
to new technology environments and run on modern
platforms. [2].

The following section presents the related works and
reviews their shortcomings. Section 3 makes suggestions
and provides guidelines for an effective approach. This

approach is the result of many years of managing R&D
projects related to the renovation and evolution of the LIS
systems [13][14][15]. Some of the solutions implemented
by this approach are being used on hundreds of sites in
Europe. The implementation issues of such solutions will be
described in section 4.

2 Related works
Issues regarding LIS evolution (i.e., modernization,
renovation or migration) have been the research and
development topics for a while. Many approaches to LIS
problems have been worked out. The list of related works
would be too long. However, the state of the art may be
found in some recent publications such as: [19][12][2][6][5]
[7]. Classification of the existing methods can be found in
[13]. There, we presented wrapping as the first category of
current approaches to LIS issues. With wrapping we mean
surrounding the old LIS components (data, code or user
interface) with new interfaces or programs such that any
access to the old system goes through these interfaces.
These methods try to keep the existing system as they are on
the original platform. The second and third categories are
based on changing the platform by either redeveloping the
system or migrating the old system to a new environment.
The redevelopment approaches can start from scratch or can
be combined with the reverse engineering of databases
and/or programs’ codes. The migration approaches can be
with or without new added values on the old LIS
components (data, code or user interface).

 2

2.1 What is missing with current approaches?
In spite of the diversity among the different solutions
[3][4][10][16][17][18], the current situation in LIS
renovation approaches can be summarized as below:
• Database reverse engineering is sufficiently mature

to be applied in practice. [12]
• The reverse engineering of procedural components

of a large application is still unsolved. [12][7]
• Wrapping solutions are short-term solutions that

can complicate LIS maintenance and management
over long time. [2]

• Redevelopment approaches are considered risky for
most organizations. [2][19]

• Existing approaches to migration are too high level
and there is a lack of literature on successful
practices. [2]

• Most of the database reverse engineer literature
examines solutions for migration of relational
databases. While, the market is more concerned
with migration of: indexed files, IMS, COBOL and
CODASYL data. [12]

Most widely adopted approaches to LIS problems tend to
offer short term solutions to long term problems. They
mostly fail to recognize that the base of an optimal solution
to LIS problems should be to reuse LIS components as
much as possible and to recover those invaluable assets of
"data + business logic" as a whole.

Many consider moving legacy applications from IMS,
CODASYL and Indexed-Files environments to modern
systems (UNIX) and modern database environments
(RDBMS) as a considerably complex and risky activity [12].
In our experience, this move is not only possible but it is the
most viable option. We believe the move to an open system
environment is the long-term solution to LIS problems. In
the next section we offer guidelines for such an approach.

3 General Guidelines for an effective
approach
In [2] authors state that there are few comprehensive
approaches to migration and the current literature contains
no successful, practical experience report from projects
using a comprehensive migration approach. They proclaim
that a set of comprehensive guidelines to drive migration
would be essential, and a promising research direction
would aim to identify different types of legacy systems and
develop specific migration process and methodologies for
each.

Below, we enumerate the guidelines we have achieved
through many years of experiences on LIS renovation
projects. We believe following these guidelines will lead to
effective solutions in LIS renovation projects.

a) Avoid short term solutions: Any short-term

solution that leads to maintain the obsolete legacy
platform and to add any new complex interface
upon the existing legacy environment should be
avoided. Solutions such as wrapping may have an
appeasing effect at the beginning, but they do not
address the real problems of LIS systems such as
maintenance costs, system rigidity and aging
technology. They add to the complexity and
rigidity of the system and prevent searching for real
solutions. We believe that any long term solution
will need at least: the change of platform to a
native Open System, the use of a native compiler
on the target platform, the use of native Graphical
User Interfaces tools and the transfer of the data to
the target native database system with the
normalization of the data. These issues will be
addressed in the rest of this section.

b) Avoid partial solutions: Any partial solutions that

leads to the recovery of only one of the LIS
components: "user interface", “data” or "programs'
codes" (i.e., “business logic”), should be avoided.
We believe that the "data" and the "programs'
codes” are the two major components of the LIS.
The solutions that do not recover both of these
components faithfully, will lead to the loss of
invaluable parts of the legacy systems. Solutions
such as reverse engineering are not advanced
enough to recover fully both the "data" and
"business logic" as a whole.

c) Do not alter the code logic: Keep in mind that the

invaluable assets of "business logic" are mostly
encoded in programs. So, the programs’ codes
should be recovered without any alteration in their
logic. It is unrealistic to consider any automatic
tool to extract the “business logic” encoded in
programs, in all situations. However, the syntax of
the code may go through some changes to conform
to the target platform's native system functions
(e.g., TP-Monitor, Database, Operating System,
etc.) or the syntax of the target native compiler.
Meanwhile one should be cautious to avoid
undesired structural and functional changes in the
programs' codes that could alter the embedded
“business logic”.

d) Avoid creating new bugs in the code: Any unsafe

actions, such as manual modifications, on the
programs’ codes should be avoided. They would
lead to creation of new bugs in the programs that
had finally been cleaned up along the years of
business practices. The changes in the programs'
codes should be done through the automated

 3

translation programs initially and then double
checked by engineers as far as possible. Manual
modifications in the large legacy codes are subject
to inconsistencies, human errors, undocumented
changes and ad-hoc solutions. Automatic
translations are more systematic and predictable
thus easier to undo. In case of double checking by
engineers, translation errors due to exceptional
situations would be easily detected and corrected.
The preferred method of correction is by correcting
the translator to handle the exception correctly.

e) Avoid environment emulation solutions: Any

“emulation” of legacy systems’ environments
should be avoided. The emulation solution refers to
executing a legacy program’s binary code on a
target machine by a run time interpreter. Moving
the legacy programs’ binary codes (as they are) to
the "virtual legacy machines" on the new platforms
(such as UNIX) brings no new value to the old
situation other than switching the hardware. They
lead again to a complex and limited programming
environment. Although, such a solution is
unavoidable in some situations where the old
hardware is no longer supported, we do not
recommend it as a final and long term solution.

f) Avoid emulation of data formats: Any

“emulation” of legacy data formats should be
avoided. Such data cannot be easily used within
new technology tools. That will create serious
limitations and constraints for sharing legacy data
with future programs. For example there are 36 bit
long integers in some legacy platforms that are not
available on UNIX. Emulating such an integer type
in UNIX will only complicate the matter for future
applications. However, converting them to native
UNIX integer types once for all will solve such a
problem.

g) Normalize the data implementation design: For

most legacy systems, the designs and
implementations of the legacy data need significant
changes to become fully normalized. That’s a must
for sharing legacy data with future programs. It
should also be prepared for future extensions of the
unified Information System. This means dealing
with issues such as: splitting or atomizing of legacy
data items, adding new data items or splitting,
joining and merging of records into tables. The
legacy data normalization addresses many
important design and performance issues [14].

h) Pay particular attention to the indexed-files: For

many legacy systems, the data stored in indexed
files are at least as important as those stored in the

database tables. They need particular attention
because they need extensive normalization and
reformatting before being moved to the relational
data bases. They have to be set together with other
database data in a unified Information System
schema. Their normalizations, new designs and
implementations raise many challenges regarding
system performance and optimization [15].

i) Do not alter data access logic inside the code:

Avoid any alteration in database and file access
statements inside the programs' codes. The
structure and logic of legacy programs is strongly
tied to the legacy data access logic. The
implementation or structure of the legacy data is
mostly navigational or hierarchical and the logic of
the legacy programs has been built around this
structure. The simplistic approach of replacing
isolated legacy data access statements by
equivalent SQL statements will lead to significant
(if not fatal) performance degradation. An effective
transformation of the legacy data access logic to
relational data access logic is not linear. The
situation becomes worse if one tries to normalize
and change the new relational definition of data.
This would require significant changes in the
structure of the legacy programs’ codes. However,
sometimes this kind of normalization is
unavoidable. The effective solution to this situation
is to create a specialized data access interface. For
this, the legacy data access logic should be
considered as a whole and only managed through
this interface. This data access interface should be
external to the legacy program and should handle
both normalization and data access transformation
[15].

j) Do not create unnecessary data: Avoid creating

any unnecessary legacy data such as “record
pointers” in the new Information System schema.
The physical notations like Areas, Sets, Chaining
pointers etc are normally used in legacy systems.
The replication of those notations in the new
transformed system will bring unnecessary physical
dependencies to the old logic. This will create
serious limitations and unacceptable constraints for
the future programs accessing legacy data. This
also leads to performance degradation of the new
system.

4 Implementation

4.1 LIS Components
Our focus is on a subset of legacy systems that is the
transaction oriented applications. The methods discussed

 4

here may or may not be applicable to the real time or the
embedded systems. Before considering the implementation
issues, we will look at the different constituents of a legacy
system. Then, we study the actions to be performed on each
component either in isolation or in conjunction with the
other components. The set of components bellow covers
both classes of interactive and batch programs:

a) Program source codes: Legacy programs are mostly

written in 3GL languages such as COBOL, RPG,
FORTRAN, BASIC, PASCAL, C, etc. There are also
programs in some 4GL languages such as PACBAS,
DELTA, MANTIS, etc. that are mostly the COBOL
derived languages with supper macro verbs. Since, most
of these 4GL languages generate COBOL programs
before compilation; they can be treated with the same
solutions as COBOL programs.

b) Transaction Processing (TP) Monitors: Interactive

legacy programs are mostly written to work with TP
Monitors, i.e., they are structured to use the services
such as: Inter Process Communication, Terminal I/O,
Transaction Commitment, etc. In such cases, programs
are structured differently compared to the legacy batch
programs, i.e., the structure of their code is “loop-
structured” and not linear as in the batch programs.
Each loop contains two steps: one of which is the
interaction with the TP Monitor and the other one is the
related processing part of the program code
corresponding to the current state of the interactions.

c) System functions: Some System services are provided

through the calls to system functions (or intrinsics).
They cover multiple areas such as: File System
Operations, Database Operations, Job Control and
Operating System Commands, etc.

d) Screen Management System: Most of the interactive

legacy programs use simple text screens to dialog with
the users. These non graphical screens are either
managed by the TP Monitors, or by separate Screen
Management Tools and Libraries. In most cases, their
definitions are integrated in the syntax of the
programming languages (e.g., Forms Sections in
COBOL).

e) Indexed Data Files: For the elderly legacy programs,

the Indexed Files are either the only means of storing
the legacy data, or the major elements of data
manipulations. The structures of such programs are
totally different from those of programs working on
Database tables. We will discuss this issue later in this
paper.

f) Database tables: For the newer legacy programs, the

main supports for storing data are the Database tables

that are created in the legacy database environments
such as: CODASYL, NETWORK, HIERARCHICAL,
etc. These programs are structured totally differently
compared to their Relational Database counterparts. We
will discuss this issue later in this paper.

g) Job Control files (JCL) and O/S Command scripts:

For batch legacy programs, some part of the code for
data file manipulations and process scheduling are
written in the Job Control Language (JCL) provided by
the Operating System. The major operations performed
in JCL files and O/S Command scripts are those for
creating, indexing, copying, merging and sorting of data
files.

4.2 Implementation
We present the implementation methodology that we have
successfully applied on some LIS renovation projects. The
methodology is based on an "intelligent transformation" of
all components of the legacy system while the "business
logic" encoded in legacy programs is preserved. In this
method the legacy components are adapted to work on the
native environment of an Open System (UNIX or NT) and
to take advantage of new technology tools (GUI, RDBMS,
etc.). This implementation is broken-down into the
following actions to take on the different components of
LIS:

a) Program sources codes: The legacy codes are to be

translated into the new system’s codes. It is important
to note that this step should be automated as much as
possible. If the legacy system language is supported in
the new environment, the same language must be used
as target language. However, if the legacy language is
not supported in the new system, the best target
language would be C. To do this, we will need some
translation tools. If the tools are already available, they
can be used. Otherwise, we have to write a translator. It
is worth noting that there are some automation tools
already available in the market. The existing tools
mostly have limitations and shortcomings and it is very
important to pay a careful attention in selecting the
proper translation tools. We have developed a set of
tools to automate this step for a few languages. The
performance and reliability of these tools have met the
expectations. The legacy code translation should respect
the guidelines (c), (d) and (e) explained in the previous
section. As we will explain bellow, for the legacy data
moved to RDBMS tables, the data access statements
within the programs' codes should be replaced with the
calls to the equivalent functions. These library functions
provide the same access logic, but on the new RDBMS
environment. The replacement of data access statements
can also be done by the same translation tool. But, for
better readability of the programs' code, we recommend

 5

to keep these statements as they are, and to do the
replacement just before each compilation. This action
can be done easily and automatically by a specific pre-
compiler.

b) Transaction Processing (TP) Monitors: Most of the

functions supported by TP Monitors are easily
translated to UNIX equivalent functions. Some specific
functions of TP Monitors for distributed systems can
also be created or replaced with the equivalent functions
provided by UNIX TP-tools (such as Tuxedo). It is
important to provide the legacy programs with a
transparent "system" and "TP" functions and to avoid
unnecessary modification of programs' codes. Two of
the main functions provided by TP Monitors are the
“Concurrency Control” and “Data Recovery Control”.
In the new environments these functions are easily
translated to their equivalent RDBMS functions. Some
other TP Monitor functions such as inter-programs
communications are supported in UNIX without the
need to any Transaction Monitors.

c) System functions: Similar to the functions supported

by TP Monitors, the system functions providing the
operations on the File Systems, the Databases, the Job
Controls, the Operating System Commands, etc., are
easily created or translated to UNIX equivalent
functions.

d) Screen Management System: A Graphical Legacy

Logic User Interface (GLLUI) should be created to
provide legacy programs with a transparent highly
featured user interface. The structure of the programs'
codes should be maintained unchanged as far as
possible. Usually, a new look is the minimum
expectation of users when a legacy system is moved to
new environment. Changing the UI of a legacy system
carries no risk in terms of business logic performance, it
rather adds to the usability of the programs by
providing them with the new functionalities available in
today’s GUI tools

e) Indexed Data Files: Since, Indexed files are widely

used in the legacy systems, they need particular
attention. They have to be reformatted, normalized and
moved to the relational database tables. They have to be
set together with the other legacy data in a unified
Information System schema. We should also create a
Legacy indexed File Access Logic Interface (LFALI) to
deal with these legacy data effectively within the
programs. LFALI provides the legacy programs with a
transparent high performance file access management
on the new RDBMS environment. The transparent facet
of LFALI provides a uniform file access interface
regardless of where the data is stored (i.e., in a database
table or in an ordinary indexed file). Harmonizing all

legacy data is required for translating them to the new
RDBMS tables. This effort leads to taking advantage of
the advanced data management facilities provided in
RDBMS environments, such as: concurrent transactions
management, data access security, data recovery, etc.
Successful implementation of this step also requires
respecting the same guidelines as those given bellow for
the database tables.

f) Database tables: The design of the legacy data stored

in the legacy databases has to be normalized and
prepared for future needs and future extensions. That is
to preserve a unique definition of Information System
including legacy data and future data. It is important to
avoid creating “record pointers” (first / last, father / son,
next / previous) in the new implementation of the
legacy data. That is to avoid any constraints on future
programs accessing legacy data. We should create a
Legacy Data Access Logic Interface (LDALI) that
supports the access logic of the legacy system in the
new RDBMS environment. The LDALI is composed of
tools and library functions and provides the legacy
programs with a transparent high performance data
access on new RDBMS environment. A successful
implementation of this step requires following the
guidelines (f), (g), (i) and (j) explained in the previous
section. The legacy data formats should be translated to
native UNIX/RDBMS formats, using the modern data
manipulation tools provided with the RDBMS
environments. The migrated data must be fully
shareable using new technology tools such that the
future programs can access them without any
constraints.

g) Job Control files (JCL) and O/S Command scripts:

The JCL files and the O/S Command scripts are almost
easily translated to native UNIX shell files and UNIX
command scripts. Once they are in native UNIX
commands, they give full access to the new technology
tools and the facilities available on the new
environment, such as: debugging tools, maintenance
tools, system and database tools, etc. It is recommended
to keep their structure close to the original ones. This
may require creating some "Legacy-Like" UNIX shell
commands and tools for creating, indexing, copying,
merging and sorting data files with the similar
arguments to the original platform. It is important to
note that all the operations on indexed files performed
through JCL commands has to be replace by their
equivalent operations in the RDBMS environment.

The normalization of the legacy data, their new design and
implementation in RDBMS environments raise many
challenges regarding system performance that need to be
discussed further in a separate paper. All the translation
tasks have to be done using automated tools. Details on the

 6

implementation and development stages of these tools are
out of the scope of this paper.

5 - Conclusion
Many medium and large organizations are in the process of
renovation or planning for renovation of their legacy
systems in near future. The approach such organizations are
mostly forced to take is the redevelopment of their legacy
systems. These organizations have to make huge
investments in programming their business logic while this
already exists within their legacy code. These investments
could be best spent on extending their business logic rather
than recoding it again.
This paper, we have presented a classification of current
approaches to LIS renovation. The main problem with most
of these approaches is that they do not offer an effective and
long term solution that preserve the data and business logic.
Here, we have suggested general guidelines and a
methodology that avoids the cited problem. These
guidelines are based on our many years of experiences in
LIS domain. This methodology has been proved
successfully on multiple legacy environments. Many aspects
of this methodology already is and could be more
automated. The details of these aspects are the subjects of
separate papers.

References:
[1] Bennett K. 1995, Legacy Systems, IEEE Software, Jan., pp.

19-73.
[2] Bisbal Jesús, Lawless Deirdre, Wu Bing, and Grimson Jane

1999. Legacy Information Systems: Issues and Directions,
IEEE Software, September/October.

[3] Brodie M., Stonebraker M. 1995, Migrating Legacy Systems:
Gateways, Interfaces and the Incremental Approach, Morgan
Kaufmann, San Francisco.

[4] Cimitile A., De Lucia A., Di Lucca A., Fasolino A.R. 1997.
Identifying Objects in Legacy Systems, Proceedings of the
5th Workshop on Program Comprehension (WPC97).

[5] Comella-Dorda Santiago, Wallnau Kurt, Seacord Robert C.,
Robert John 2000. A Survey of Legacy System Modernization
Approaches, Carnegie Mellon University,Tech. Note
CMU/SEI-2000-TN-003, 17 August,
URL:http://www.sei.cmu.edu/publications/documents/00.repo
rts/00tn003.html .

[6] Deursen Arie van, Klint Paul, Verhoef Chris 1999. Research
Issues in Software Renovation. In J.-P. Finance, editor,
Proceedings Fundamental Approaches to Software
Engineering (FASE99), pages 1-23. Lecture Notes in
Computer Science, Springer-Verlag.

[7] Deursen Arie van, Elsinga Ben, Klint Paul, Tolido Ron 2000.
From Legacy to Component: Software Renovation in Three
Steps, CAP Gemini Institute
(http://www.cs.vu.nl/~daan/cwicap/) - CWI, PO Box 94079,

1090 GB Amsterdam, The Netherlands
http://www.cwi.nl/~paulk/publications/CAP00.pdf

[8] Edwards H. M., Munro M. 1995. Deriving a Logical Model
for a System Using Recast Method, Proceedings of the 2nd
IEEE WC on Reverse Engineering, Toronto, IEEE Computer
Society Press

[9] Fong J. Ho M. 1994. Knowledge-based Approach for
Abstracting Hierar-chical and Network Schema Semantics,
Proceedings of the 12th Int. Conference on ER Approach,
Arlington-Dallas, Springer-Verlag

[10] Haft T. M., Vessey I. 1995. The Relevance of Application
Domain Knowledge: The Case of Computer Program
Comprehension, Information Systems Research, 6, pp 286-
299.

[11] Hainaut J-L, Chandelon M., Tonneau C., Joris M. 1993.
Transformational techniques for database reverse engineering,
Proceedings of the 12th International Conference on ER
Approach, Arlington-Dallas, E/R Institute and Springer-
Verlag, LNCS

[12] Hainaut Jean-Luc 1998. Database Reverse Engineering,
University of Namur - Institut d’Informatique rue
Grandgagnage, 21 l B-5000 Namur (Belgium),
http://www.info.fundp.ac.be/~dbm

[13] Rahgozar M., Oroumchian F. 2002. Classification and
guidelines for Legacy Systems’ Renovation Issues. The 10th
Iranian Conference on Electrical Engineering, Iran Electrical
Engineering Society (IEE) and IEEE, University of
Tabriz,Tabriz, Iran, May 14/16.

[14] Rahgozar M., Oroumchian F. 2002. A Practical Approach for
Modernization of Legacy Systems., EuroAsian Conference on
Advances in Information and Communication Technology
(ICT 2002) - Workshop on Recent progress in Computers and
Comunications, Tehran, Iran, 29-31 Oct.

[15] Rahgozar M., Oroumchian F. 2002. Automatic Evolution of
of Legacy Data Objects. Submitted for publication in: 2002
WSEAS International Conference on Applied Mathematics
and Computer Science (AMCOS’02), Copacabana, Rio De
Janeiro, October 21-24, 2002.

[16] Stets Robert J., Hunt Galen C., Scott Michael L. 1999.
Component-Based APIs for Versioning and Distributed
Applications, IEEE Computer, 54-61, July.

[17] Seacord Robert C., Wallnau Kurt, Robert John, Comella-
Dorda Santiago, Hissam Scott A. 1999. Custom vs. Off-the-
Shelf Architecture, Proceedings of 3rd International
Enterprise Distributed Object Computing Conference,
University of Mannheim, Germany, September 27-30.

[18] Von Mayrhauser A., Vans A.M. 1994. Comprehension
Processes During Large Scale Maintenance, Proceedings of
the International Conference of Software Engineering ICSE.
Sorrento, Italy, p.39-48. May 16.

[19] Weiderman Nelson H., Bergey John K., Smith Dennis B.,
Tilley Scott R. 1997. Approaches to Legacy System Evolution
, Carnegie Mellon Univ., Tech. Note CMU/SEI-97-TR-014,
URL:http://www.sei.cmu.edu/publications/documents/97.repo
rts/97tr014.html.

