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Abstract:- We present two examples of computational cellular biology that provide perspective on the com-
plexity of creating predictive models of cell behaviors as they emerge from the interaction of molecular species.
The first is a model of the diffusion and reaction of neurotransmitter in a neuromuscular junction using a con-
tinuum based finite element formulation [1]. Whereas this formulation accounts for spatial variation of neuro-
transmitter concentration, the single unknown, the second example is a system of ordinary differential equations
to describe the biochemical state of an embryonic mouse neuron in relation to the observed behaviors of death,
division, or differentiation. Each model, born of a deterministic mathematical perspective, is early in its own
evolution as it grows to reflect true biology. The necessarily organic nature of these models, in simultaneously
incorporating and stimulating understanding, is behind the perspective they provide on the future of computa-
tional cellular biology. Whereas in written form, this material must be presented linearly, live presentation is
done in hypertext to more suitably portray the interconnected issues and methods on a multiplicity of scales.
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1 Introduction
Time offers a spectrum of scales within which com-
plex systems are observed to emerge from the sim-
ple dynamics of interacting, and sometimes unwitting,
components. A cell, as a unit of life, is near the small
end of this spectrum. In the post-genomic era, anno-
tation is underway of the specific roles gene products
play within complex biochemical networks that give
rise to discrete cellular behavior. This effort is cre-
ating a burgeoning interface between computational
math and cell biology that presents enormous chal-
lenges if quantitative modelling is to be predictive and
relevant.

To sample and subsequently survey these chal-
lenges, we present two early examples of computa-
tional cell biology: the diffusion and reaction of neu-
rotransmitter acetylcholine (ACh) in a neuromuscu-
lar junction (NMJ) and the biochemical balance be-
tween death, division, and differentiation of embry-
onic mouse neurons. In exploring how the relevant
biology of each example is reflected in commonly dis-
parate branches of mathematics, the need for organic
yet rigorous mathematical formalisms is exposed. In
spite of being born of deterministic science, effective
models shall at once evolve with and further the holis-
tic understanding of dynamical systems important to

biology. It is to this seeming paradox, the very exis-
tence of a mathematical system of analysis of systems
biology, that our title lightheartedly alludes.

2 Computational Cell Biology
2.1 The Continuum Approach
Given the complexity of cellular dynamics, due to
the relevance of multiple scales, nonlinear coupling,
and stochastic effects, there is reluctance to believe in
the prospect of predictive models of cellular behavior.
Afterall, the very term “behavior” has metaphysical
implications, and the applied mathematician would
perhaps prefer “physiology.” For example, relative
quiet, within both applied mathematics and molecular
cell biology communities, surrounds a leading exam-
ple of continuum based efforts, the NIH Virtual Cell
Project [2]. Predating this approach is that of discrete
models such as MCell [5], which generate statistics
based on the probabilistic trajectories of individual
molecules. Though the latter seems quite natural and
is promising for small systems (such as a synapse!), it
faces tremendous hurdles regarding scalability, both
in terms of space and the number of distinct interact-
ing molecular species . A compromise is the object
of “stochastic” continuum based approaches, which



acknowledge “finite-numbers” effects by incorporat-
ing probablistic simulations as they quantify inherent
noise due to smaller scales.

Enthusiasm for finite difference methods, as cur-
rently used in the Virtual Cell, is waning within the
computational mathematics community due to the
emergence of multilevel adaptive, and therefore scal-
able, finite element techniques. Built-in adaptive con-
trol of spatial approximation error in a variational set-
ting yields a formulation imbued with a sense of op-
timality. As such, finite element formulations appear
more amenable to a progressive incorporation within
dynamical systems theory for coupled systems of par-
tial differential equations — the study of the sensi-
tivity of the solution relative to differences in prior
states, especially as a function of the parameters in the
equations presumed to govern. This broad claim on
the wilderness of numerical analysis for solving cou-
pled systems of partial differential equations is based
solely on the flexible capacity of the variational set-
ting to quantify relevant spatial differences between
prior states, and it is merely a claim. However, regard-
ing the stochastic nature of finitely many molecules
interacting, the variational setting may again offer ad-
vantage since, by design, it allows the scientist to in-
corporate, directly into the approximation space used
for the solution of the model, effects inferred from
particle simulations such as Brownian Dynamics and
Monte Carlo [5].

Although we subscribe to a finite element approach
as the engine for resolving spatial effects in the first
example here, we are fundamentally aligned with the
Virtual Cell Project as it provides a substrate for the
growth of effective continuum models. Only in the
event of significant spatial complexity does the dis-
tinction between finite differences and finite elements
become a relevant. In many cases, such as in our sec-
ond example, spatial resolution may be prohibitively
expensive to compute, impossible to verify by exper-
iment, and/or of small consequence. Indeed there is
irony in that an understanding of the extent to which
each of these may be the case implicitly requires push-
ing the envelope of realistic models.

2.2 Synaptic Transmission
Motivation for studying the diffusion and reaction of
ACh at a NMJ is threefold. Immediately, a vari-
ety of diseases are manifested at the neuromuscular
junction, either in the ultrastructure of an affected
NMJ or in the kinetic relationships of its molecular
constituents [1]. These aspects of a model can be

Figure 1: Artist’s rendition of synaptic transmission
at a neuromuscular junction.

varied to explore,in silica, the effect of potentially
therapeutic treatments. Of more theoretical concern,
given the wealth of data on NMJs, an efficient model
can be used in taxonomic coevolutionary studies of
synapse ultrastructure and kinetics as each relate to
muscular function. Lastly, and perhaps most impor-
tantly, synaptic transmission serves as an instructive
paradigm for the maturation of mathematical models
of cell biology.

Upon the arrival of a presynaptic actional poten-
tial at the end of a nerve cell, a cloud of ACh is re-
leased into the NMJ, pictured in Figure 1. The me-
chanics of this release, which involve elastic changes
to the nerve cell membrane, are the first reductionist
casualties in developing acomputationallytractable
model. ACh chemically diffuses across the synaptic
cleft , where individual molecules encounter the en-
zyme acetylcholinesterase (AChe) and embedded ion
channel acetylchonline receptors (AChR). When ACh
binds to its receptor, the ion channel opens to permit a
flux of ions into the muscle cell; this is the experimen-
tally observable miniture endplate current (mEPC).
Synchronization of this flux induces contraction of the
muscle. An extremely fast enzyme, AChe provides
the efficient “switch” which allows for rapidly repeat-
ing contraction of muscle.

2.2.1 Continuum Model
In an attempt to capture the physical biology of
synaptic transmission, the following partial differen-
tial equation and boundary conditions for ACh con-
centration,u(x, t), has been proposed [1]:

du

dt
−∇ · a∇u = 0 in Ω, (1)
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n · a∇u = 0 onΓ/ΓAChE, (2)

n · a∇u = −κu on ΓAChE, (3)

with initial datau(x, 0) = u0, whereΩ is the NMJ
volume with boundaryΓ, ΓAChE is the disconnected
surface area attributed to the enzyme, andκ is the en-
zyme’s linear kinetic reaction constant. Note that this
represents an outward flux due to consumption by the
enzyme atΓAChE, and a zero flux elsewhere onΓ, in-
cluding at the locations of AChR, since the receptor
rereleases ACh back into NMJ. The latter condition
is another part of the model subject to improvement
since AChR binding of ACh may result in an “effec-
tive,” albeit elusive, flux condition.

In [1], a discrete approximation to the solution of
(1- 3) has been computed on several domains using
a method of lines to reduce the corresponding weak
form to an elliptic PDE at each time step. Given the
solution at the previous time step, the elliptic PDE is
solved by conjugate gradients using the finite element
package FEtk [3]. In Figure 2, the finite element dis-
cretization of a realistic NMJ is reprinted from [1].
This volume mesh was generated by K. Tai based on
a realistic surface representation generously provided
by Bartol et al. and the MCell project [3]. This en-
ables benchmarking the finite element solution with
Monte Carlo statistics via comparison of computed
miniture endplate current. However, this benchmark-
ing is subtle because relating the approximate solution
of (1 - 3) to mEPC requires accounting for the prob-
abilistic nature of ACh binding to AChR. Currently,
this is done by empirically determining a factor,α,
which connects the mEPC,I(t), with a surface in-
tegral of the concentration,u(x, t), weighted by the
density of AChR,γAChR(x); that is,

α ≈ I(t)∫
ΓAChR

γAChR(x)u(x, t)dx
. (4)

Once selected, the constantα must be shown to be
valid for subsequent simulations, or else the assump-
tion of a linear relationship, in time, between mEPC
(i.e., AChR opening) and the weighted concentraion
of ACh near AChR must be improved. Note that
the second improvement may involve a constant time
shift between the quantities. This is an aspect in
which the continuum model has not reached matura-
tion, and yet one in which its use as feedback provides
insight on the actual dynamics at work. Particle meth-
ods are well suited for estimating this relationship be-
tween mEPC andu(x, t), yet less well suited for sim-
ulations of increasing complexity. This is therefore
a clear instance in which stochastic effects computed

Figure 2: Tetrahedral discretization of a realistic neu-
romuscular junction. On top is the entire mesh, in
the center is a close up of the vesicle from within the
nerve cell, and on the bottom the postjunctional folds
are pictured with the AChe clusters as interior bound-
ary.

from particle methods can be incorporated into a con-
tinuum based model.

2.2.2 Future Work
Analysis is begun in [1] of the effect of NMJ archi-
tecture on muscular function, as represented in the
amplitude and duration of mEPC. Specifically, differ-
ences due to muscle type (fast- or slow-twitch) as well
as due to affliction with muscular dystrophy are in-
vestigated. Future studies will address physicochemi-
cal manifestations of myasthenia gravis as well as the
presence of neurotoxins in NMJs. However, before
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Figure 3: A reduced network of the biochemical path-
ways associated with the death, division, and differen-
tiation behaviors of an embryonic neuron, as initiated
by DNA damage and its activation of repair, or sur-
vival, mechanisms.

these simulations are trusted as insightful, the model
must be further grounded in reality according to ex-
perimental data. This is true not only in relation to
the definition in (4), but also in the representation of
structural and kinetic differences. Note, however, that
these are precisely the subtlties of synaptic transmis-
sion that the model is poised to explore, mirrored by
evolving experimental techniques.

2.3 Neuron Development
2.3.1 Biochemical Pathways
Our second example of computational cell biology,
which falls within biochemical systems theory [14],
demands an increased mathematical complexity to de-
scribe coupled molecular interactions. Studies of em-
bryonic mouse neurons suggest that a balance be-
tween DNA double-strand breaks and DNA damage
signaling pathways generates genetic diversity among
neurons [5-9] and influences the cellular decision to
divide, differentiate, or die. In Figure 3, a network
of biochemical pathways is pictured that initially cap-
tures key aspects of this dynamic. Note that this
network is likely to evolve, to either expand or re-
duce, with insight provided by successful mathemat-
ical models and biomedical research. A given neu-
ron with a minimal history of double-strand breaks
tends to remain stationary and divide, whereas sus-
tained levels of DNA damage are observed to trigger
a cascade of events leading to cell death. However,
during the transition between these states, neurons are
observed to emigrate away from a proliferative zone
and form the cerebral cortex, where they contribute to
cognition. The hope is that a mathematical model of

this system can be developed to explore the relative
importance of these pathways and shed light on the
structure of the network.

Motivation for the study of neuron development
parallels that of our first example. First, imbalance
in this dynamic is implicated as a potential root of
neurodegenerative disease [8]. More theoretically,
mature neurons are quite special cells in that they
live throughout the organism’s lifetime without be-
coming cancerous. Understanding the intricacies of
their developmental cycle may provide insight on
how to bypass blockage of cell death pathways, and
thereby avoid uncontrolled and cancerous prolifera-
tion. Lastly, this example is representative of bio-
chemical systems that will continue to confront com-
putational mathematics in the post-genomic era.

There is a wealth of literature on various ap-
proaches to examining the behavior of biochemical
networks, from graph theory to control theory to bi-
furcation theory, as complexity of the underlying net-
work decreases (see [10 - 12] and references therein).
Predating much of the biological interest, past studies
of coupled chemical kinetics is its own mature field
with a great deal to contribute to biological under-
standing [13]. Relative to many of these efforts, our
model is premature. Its presentation below, however,
provides perspective on many concerns that must be
addressed for the consistent development of mathe-
matical formulations to control the dynamics repre-
sented by biochemical pathways. Preliminary numer-
ical results, using Matlab, will be presented in Co-
pacabana.

2.3.2 Mathematical Model
In our previous example, complications arise from an
irregular computational domain and the need to relate
the solution of the model to an experimentally observ-
able quantity. The ACh reaction with other molecular
species is limited to the boundary, and hence there is
no internal coupling of unknowns. Because of the in-
herent difficulty, alone, of a coupled system of differ-
ential equations, and because of the near impossible
task of spatially resolving the governing physics, we
first treat the unknowns as spatially averaged concen-
trations. Note that we even do this to represent the ac-
cumulation of double-strand breaks. As such, the bio-
chemical pathways represented in Figure 3 may be in-
terpretted mathematically as a system of coupled dif-
ferential equations with time delays and general func-
tional dependencies F and G, yet to be determined (!):

d

dt
[DSB] = FDSB([Casp], [repair], [extD])
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d

dt
[ATM ] = FATM([DSB], [Casp])

d

dt
[Casp] = Gmito([BAX], [AKT ], t)

d

dt
[repair] = GREPAIR([ATM ], t)

d

dt
[Abl] = GAbl([ATM ], t)

d

dt
[P53] = GP53([ATM ], t)

d

dt
[AKT ] = FAKT ([Abl], [extS])

d

dt
[BAX] = GBAX([P53], t)

d

dt
[P21] = GP21([P53], t) .

The separate notationG is only to stress the relevance
of a time delay due to spatial effects; this is in lieu
of introducing partial spatial derivatives to arrive at a
much more complicated system of coupled partial dif-
ferential equations to capture the governing physics.
Again, the nature of this time delay introduces further
controls on the model. As before, understanding how
to quantify this delay will evolve alongside targeted
experiments.

We can begin to approximate the nature of coupling
functionsF andG using classical biochemical kinet-
ics. According to linear theory

F (c1, . . . , cn) = Kc ,

for a matrixK to be determined, and with appropri-
ate time shifts inG. To incorporate saturation effects
where necessary, Michaelis-Menten theory writes, in
the case of a single argument,

F (c) = V
c

c + k
,

with k some constant. Toward further sophistication
in the representaion of F, a “power law” such as

F (c1, . . . cn) = kc
α1
1 c

α2
2 . . . cαn

n

is espoused in [14]. For reactions involving multi-
ple species, concatenated products of concentrations
with differing exponents quickly lead to intractable
systems of ordinary differential equations. However,
the power law approach, as claimed in [14], does pro-
vide a single framework which enables the discription
of many systems. In the context of approximation
theory, each approach introduces parameters to rep-
resent the coupling functions that must be estimated

and proven consistent with experimental understand-
ing. However, in the spirit of constrained optimiza-
tion problems, re-estimating the parameters must not
compromise the proof of this consistency.

This reveals that, in essence, the goal of biochem-
ical systems theory is to learn how to pose an inverse
problem associated with a system of coupled differ-
ential equations. Since the formulation of the math-
ematical model is in fact the formulation of its solu-
tion, we must try to learn to pose this inverse prob-
lem well, rather than cavalierly “regularize” an “ill-
posed” problem. This task is intimidating, but conso-
lation can be found within the steady accumulation of
a priori information regarding the biochemical states
of the systems whose governing dynamics are in ques-
tion. This information amounts to snapshots of the
solution for all concentrations, and should of course
steer the formulation of its model.

2.3.3 This Perspective
The above suggests an iterative, or cyclical, perspec-
tive in which the formulation offers a solution whose
analysis informs the formulation. Instituting this per-
spective requires wading through a confluence of sci-
entific disciplines to provide two crucial links: the so-
lution of the formulation and its subsequent analysis
to improve the formulation. The former entails solv-
ing differential equations numerically. The latter es-
tablishes the dual faith that the system is not overly
sensitive to small variations in the parameters that de-
fine the nature of coupling, yet sensitive enough to
capture significant differences in behavior.

Potential sources of inaccuracy in the formulation
are multifaceted. Most fundamentally, hypersensitiv-
ity may be due to reducing a model to too few un-
knowns. Also, simply assuming linear, Michaelis-
Menten, or power law kinetic theory may be insuf-
ficient. Another source may be associated with realiz-
ing spatial effects as a time delay instead of solving a
partial differential equation explicitly (on a geometry
that is itself approximate). Lastly, stochastic averag-
ing to account for the interaction of discrete quantities
is to be tuned. Therefore, understanding the relative
importance of each potential source of trouble is the
path to a model that is “well-posed.”

Direction on this path can be obtained by sam-
pling biochemical state space, both experimentally
and computationally and in parallel, to glean their rel-
ative partitions into death, differentiation, and divi-
sion. The capacity to make associations experimen-
tally is improving through the use of high-throughput
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gene expression profiling, proteomics, and even video
microscopy utilizing flourescent biosensors. In turn,
the ability to draw parallels to mathematical mod-
els hinges on finding tractable systems of differen-
tial equations. Conserved quantities and special qual-
ities will be learned from experimental observations
of state space, manifested according to geometry of
this space, and modestly incorporated into a formula-
tion asa priori information. This is a central concept
in a relatively new mathematical field, the geomet-
ric integration of differential equations. For example,
the qualitative behavior of many small systems of dif-
ferential equations, such as nonlinear feedback loops,
can be quantified as low dimensional attractors in state
space.

3 Conclusion
The nonreductionist perspective of systems biology
[15] is at once convincing and slippery, which is em-
blematic of the conundrum that life presents to sci-
ence. As a movement within biology, it reflects a
larger trend in science and social theory that is gain-
ing momentum in concert with an increasing aware-
ness of the need for sustainability on all scales of a
“deep ecology” [16]: from cells to people to socioe-
conomic development in lieu of conflict. As such, it
is hoped that an improved systems understanding of
the cell can, in turn, transcend scales and offer sup-
port for, and perhaps even living proof of, the moral
obligation of sustainably impacting one’s own “open
system” environment [17]. The role of applied math-
ematics (at the ”burgeoning interface”) is to permeate
any systemic understanding of, for example, a cell,
rather than reduce it and present it. Thus the goal is
a biological system of analysis of systems math;, i.e.,
in short, biology math and not math biology.
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