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Abstract:  This paper presents a multivariable repetitive robust model reference adaptive controller (MIMO 
RMRAC-RP) applied to a three-phase uninterruptible power supply (UPS). Using αβ0 transformation and 
balanced three-phase load, the plant can be considered weakly coupled, and then a multivariable law may have 
its parameters reduced in number, reducing the computational effort to adapt them. For this MIMO RMRAC-RP 
with reduced number of parameters, the augmented error equation is written, and the adaptation algorithm 
convergence mathematical proves are developed, as well as the proof of the overall closed-loop system stability, 
despite the presence of unmodeled dynamics and bounded disturbances. Experimental results confirm good 
performance for linear and non-linear balanced three-phase loads. 
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1   Introduction 
A usual way to deal with coupling in three-phase 
inverter systems is the use of αβ0 transformation or 
synchronous transformation in dq coordinates. In a real 
setup implementation, errors in the measured variables 
may lead to coupling in the final system. If the existing 
coupling is not significant, it may be considered 
unmodeled dynamics, and a single-input single-output 
(SISO) robust adaptive control technique may be 
applied to assure performance. Otherwise, if coupling 
becomes significant, there will be no guarantee to 
obtain system good performance. Carati and others [1] 
introduce the use of two SISO robust model reference 
adaptive controllers (RMRAC) applied to a three-
phase uninterruptible power supply (UPS), using 
synchronous transformation. 
In this work we propose a repetitive multivariable 
robust model reference adaptive controller (MIMO 
RMRAC-RP) to control a three-phase UPS. Different 
from the decentralized case [2], where weak coupling is 
considered unmodeled dynamics in the multivariable 
plant, the developed multivariable control law is able to 
deal with coupling. Moreover, assuming that the three-
phase UPS is weakly coupled, the proposed direct 
multivariable controller has its parameters reduced in 
number, reducing the consequent computational effort 
to adapt them. This reduction of parameters is inspired 
in a discrete-time indirect MIMO MRAC developed by 

Moctezuma and Lozano [3], where an ARMA model 
together with the knowledge of the Interactor matrix 
lead to a reduced number of plant parameters to adapt. 
Different from this controller, the proposed one is a 
direct continuous-time robust controller. 
In [4] it was developed a MIMO RMRAC which, 
inspired in [5], [6] and [7], uses a modified least-
squares parameters adaptation algorithm. The 
proposed scheme reduces the number of parameters 
to be adapted assuming that the plant is weakly 
coupled. In addition, the developed controller has a 
portion of repetitive controller to avoid repetitive 
errors in the sinusoidal waveforms of the output. 
The augmented error equation is written for the 
proposed MIMO RMRAC-RP scheme, and it is shown 
that for small additive and multiplicative stable plant 
perturbations, the tracking error is small in the mean 
and all the signals in the closed loop are bounded. 
Simulation and experimental results are obtained 
showing good performance of the proposed scheme 
with linear and non-linear balanced three-phase loads. 
This paper is organized as follows. In Section 2 we 
describe a three-phase UPS, and in Section 3 we show 
the structure of the overall closed loop system. Section 4 
contains the plant description and the control objective. 
In Section 5 we show the controller structure. Section 6 
is devoted to the parameter adaptation algorithm and its 
properties. In Section 7 the robustness properties are 
analyzed. Section 8 shows experimental results. 



 

2   Three-Phase Uninterruptible Power  
     Supply (UPS) 
Fig. 1 shows the plant of a three-phase UPS, 
composed by a three-phase full-bridge inverter, an 
LC delta (∆)-connected filter and a three-phase load. 
System state-space model is given by 
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Fig. 1. Three-phase PWM inverter system. 

Inverter line voltages, UVV , VWV  and WUV , are pulses 

with amplitude E, 0 and –E, due the operation of 61−S  
switches, which open and close at each sampling 
period st . The PWM inverter voltages are used to 

control the output voltages, RSV , STV  and TRV . 

In (2), the load currents RLi  and SLi  depend on the 
used load. In case of three wye (Y)-connected 
resistors R, the currents are given by 
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3   Closed Loop System Structure 
Fig. 2 shows that the three-phase reference model 
generates phase outputs mry , msy  and mty , which are 
converted in two orthogonal independent reference 
model variables αmV  and βmV  through the use of αβ0 

transformation represented by T matrix, given in (4). 
Fig. 3 shows that the MIMO RMRAC-RP controller 
uses the transformed reference variables αr  and βr , 

from rr , sr , tr , and the transformed output voltage 

variables αV  and βV , from the plant output phase 

voltages rV , sV  and tV . The controller generates the 

control variables αu  and βu , which are transformed 

into the three-phase control variables Uu , Vu  and 

Wu . These variables are used to command the PWM 
inverter, so that it generates the three-phase voltages 

UV , VV  and WV , which applied to the plant generate 

the output three-phase voltages rV , sV  and tV . 
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Fig. 2. Reference model for a three-phase UPS. 
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Fig. 3. Block diagram of a three-phase UPS  

with a MIMO RMRAC-RP controller. 

 
4   Plant Description and Control Objective 
In the following sections we will describe a 
multivariable control system, which is inspired in that 
of [4]. The assumption that the plant is weakly coupled 
makes the parameterization problem simpler to solve. 
Consider the NN ×  MIMO LTI plant described by 

usGy )(= , [ ]{ })()()()( 0 ssIsGsG am ∆+∆+= µµ  (5) 

where Ny R∈ , Nu R∈ . )(0 sG  is the modeled part 

of the plant, and )(sm∆ , )(sa∆  are the respectively 
multiplicative and additive unmodeled parts of the plant. 
In the UPS application, the plant has 2=N  and 

)(0 sG  comes from the αβ0 transformation of the system 
described by (1), (2) and (3). Input and output vectors 
can be expressed as Tyyy ],[ βα=  and Tuuu ],[ βα= . 

As stated in [4], the integral structure of a multivariable 
system may be characterized by the plant modified left 
interactor (MLI) matrix )(smξ , which is a polynomial 

matrix that satisfies pms KsGs =∞→ )()(lim 0ξ , where 

pK  is a finite and non-singular matrix. Considering a 

weakly coupled multivariable system, we can define the 
interactor matrix as 



Isds mm )()( =ξ  (6) 

where I is the identity matrix and )(sd m  is a monic 
Hurwitz polynomial matrix of degree d. 
 
We can now state the control objective as follows: 
 
Given the reference model 

rIswrsWy mmm )()( ==  (7) 

where )(sWm  is an NN ×  matrix and )(swm  is a 
strictly proper stable minimum phase transfer 
function to be selected, and Nr R∈  is a known 
uniformly bounded and piecewise continuous input 
reference signal, find in (5) the control input Nu R∈  

so that the output Ny R∈  follows N
my R∈  in (7) as 

close as possible, and all signals in the closed-loop 
plant are uniformly bounded for any bounded initial 
conditions. 
 
In order to satisfy the control objective, it is 
necessary that the plant and the reference model 
satisfy the following assumptions: 
 
A1. )(sG  is strictly proper and full rank. 

A2. )(0 sG  is strictly proper and non-singular, it has 
stable zeros, and it has a known MLI matrix of 
the form Isds mm )()( =ξ . 

A3. )(sm∆  and )(sa∆  are rational transfer matrices, 

and )(sa∆  is strictly proper. 

A4. Let )(sd m  have all its roots in 0]Re[ ps −< , 
and define 
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for some 0>p , where )(sup)( ωω jXsX R∈
∆

∞
= . 

A5. An upper bound 0ν  for the observability index 

0ν  of )(0 sG  is known. 

A6. The high frequency gain matrix pK  of )(0 sG  

associated to the MLI matrix )(smξ  is a known 
finite positive definite matrix. 

A7. An upper bound 0M  for |||| *θ  is known, so that 

03
* |||| M≤+δθ  for some 03 >δ , where *θ  is 

the desired parameter matrix of the controller. 

A8. The reference model )(sWm  in (7) has all its 
poles and zeros stable, and it is chosen so that 

)()( sWsd mm  is proper. Without loss of 

generality, we can choose 1))(()( −= ssW mm ξ . 

 
5   Controller Structure 
The control input is computed from 

rCuu RP
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rCuyu RP
TTT

032211 ++++= θωθωθ  
(12) 

where TTTT ],,[ 321 θθθθ = , TTTT y ],,[ 21 ωωω = . For 
simplicity and without loss of generality, we can 
consider IC =0 . The variable RPu  is the repetitive 
part of the controller, and it is defined as 
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where sT  is the period of the sinusoidal waveform 

and RPc  is a small constant, avoiding a great 

influence of RPu  in the overall control u in (12). 
Provided the system is weakly coupled, the order of 
the filters is dNM = , and they can be represented by 

usAs )()(1
1
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2

−Λ=ω  (14) 

where )(sΛ  is an arbitrary Hurwitz polynomial with 

degree d, and 
Tdd IIsIsIssA ],,,,[)( 32 L−−=  is a 

)( NM ×  polynomial  matrix, and T
d ],,[ 1111 θθθ L= , 

T
d ],,[ 2212 θθθ L= ; NN

ji
×∈Rθθ ,3 . We have also that 

MNR ×∈21, θθ , 1
21, ×∈ MRωω , pN×∈Rθ  and 

1×∈ pRω , where Ndp )12( += . 
 
In the UPS controller implementation in (12), we can 
make diagonal the matrices T

212 θθ =  and 3θ , 
reducing the number of parameters to adapt. It makes 

αu  independent of βy  and βu  independent of αy , 

as shown in [3]. This diagonalization is only possible 
when the MLI matrix is diagonal. 
 
If we write 

*θθφ −=  (15) 
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dimensions as θ , then (12) can be written as 
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Lemma 5.1. Combining (5)-(7) and (12)-(17), the 
tracking error can be expressed as 

µηωφ ++=−=
∆

)()( RP
T

mm usWyye  (18) 

with 

us)(∆=η  (19) 

where )(s∆  is a strictly proper transfer matrix. 
 
Proof. Considering (16) and (17), in view of the 
controllability of the modeled part of the plant, there 
exists a vector *θ  such that 
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Using (16) and (20), (5) can be rewritten as 

[ ] µηωφ +++= rusWy RP
T

m )(  (21) 

where 

)()]()([)()]()[()( 21 ssFsWIssFIsWs ammm ∆++∆−=∆ µ . (22) 

Thus, )(s∆  is a strictly proper transfer matrix. 
Equations (18) and (19) are obtained from (7) and (21). � 
 
Finally, we can define the augmented error as 
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with 1×∈ NRε , and where 

ωζ )(sWm= . (24) 
 

Note that (23) was determined assuming that the 
interactor matrix in (6) and the model reference 
matrix in (7) are scalar transfer functions multiplied 
by the identity matrix. This makes them commutative 
when multiplied by other matrix. 
 
6   Parameter Adaptation Algorithm 
Consider the following modified least-squares algorithm 

2m

P
P

Tζε
θσθφ −−== &&  (25) 

2
2

2

2 µλ
ζζ









−+−=

R

P
P

m

PP
P

T
&  (26) 

where TPP =  is a )( MM ×  matrix so that 

IRP 2)0(0 λ<< ,     22 µµ µk≤  (27) 

and 

( )1||||||||10 +++−= fyumm δδ& ,  01 /)0( δδ≥m  (28) 

where λ , µ , 2R , 0δ  and 1δ  are positive constants 

and 0δ  satisfies 

],[min 0020 qp≤+ δδ  (29) 

where 00 >q  is such that the poles of )( 0qsWm −  

and )( 0qs −Λ  are stable and 2δ  is a positive 

constant. 00 >p  is defined in assumption A4, and σ  
in (25) is given by 
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where |||| *
0 θ>M  (Assumption A8), and 
22

0 2 Rµσ >  are project parameters. 
 

Note that in the UPS implementation, continuous-time 
equations are discretized, and the control variables 

αu  and βu  can be computed independently. In this 

case, the parameters of αu  and βu  can be separated, 

and two independent parameter estimators (25)-(30) 
can be used, reducing computational effort. 
 

The following lemma [4] gives an important property 
to the normalizing signal )(tm  which is necessary in 
the stability analysis, and the proof is similar to that 
presented to the SISO case in [5]. 
 

Lemma 6.1. [4] Consider the system 
UsWz )(=  (31) 

where 1, ×∈ NRUz  and )(sW  is an )( NN ×  stable and 

strictly proper transfer matrix, whose poles jp  satisfy 

)Re(min20 j
j

p≤+ δδ  (32) 

and )(||)(|| 4 tmtU δ≤  for some 04 >δ   

( ))(||)(||||)(||||)(|| tmtytutU ++≤   0≥∀t . Then 

there exists a constant 01 >c  such that 

tc
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tz
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where tε  is a term which depends on the initial 
conditions and decays exponentially to zero with a 
rate at least as fast as )( 0 te δ− . 



Now we can establish the following lemma [4], which 
generalizes to the MIMO case that lemma stated in [6]. 
 

Lemma 6.2. [4] The parameter adaptation algorithm 
in (25)-(30) and (23) subject to the Assumptions A2, 
A4 and A8, has the following properties 
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where 5g  is the upper bound for m|||| η . 
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where 1g , 2g , 1'g  e 2'g  are positive constants and 

jp  is the j-th line of P. 
 

Proof. The proof is presented in [4], and will be omitted. 
 
7   Stability Analysis 
Following the same steps as presented in [4], we can 
establish the main result, which is similar to that 
obtained in Theorem 6.1 in [4], but now applied to a 
MIMO RMRAC-RP. 
 

Theorem 7.1. Consider the multivariable plant in (6). 
Subject to the Assumptions A1-A8, the multivariable 
adaptive control structure in (8), (13)-(19), (23)-(24) 
together with the parameter adaptation algorithm in 
(25)-(30), then 0* >µ  can be computed so that for 

each ),0[ *µµ µk∈  all the signals in the closed-loop 

system are bounded for any initial conditions. 
Furthermore, the tracking error belongs to the residual set 
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Proof. Similar to that presented in [4], it will be omitted. 
 

The following corollary is similar to Corollary 6.1 in [4]. 
 

Corollary 7.1: In the absence of modeling error (i.e., 
when 0=µ ) and when we choose 0=µ , the 
adaptive control algorithm considered in Theorem 7.1 
guarantees boundedness of all the signals as well as 
convergence of the tracking error e to zero. 
 

Proof. The proof is similar to that presented in [3] 
and will be omitted. 
 
8   Experimental Results 
In order to show and verify the performance of the 
proposed MIMO RMRAC-RP scheme, experimental 
results are presented. Table 1 presents the parameters 
of the three-phase PWM inverter, the LC filter and 
the load used in experimental results. 
 
The implemented prototype is a system as shown in 
Fig. 1, whose parameters are shown in Table 1. The 
continuous-time multivariable controller was 
discretized at sampling period ts, as shown in Table 1. 
The model reference matrix in (7) is  

IswsW mm )()( =  (53) 

and )(swm  is a RLC transfer function where R, L and C 

have the respective values of 20 Ω, 10 mH and 60 µF. 
 

Table 1. Parameters of the Three-Phase UPS. 
LC filter inductance Lf = 5.4 mH 
LC filter capacitance Cf = 75 µF 
Inductors resistance Rf = 0.1 Ω 
Load R = 24 Ω 
Reference voltage Vphase = 110 V 
Sine wave voltage frequency f = 60 Hz 
Rectifier output capacitor Crec = 330 µF 
Inverter DC source voltage E = 300 V 
Sampling period ts = 1/1800 s 

 

 
Fig. 4. Output line voltages (100 V/div) and phase 

current (5 A/div) with three-phase linear load. 

VRS                   VST                 VTR 
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Fig. 5.  Spectral analysis of the output line  

voltages with three-phase linear load. 
 

Fig. 4 shows the system response to linear load, 
showing three line voltages and one phase current. 
Fig. 5 shows the spectral analysis of the line voltages. 
In this case, the percent total harmonic distortion 
(%THD) obtained in each line voltage is 2.088%. 
 

Fig. 6 shows system response to the non-linear load 
in parallel connection with the linear load. Again, 
three line voltages and one phase voltage are shown. 
Fig. 7 shows the spectral analysis of the line voltages. 
The percent total harmonic distortion (%THD) 
obtained in each line voltage is 3.342%. 
 

 
Fig. 6. Output line voltages (100 V/div) and phase 
current (5 A/div) with non-linear three-phase load  
in parallel connection with three-phase linear load. 

 

 
Fig. 10.  Spectral analysis of the output line  

voltages with non-linear three-phase load in  
parallel connection with three-phase linear load. 

We can consider that the total harmonic distortions 
(%THD) we obtained in the experiments are 
reasonable values for the real setup used, because all 
sort of disturbances may deteriorate system response. 
For example, a PWM inverter generates noise; load 
and filters may not be perfectly balanced; etc. 
 

In order to improve performance, we can increase 
sample frequency, but being careful to avoid 
exceeding the limits of the PWM switches. 
 

 
9   Conclusion 
This paper presented a repetitive multivariable robust 
model reference adaptive controller (MIMO 
RMRAC-RP) applied to a three-phase uninterruptible 
power supply (UPS). Using αβ0 transformation and 
balanced three-phase load, it was assumed that the 
plant is weakly coupled, and great reduction in the 
number of parameters was obtained. For small plant 
perturbations, it was shown that the tracking error is 
small in the mean and all the signals in the closed 
loop are bounded. 
Experimental results were obtained, showing that the 
scheme presents good performance for both linear 
and non-linear balanced three-phase loads. 
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