
 1

Automatic Evolution of Legacy Data Objects

Maseud Rahgozar and Farhad Oroumchian

Control and Intelligent Processing Center of Excellence
Department of Electrical and Computer Engineering,

University of Tehran, Tehran , Iran
(rahgozar@ut.ac.ir, foroumchian@acm.org)

Abstract: - The modernization of the Legacy Information Systems (LIS) is a critical issue for many organizations world wide.
The successful migration of the legacy data stored in the old data formats is a challenging issue with respect to backward
compatibility and future extendibility. By migration, we mean translating legacy data and related programs to native data and
programs running on modern platforms such as Unix (or NT). Currently, in most migration projects, converting all legacy data
objects (traditionally stored in flat and indexed files) to RDBMS tables is considered to be unrealistic and out of question
because of the expected performance problems. While in our experience, those legacy data objects have to be converted to the
modern database (RDBMS) tables and fully integrated in the Global Information System schema. Otherwise those data objects
will not be ready for the application of novel technology tools and soon will become a new bottle neck in the system. This is,
not only to create a unified schema of the new Information System, but also to take full advantage of transaction management
and recovery services provided by the database management systems. In order to guarantee performance, efficiency, share
ability and ease of future enhancements, the legacy data has to be fully normalized too. This paper examines the issues
concerning the migration of legacy data objects to RDMS environment and offers a practical approach.

Key-Words: - Legacy Data Objects, Legacy Information Systems, Evolution, Normalization, Migration.

1 Introduction
Legacy Information Systems (LIS) are aging application
systems developed during the last three decades. They
constitute a large number of existing systems [7]. These
applications need to be evolved to new technology
environments. There are many approaches to modernization
of Legacy environments [17],[1],[5],[8]. A classification of
different approaches is presented in [13].

There have been limited research works on reverse
engineering of legacy data files [3],[4],[12],[6],[16],
[10],[9]. This is in contradiction with market demands [11],
but, it can be explained by the amounts of difficulties
expected in such environments. Even so, these works do not
deal with migration of the legacy programs together with
their corresponding data files. We have not found any work
related to the normalization of legacy data in the context of
migrating legacy programs.

According to our longtime experiences, for most migration
projects, project managers avoid converting the legacy data
files to database environments (RDBMS). This conservative
approach is explained by the lake of effective tools and
solutions for the expected performance problems. That is

why thinking about data normalization would be still too far
fetched.

From the current literature, one may conclude that moving
legacy applications from Indexed-Files environments to
modern systems (Unix) and modern database environments
(RDBMSs) is still fairly complex and risky activity, in such
a way that it is simply not sought of in most of LIS
renovation approaches. In such a context, it may seem very
unrealistic to think about running those applications on
RDBMS environments with fully normalized data.

This paper focuses on the issues regarding the migration and
normalization of the Legacy Data in conjunction with the
corresponding legacy programs. A solution is provided here
that deals with the migration of “data + code” as a whole.
Here, we discuss a data access mapping interface that
separates the code from its underlying data representation,
therefore enabling us to place the legacy data objects in the
normalized relational tables. This solution does not affect
the program’s code, logic or performance.

The data normalization theories or the methods applied in
data reverse engineering approaches are not discussed here.
But, the resulting issues of data normalization process, i.e.

 2

the potential changes that may happen to the data structures,
and transparent integration of such changes are discussed.

Section 2 discusses migration issues of legacy data to Unix
RDBMS environments, and section 3 presents our data
access interface solution. This approach is the result of
many years of managing R&D projects related to the
renovation and evolution of the LIS systems [13][14][15].
Some of the solutions implemented by this approach are
being used on hundreds of sites in Europe. Section 4 offers a
comparison of the performance of this solution to the others.
Section 5 presents one of our successful experiences as a
case study.

2 Migrating Legacy Data
Historically, legacy data objects have played a vital role in
keeping permanent data in legacy systems. These data stored
in indexed files are at least as important as those stored in
database tables. They need particular attention because they
need more normalization and they have to be reformatted
and moved to relational data bases. They have to be set
together with the data in other databases in a unified
Information System schema. There are five particularities in
this context:

• The legacy data files are going to be evolved to a

RDBMS environment,
• Their definitions are to be evolved to a normalized

model,
• They are to be integrated again into the legacy

programs environment,
• The legacy programs codes (i.e. their structures and

data access logics) are to be fully respected,
• The same data is going to be shared with future

applications using new technology tools.

The design of legacy data needs significant changes in order
to be converted to RDBMS environment and fully
normalized. Legacy data normalization is a prerequisite to
data sharing and future extention of the unified Information
System. This includes many topics to deal with, such as,
splitting, atomizing or adding new data items, or splitting,
joining and merging of the tables. For most legacy
information systems, the conceptual and logical designs of
the legacy data files are rather poor [2]. Some approaches to
normalization of legacy data files have already been worked
out. These approaches are mostly developed in the context
of data reverse engineering, and precede the redevelopment
of the programs from scratch [11]. The data reverse
engineering only takes advantage of the conceptual or
logical definition of the old information system and defines
a data mapping method from old information system to the

new one. That context is different from the migration
context where the resulting data structures are re-integrated
into the same programs environment. This integration has to
be transparent to the related programs. They should be able
to access the data as before (i.e., with the same logic, the
same structure, and the same performance or better!).

In the rest of the paper the results and consequences of data
normalization are discussed and then a solution for re-
integrating the new data structures into the migrated
programs is presented.

2.1 Data Normalization
Many kinds of changes in data structures can be expected
following the normalization of the data design [2],[11]. The
changes may concern the logical or the physical structure of
data items as well as data tables. Here are some resulting
changes that are expected following the normalization of the
legacy data design:

• Changing items format: the format of items may be

changed to support future extensions or better
representation of data such as dates, times, currencies,
etc.

• Adding or Suppressing items: there may be some old
items that have no use in the existing programs. They
do not need to be created in the new tables. There may
also be some new items that will be needed for future
programs.

• Splitting, Atomizing or decoding items: some
compound legacy items and some encoded items may
be split into multiple atomic elements for better
representation and extended usages in the future
programs.

• Verticalizing arrays and matrix of items: the single
or compound items with multiple values are mostly
stored in single records with a maximum places
reserved. Such items will be stored in multiple rows for
a better representation in the new tables.

• Merging, Mixing and Redefining items: to suppress
redundancies or to obtain a better representation of data,
some items may be merged, mixed or redefined
differently in the new tables.

• Splitting or Merging tables: legacy data records may
also contain redundancies or inconsistent representation
of data. They have to be merged, mixed or redefined
differently in the new tables.

The migrated programs should interact with the “Legacy
View” of the normalized data. That is, they should view the
data records as if there have not been any changes. The
mapping between the Legacy View and the Normalized

 3

View of the data will be provided by “Data Access
Interface”. This interface should resolve changes such as
suppressed, split, encoded, reformatted and added items or
split and added tables. That is to avoid any unpredictable
behavior by migrated programs due to unexpected changes
in the data layout or any changes in the data access logic.

2.2 Tasks to accomplish
We define four tasks that have to be accomplished for
migration of the data design:

a) Data Objects Unification: One of the frequent

problems encountered with the legacy data files is the
lake of a unique and global definition of items. This is
due to the flexibility of languages such as COBOL and
the absence of controls and services that are normally
provided by Database Management Systems (and not
by File Management Systems). In most legacy systems,
the sources of many programs have to be searched and
their file definitions have to be extracted in order to
gather a unique and global definition of data items for
each data file.

b) Design Normalization: Another frequent issue

encountered with the legacy data files is the lake of a
conceptual and logical definition of the Information
System. This may be due to the initial design or the
numerous technical extensions, modifications or
optimizations being applied to the Information System
over the years. So, the normalization task has to be done
using one of the approaches referenced in this section.
The choice of the normalization approach is not the
subject of our study in this paper.

c) Creating access mapping interfaces: The first
consequence of the preceding tasks is that with the new
data design, the migrated programs will not be able to
find the data records as they used to see on the legacy
environment. On the other hand, changing the
thousands of programs’ codes to adapt to the new data
design is too risky and may result in thousands of bugs
and performance problems. Thus, we need to map
between the legacy view (i.e. the old data structures)
and the new data view. The most effective solution will
be to create for each legacy data file the interfacing
programs (Access Mapping Functions) that link
between the old and the new data structures. Fig. 1
depicts this situation where each legacy read/write
function could map to user defined mapping interface
that could perform multiple read/write operations in the
new data environment. This solution is easy to
implement and brings no risk of bugs or performance

problems to the existing codes. These interfacing
programs can mostly be generated automatically.

d) Creating conversion interfaces (export/import): We

also need to unload the legacy data and to reload it on
the new environment. One solution is to simply dump
or unload each data file into a flat file using portable
formats and then port it to the new system. That is to
create a program that reads the data file sequentially,
reformats the data and then writes it into the dump file.
Another program will do the reverse action by reloading
the data in the new system but this time the data will
automatically be normalized. The first program has to
be run on the legacy environment. The second program
has to be created using the Access Mapping Functions
(created in the preceding task) and run on the new
environment. The automatic generation of such
export/import programs is straight forward.

In the rest of this paper, the focus will be on the
implementation of the Access Mapping Functions or
Interfaces.

…
…

read
…
…
…

write
…
…
…
…

…
…

Zread
…
…
…

Zwrite
…
…
…
…

read1a
read1b
read1c

write1a
write1b
write1c

...
read1

…

...
write1

…

Initial legacy
program

New
legacy
Program

General
Normalization
Interface

Specific
Normalization
Interface

Fig. 1. Dynamic Normalization Procedures

…
…

read
…
…
…

write
…
…
…
…

…
…

Zread
…
…
…

Zwrite
…
…
…
…

read1a
read1b
read1c

write1a
write1b
write1c

...
read1

…

...
write1

…

Initial legacy
program

New
legacy
Program

General
Normalization
Interface

Specific
Normalization
Interface

Fig. 1. Dynamic Normalization Procedures

3 Data Access Interface
The implementation or structure of the legacy data is mostly
navigational or hierarchical and the logic of the legacy
programs has been built around this structure. The simplistic
approach of replacing isolated legacy data access statements
by equivalent SQL statements will lead to significant and
prohibitive performance degradation. An effective
transformation of the legacy data access logic to the
relational data access logic is not linear. Therefore the
legacy data access logic should be considered as a whole
and managed through a specialized data access interface.
The main objective of creating the “Data Access Mapping

 4

Interfaces” is to avoid any alteration in the legacy data
access logic in the programs.

3.1 Legacy Access Logic
The most common way legacy programs access data files is
to set a pointer on a desired position in the legacy file with a
specified key value (START statement) and then read the
file, record by record from that position on (READ NEXT
or READ PREVIOUS statements). The records returned by
the READ NEXT statement will be sorted based on the key
item specified in START statement. This logic is adapted to
the physical implementation of the data in the indexed files,
so the performance of legacy programs is very good on such
file structures. However, when the same data is moved to a
relational table, supporting such access logic with
acceptable performance (i.e. the same response time) is not
straight forward. In other words, if we simply use SQL
statements to replace the START and READ NEXT
statements, the response time will be hundreds or thousands
of times greater than those of the indexed files depending on
the number of records in the table. This is because of the
difference between SQL access logic and that of the indexed
files. In SQL, the SELECT statement with the expression
(ITEM >= “value” ORDER BY ITEM) will result in loading
all the records satisfying this criteria and then sorting them
in the memory work space. With this access logic, the
response time of the SQL statements replacing START and
READ NEXT statements will be measured by minutes and
hours instead of milliseconds as in the indexed file.

The only remedy to above problem is to use the expression
(ITEM >= “value1” AND ITEM <= “value2” ORDER BY
ITEM) where the “value2” should be chosen so that the
number of resulting records stay limited (e.g., between 50
and 100). But finding the “value2” is a challenging issue by
itself. To implement such access method, we have to use a
caching mechanism for keeping a suitable range of keys in
the memory. Then, we can find the best candidate key value
(“value2”) following “value1” in the cache-key buffers.
Managing the cache-key buffers, in the cache memory is
also a challenging issue, when the number of records in the
table is measured by hundreds of thousands or millions. To
solve this problem, we have developed a swapping
mechanism that is explained below.

3.2 The key Caching Mechanism
The cache-key buffers have to be maintained dynamically
and to be refreshed regularly. They may also need too much
memory space and they have to be shared between
concurrent programs. Hopefully, they do not need to be
updated for every single key value created or deleted within

the table. The most effective solution to support these
requirements is to implement a dynamic swapping
mechanism that uses an indexed dump file containing a raw
picture of key distribution within the table, e.g. one sample
key value for every 100 distinct key values. The key dump
file should be created and refreshed dynamically. The
expected frequency for refreshing the key dump file is
determined automatically by the rate of changes in the table,
which can be measured by the rate of valid key values
fetched from the file. The key values fetched from the file
are said to be valid, if for two neighbor values “value1” and
“value2” in the file, the number of key values returned by
the SELECT statement with the expression (ITEM <=
“value1” AND ITEM > “value2”) stay within a reasonable
range (e.g., between %50 to %200 of the expecting number
of keys)

COBOL I/O request

External File Handler (EXTFH)

Zopen

Zread

ZreadNext

Zwrite

Etc.

ZcacheRecords

Zupdate

Zclose

Zdelete

ZcacheKeys

ZreadNormalize

ZwriteNormalize

ZupdateNormalize

ZdeleteNormalize

Fig. 2. The structure of calls following the COBOL I/O requests

ZreadNormalize

COBOL I/O request

External File Handler (EXTFH)

Zopen

Zread

ZreadNext

Zwrite

Etc.

ZcacheRecords

Zupdate

Zclose

Zdelete

ZcacheKeys

ZreadNormalize

ZwriteNormalize

ZupdateNormalize

ZdeleteNormalize

Fig. 2. The structure of calls following the COBOL I/O requests

ZreadNormalize

3.3 Data Access Functions
We have to provide multiple data access mapping interfaces
and different sets of system functions to access data files
depending on the original legacy environment of the
programs. Some examples of legacy data file environments
are: KSAM (for HP3000 of HP), UFAS (for DPS6, DPS7
and DPS8 of BULL), ISAM and VSAM (for IBM
mainframes), CISAM, etc. Although there are some
differences among these access interfaces, they provide very
similar functionalities. These functionalities are more
standardized in the COBOL language file access
environment across platforms. Fig. 2 shows the structure of
I/O normalization functions that are implicitly called for
COBOL programs.

 5

4 Program Performance
We have implemented the above mentioned techniques and
performed several performance benchmarks and
comparative studies between legacy applications running on
their original platforms, and their migrated versions on
UNIX platforms with different configurations and using
different RDBMS environments. The results have always
confirmed our expectations. Fig. 3, shows the average
access time we have observed for the most common data
access methods, i.e., READ NEXT statements on different
configurations. The horizontal axe represents the total
number of records, ranging from 1000 to 1000000, in the
legacy files or their corresponding database tables. The
vertical axe shows the average access time, ranging from 10
milliseconds to 100000 seconds, per record. The line (a)
shows the average access time for the indexed file on the
legacy environment. The line (b) shows the average access
time for the same indexed file on the UNIX platform. The
line (c) shows the average access time observed when the
data is moved into a database table and the READ NEXT
statements are replaced with SQL statements (the simplistic
solution). As expected, in this case the response times are
measured in minutes and hours instead of milliseconds. The
line (d) shows the equivalent situation but with the proposed
approach, i.e., with our data access mapping interface,
swapping mechanism and transaction management. This
time, the access times are better than those on the original
platform while the data is moved to the normalized database
tables. As line (b) depicts, UNIX indexed files are faster
than the data base approach but with a major draw back.
That is, in the UNIX indexed file approach, we do not have
the transaction management, data recovery management and
many other services that are the integral part of the RDBMS
environment.

1

2

3

4

5

6

7

3 4 5 6

log (t) --- t: Average access time (in milliseconds)

Log (r) -- r: Records in File

Fig. 3. Average access time per Record access (in READ NEXT)

(a) File access: Original platform

(b) File access: Unix platform
(d) Table access: Proposed approach

(c) Table access: Using SQL statement

1

2

3

4

5

6

7

3 4 5 6

log (t) --- t: Average access time (in milliseconds)

Log (r) -- r: Records in File

Fig. 3. Average access time per Record access (in READ NEXT)

(a) File access: Original platform

(b) File access: Unix platform
(d) Table access: Proposed approach

(c) Table access: Using SQL statement

5 Case Study
One of the successful experiences we accomplished recently
is the migration project of a French company’s general
ledger applications for accounting, payrolls and stock
management running on BULL DPS6 platform under
GCOS6 operating system. The programs are in COBOL and
used to run under TP4 transaction monitor. Fig. 4 illustrates
a general view of the system which was built on UFAS data
files. Interactions with users were provided through the
screen FORMS supplied with TP4 transaction monitor. Fig.
5 shows the renovated environment for this legacy system.
Programs run under AIX/ORACLE on a RS6000 platform.
The FORMS screen management system is replaced by a
Unix Graphical screen management interface. The legacy
data (UFAS data files) is fully normalized and migrated to
the ORACLE database environment. The target tables are
free of legacy-dependant extra data such as “chaining
pointers”, etc., so they are easily shared with newly written
programs using new technology tools (UNIFACE, etc.). The
final application performance is much better than the
original legacy environment. The main TP4 transaction
monitor function that used to control the transaction
commitment and the data recovery is now replaced by the
ORACLE database functions. Using automated tools, the
whole migration project took about 6 man months for 750
programs.

UFAS

TP4
Transaction Monitor

Prog1 Prog2 Prog3

UFAS File Management System

Fig. 4. Sample Legacy System Environment (BULL/GCOS6)

UFAS
UFAS

UFAS
UFASUFAS

TP4
Transaction Monitor

Prog1 Prog2 Prog3

UFAS File Management System

Fig. 4. Sample Legacy System Environment (BULL/GCOS6)

UFAS
UFAS

UFAS
UFAS

6 Conclusion and future works
Some practical guidelines regarding migration of legacy
systems “data+code” is discussed and a technical solution is
presented briefly. In this approach we pay attention to

 6

preserving the business logic and making the migrated
system free of any constraint for future extensions.

The efficiency of the solution has been tested on multiple
migration projects in many different environments. We have
also gained very successful experiences regarding migration
of the legacy database environments such as CODASYL
databases, etc., that we hope to discuss in a future paper.

Technical issues regarding the automation of migration
process for specific legacy components such as JCL,
different programming languages, and the optimization and
implementation of data normalizations/unifications still need
to be developed in more details.

Prog1 Prog2 Prog3

ORACLE

Fig. 5. Sample Legacy System Renovation Environment (UNIX/ORACLE)

Graphical Screen Management System

Legacy to Relational Database Access and Normalization Engine

UFAS File Access Interface

ORACLE Access Optimization Layer

ORACLE
ORACLE

ORACLE

Prog1 Prog2 Prog3

ORACLE

Fig. 5. Sample Legacy System Renovation Environment (UNIX/ORACLE)

Graphical Screen Management System

Legacy to Relational Database Access and Normalization Engine

UFAS File Access Interface

ORACLE Access Optimization Layer

Legacy to Relational Database Access and Normalization Engine

UFAS File Access Interface

ORACLE Access Optimization Layer

UFAS File Access Interface

ORACLE Access Optimization Layer

ORACLE
ORACLE

ORACLE

References:
[1] Bisbal Jesús, Lawless Deirdre, Wu Bing, and Grimson Jane:

Legacy Information Systems: Issues and Directions, IEEE
Software, September/October 1999.

[2] Blaha, M.R., Premerlani, W., J.: Observed Idiosyncrasies of
Relational Database designs, in Proc. of the 2nd IEEE
Working Conference on Reverse Engineering, Toronto, IEEE
Computer Society Press, July 1995.

[3] Casanova, M., Amarel de Sa, J. : Designing Entity
Relationship Schemas for Conventional Information Systems,
in Proc. of Entity-Relationship Approach, pp. 265-278, 1983.

[4] Casanova, M., A., Amaral De Sa.: Mapping uninterpreted
Schemes into Entity-Relationship diagrams: two applications
to conceptual schema design. IBM J. Res. & Dev., Vol. 28, No
1, 1984.

[5] Comella-Dorda Santiago, Wallnau Kurt, Seacord Robert C.,
Robert John: A Survey of Legacy System Modernization
Approaches, Carnegie Mellon University,Tech. Note
CMU/SEI-2000-TN-003, 17 August 2000,
URL:http://www.sei.cmu.edu/publications/documents/00.repo
rts/00tn003.html

[6] Davis, K., H., Arora, A., K.: A Methodology for Translating a
Conventional File System into an Entity-Relationship Model.
Proceedings of ERA, IEEE/North-Holland, 1985.

[7] Deursen Arie van, Klint Paul, Verhoef Chris : Research Issues
in Software Renovation. In J.-P. Finance, editor, Proceedings
Fundamental Approaches to Software Engineering (
FASE99), pages 1-23. Lecture Notes in Computer Science,
Springer-Verlag, 1999.

[8] Deursen Arie van, Elsinga Ben, Klint Paul, Tolido Ron: From
Legacy to Component: Software Renovation in Three Steps,
CAP Gemini Institute (http://www.cs.vu.nl/~daan/cwicap/) -
CWI, PO Box 94079, 1090 GB Amsterdam, The Netherlands
http://www.cwi.nl/~paulk/publications/CAP00.pdf, 2000.

[9] Edwards H. M., Munro M.: Deriving a Logical Model for a
System Using Recast Method, Proceedings of the 2nd IEEE
WC on Reverse Engineering, Toronto, IEEE Computer
Society Press, 1995.

[10] Hainaut Jean-Luc, Chandelon M., Tonneau C., Joris M. :
Transformational techniques for database reverse engineering,
Proceedings of the 12th International Conference on ER
Approach, Arlington-Dallas, E/R Institute and Springer-
Verlag, LNCS, 1993.

[11] Hainaut Jean-Luc: Database Reverse Engineering,
University of Namur - Institut d’Informatique rue
Grandgagnage, 21 l B-5000 Namur (Belgium),
http://www.info.fundp.ac.be/~dbm, 1998.

[12] Nilsson,E., G.: The Translation of COBOL Data Structure
Rel-type Conceptual Schema. Proceedings of ERA
Conference, IEEE/North-Holland, 1985.

[13] Rahgozar Maseud, and Oroumchian Farhad: Classification
and guidelines for Legacy Systems’ Renovation Issues. The
10th Electrical Conf. of Iran (IEEE), Iran Electrical
Engineering Society, University of Tabriz,Tabriz, Iran, May
14/16, 2002.

[14] Rahgozar M., Oroumchian F. 2002. A Practical Approach for
Modernization of Legacy Systems., EuroAsian Conference on
Advances in Information and Communication Technology
(ICT 2002) - Workshop on Recent progress in Computers and
Comunications, Tehran, Iran, 29-31 Oct.

[15] Rahgozar M., Oroumchian F. 2002. Transformational
Approach for Legacy Systems evolution. Submitted for
publication in: 2002 WSEAS International Conference on
Applied Mathematics and Computer Science (AMCOS’02),
Copacabana, Rio De Janeiro, October 21-24, 2002.

[16] Sabanis, N., Stevenson, N.: Tools and Techniques for Data
Remodelling Cobol Applications. Proceedings of the 5th
International Conference on Software Engineering and
Applications, Toulouse , 7-11 December 1992, pp. 517-529,
EC2 Publish.

[17] Weiderman Nelson H., Bergey John K., Smith Dennis
B., Tilley Scott R.: Approaches to Legacy System
Evolution , Carnegie Mellon University, Tech. Note
CMU/SEI-97-TR-014, 1997,
URL:http://www.sei.cmu.edu/publications/documents/97.repo
rts/97tr014.html

