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Abstract: - We develop the mathematical theory of algebra functions on � � for a finite alphabet �, such that the functions are
level-compatible when they are restricted to the different levels � according to ��. We shall first establish the fundamentals
and the structure of such function spaces and the related properties, and propose and study the all important level-preserving
transformers there. We shall then look into the the automaton representations of the level-compatible algebra functions,
the characterisation of the level-preserving transformers, as well as the potential applications at calculation of real-valued
functions, fractal generations and even the compression of natural images.
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1. Introduction

Well establisehd function spaces and their inner struc-
tures and properties are often invaluable and even instru-
mental in the theory and applications that shrive on such
spaces. From the classical space of continuously differen-
tiable functions ����� �� to the metric space of ����� ��, and
to the generalised functions of distributions, a rich collec-
tion of functions spaces have been created and studied in
thorough details to assist the respective applications in both
mathematics and elsewhere. Enormous advances in com-
puter science and technology in recent decades have also
substantially extended the landscape of the traditional math-
ematics, and have subsequently cultivated a steady stream
of new methodologies and tools, including various ad-hoc
algorithms, computability and automata if we name a few.
Our purpose here is therefore to follow up this expansion
and look in great details into the structure and theory de-
riving from the space � of algebra functions of �� �� �,
where � is a finite alphabet and � is the set of all real num-
bers. There could be abundant use of such functions. For
instance, a continuous real-valued function � � ��� �� �� �

could be represented [1] by an 	 � �� �� � if one identi-
fies a string 
 � �� � � � �� with the value

��
��� ������

��,
where � � ��� is the number of symbols in �, and ���� is
the 0-based index of the symobl � in �. As another exam-
ple, any string 
 � �� can be identified with the address
of the quadrant subimages, see for example [2–5] for some
of the existing applications related to images and videos.

In this connection, images can be represented naturally by
such algebra functions. For easy distinction and the fact that
�� is algebraic and somewhat of a tree type, we will often
refer such functions of type �� �� � as algebra functions
or tree functions. The term tree is actually a reflection of
the fact that �� can be enumerated in a tree structure, see
Fig. 1, meaningful especially in the context [5] of treating
�� as the addresses of quadrant subimages. Since such ap-
plication context is often more involved with the so-called
level-compatible subspace F of the algebra function �, a
sizable attention will be directed to explore finer details and
properties there.

The study of the space F of algebra functions then natu-
rally lead us to the study of the more intrinsic linear map-
pings on F. It turns out that the mappings that essentially
map all 	 � F level by level, thus termed level-preserving
transformers, are most interesting and useful. As we will
show that many algebra functions may be represented and
reconstructed from weighted finite automata, a rich collec-
tion of such transformers along with their complete charac-
terisation will enable one to reduce the number of the au-
tomaton states so as to achieve the desired application ob-
jective of having as smaller an automaton as possible. A
smaller automaton, for example, will in general induce a
better compression ratio if a weighted finite automaton is
used to represent an original image, see e.g. [5]. Mathe-
matically, this paper has also solved a thorny issue that was
conspicuously absent in all the automata based compression
schemes, that is, what transformers can generate legitimate



Figure 1. Tree Structure of ��
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new images to enlarge the range image pool, and how to
construct them systematically. We hasten to add that our
transformers bear no connections with the so-called trans-
ducers [6] that are often encountered in a similar context.
Another obvious application of our level-preserving trans-
formers is that it may enable one to easily generate rich frac-
tal patterns. Incidentally, we have chosen to use the terms
level-compatible and level-preserving instead of the origi-
nal area-preserving [2] tied up more closely with the appli-
cations. This is largely because the concept of area is re-
moved from our abstract function space and our new terms
may be more indicative in the present structure.

This paper is thus organised as follows. First in section
2, we introduce the fundamentals of the level-compatible
algebra functions on ��, including the corresponding lin-
ear space F of such functions. We then propose and study
the level-preserving transformers, and the structure and the
spaces of such transformers. The fundamental results of
complete characterisation of the level-preserving transform-
ers are then presented in section 3 in terms of the explicit
construction of all such transformers. The geometric inter-
pretations of such construction are also provided via mul-
tiresolutional images for their intuitiveness. Section 4 is
then allocated to the study of the representation and gen-
eration of the algebra functions through the use of weighted
finite automata. We illustrate there how and what level-
preserving transformers can be utilised to reduce the num-
ber of the states for the corresponding automata. Finally in
section 5, the applicability of the theory established in the
earlier sections is discussed in terms of function evaluation,
fractal generation as well as image compression.

2. Algebra Functions and Level-Preserving
Transformers

We first set up the necessary basic notations. Let � �
���� ��� ���� ��� be the alphabet, �� there be the symbols and

��� � � be the cardinality of the set �. As is the convention,
we take �� � �
�, where 
 denotes the empty string, and
take �� � ��� � � ��� � �� � �� and ���� �

��
��� ��

for any � � �
�, the set of non-negative integers, and set

�� �
��
��� ��. Any string 
 � �� thus belongs to ��

for a unique non-negative integer �, and that �, denoted
by �
�, will be termed the length of 
. With � being the
set of all real numbers, an algebra function 	 � �� �� � is
said to be level-compatible if it satisfies the following level-
invariance condition

�
���

	�
�� � 	�
� � ���� �
 � �� � (1)

The essence of the level-invariance is that it ensures a truth-
ful multiscale representation in the sense that the restriction
	�
����

�� � of 	 to the “scale” ���� gives an increasingly
better details of function 	 ’s global behaviour as � grows
larger.

Let � be the set of all algebra functions �� �� �, and
F=�	 � � � 	 is level-compatible�. We endow a natural
addition “	” on � by

��	 	 ����
� � �	�
� 	 ���
��

��� � � �� 	� � � �� 
 � ���

Then both � and F are linear spaces over �. This is because
the level-invariance is well preserved under the linear addi-
tion. For any 	 � F, we say 	 is of finite precision � , or is
just finite, if 	�

�� � 	�
� holds for all 
 � �� and all

� � ��.

On the linear space F, we now denote by � the space of
linear mappings from F to itself. In fact we will make � an
algebra by endowing the composition product “Æ” by

�� Æ ���	� � ����	��� ��� � � �� 	 � F

and defining the zero 0 and one 1 in � by 0�	� � � and
1�	� � 	 for all 	 � F. In what follows we shall thus
present the basic structure and properties of the space �,
before moving into further in-depth analysis in the next sec-
tion.

First let us examine some of the simpler mappings in �.
To start with, for any 
 � ��, if we define �
 � F �� � by

	��
�
def
���
	��
� � 	�

� for all 
 � �� and all 	 � F,

then the identity

�
���

��
	��
�� �
�
���

	�

�� � 	�

� � ���

� ��
	��
� � ���

implies �
�	� is also level-compatible and thus �
 � � for
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all 
 � ��. If, for any 
 � ��, we define �
�� � F �� � by

��
��	��
� �

����
���

	�
�� if 
 � 

�� 
� � ��

� if �
� 	 �
�� 
 
� 

�

for all 
� � ��

average if �
� � �
�

where the average can be simply calculated recursively
through the use of the level-invariance property, then it is
also easy to show �
�� � �. In terms of the address tree
in Fig. 1, �
 and �
�� amount to zoom-in a tree branch or
zoom out of the whole tree. Since functions in the space F
are level-oriented, mappings of level-preservation are often
naturally desired. For this purpose, a mapping � � � will
be termed level-preserving if, for all 	 � F, the restriction
of 	 to ���� completely determines the restriction of ��	�
to ����, i.e. 	�

����
completely determines ��	��

����
. Be-

cause the level-invariance of the functions in F, a � � � is
level-preserving if and only if 	 ��� completely determines
��	���� for all � � �

�. Let L=�� � � �� is level-
preserving�. Then the mappings in L will in general be
referred to as transformers. If we simply identify �
 with

 and likewise, �
�� with 
��, then we have the following

Proposition 1 Both � and L are linear spaces, and both
are algebras. Moreover,

(i) �� � �� ��� � L, where ��� � �
�� �
 � ���.

(ii) All mappings in ��� are invertible transformers.

(iii) 
 Æ 
�� � 1 holds for all 
 � ��.

(iv)
�

��� ��� Æ � � 1.

PROOF: Most of the proof is already covered in the above,
the rest is also easy to fill in. Q.E.D.

We note that the set of invertible transformers, I=�� �
L �� is invertible�, is incidentally a very useful subset of
L: it is a group with respect to the composition product
“Æ” although it is not a linear space. We also note that al-
though our transformers are all defined to be linear because
they come from �, it is possible to have a nonlinear level-
preserving mapping from F to itself. For instance, if we
take � � ��� �� and define a Æ by

Æ�
� �

��
�

� if 
 � �
�� 
� � ��

� if 
 � �
�� 
� � ��

��� if 
 � 


then ���	Æ is level-preserving and is nonlinear. Nonlinear
level-preserving mappings on F tend to break the mathe-
matical logic in potential applications, and will thus not be
considered any further in the current work. We also note
that most concepts in the earlier part of this section can be

generalised to multidimensional cases. The counterparts for
� and L in multidimensions are, for instance,

��
def
� �� � F� �� F � � is linear�

L�
def
� �� � �� � � is level-preserving�

where � is level-preserving means for all f=�	�� ���� 	�� �
F�, the values in �f�
� �
 � ����� completely determine
those in ���f��
� �
 � �����. Immediately, each element
t=���� ���� ��� � L� can be identified with an element in L�

via F� �� F � �	�� ���� 	�� �
��

��� ���	��. In other words,
we can embed L� into L�, or simply write L� � L�,
which is often all that one may need to use in some typical
applications.

3. Characterisation of Transformers

In order to understand better the structure of the level-
preserving transformers in L, we first show how we can
construct an easy family of linear mappings in �. The main
observation is that an algebra function 	 � F can be just
defined on the level �� because 	��� uniquely and com-
pletely determines 	�

����
and can also naturally extend to

	��� . This extension is done by the following default com-
pletion process

(i) For � � �� � to 0, construct 	�
��

:
	�
��

�
� �
�

��� 	�
����

�
��
Æ
���� �
 � ��.

(ii) Set 	�
� � 	��� �
� for all 
 � 

� with 
 � ��

and 
� � ��.

For any set �, we denote by �	 the permutation group
of all the elements in �. Then every permuation � � ���

induces a linear mapping � � � via

��	�		
��

�
� � 	���
��� �	 � F� 
 � �� �

The above described default completion process thus com-
pletes the definition of �	 � ��	� � �. Although an
� � ��� does not in general induce a level-preserving
transformer, being simple and illustrative, the above does
provide the insights into the structure of L to some extent.

To facilitate our complete characterisation of the struc-
ture of L, we first introduce the following set of coefficient
matrices

� �


���
��������

			
����
���

��
 � � for � � �� ���� ���
�

�

where ���
� is an ��� by ��� matrix whose columns all add
up to the unit 1. Suppose � � L is an arbitrary transformer,
then for all 	 � F we have

��	����� �

����

��

��
	��
� 	 ��
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because ��	��
����

is linear, and is completely determined

by 	 at level ��. Obviously the inhomogeneous term ��
must be 0 because ��	� also needs to be level-compatible.
Hence

�����	��
� �

����
���

��	����� �

����
���

����

��

��
	��
�

�

����

��

� ����
���

��




	��
�

and

��	��
� � ����	�
� � �

����

��

	��
� for some � � �

hold for all 	 � F implies
����

��� ��
 � ���� for all � �
�� ���� ���. In other words, there exists a �� � ����
� � � such
that

��	����� � �

����

��

���
	��
� �

Because of the level-invariance of the functions in F, the
refinement at a higher level should be done in a localised
fashion. That is, the contribution for 	��
� should come
from the 	��
���’s. Hence we obtain

��	�������� � �

����

��

����

���

���
�
��
��
�	��
�
�� �

The fact that �	 � F then implies ��� � �. Inductively
following this procedure, we can derive the following

Proposition 2 For any � � L, there exists a sequence
�� � �� �
 � ��
��� such that �	 � F and � � �

�,
the restriction of ��	� on �� is given by

��	�������� � � � ���� � �

����

��
����� �
���

����
��
���
��
�

� � � �
����������

��
�
	��
��
� � � ��
�� �

(2)

Moreover, the inverse of the transformer � exists and is also
level-preserving if and only if 
����
� 
� � for all 
 � ��.

PROOF: The level-preservation is obvious from the explicit
expression (2). That is, the restriction of 	 to ���� com-
pletely determines ��	� at ����. We now need to verify
that the ��	� defined by (2) is indeed level-compatible, i.e.

��	� � F. However, the following identity

��	����� � � ������� �
�

���

�
�����

��	����� � � � ����

��

����

��
����� �
���

����
��
���
��
�

� � � �
����������

����
���



�

���

����
����

�
����������

��
�
	��
��
� � � ��
��

��

����

��
����� �
���

����
��
���
��
�

� � � �
����������

����
���



�

���

����

���

	��
��
� � � ��
��

��

����

��
����� �
���

����
��
���
��
�




�
����������

����
���
	��
��
� � � � �
����

shows that equation (2) for � implies exactly that for ���
if � 	 �. Hence the level-invariance of ��	� is guaranteed
by the constructive defination (2). As for the inverse of �,
we observe that the nonsingularity of �
 implies the exis-
tence of ��
�
� such that �
�
 is an identity matrix. Hence
we have

	���� � � ����� � ���
����


��
����� �
���

����
��
���
��
�

� � � �
����������

��
�
��	���
� � � ��
�� �

(3)

and therefore the inverse is also level-compatible. If �� is
singular for some 
 � ��, then it is possible to construct
	� � � F such that 	 
� �, 	 and � are both of finite precision
�
�	 �, but ��	� � ����. Q.E.D.

An immediate corollary of the above proposition, due to
(3) for � � �, is that nonsingular matrices in � are closed
under the inverse operation. That is, for any � � �, 
����� 
�
� implies ��� � �. This corollary can also be easily proved
directly. In fact we can furthermore show that the set of all
invertible matrices in � comprise a group under the matrix
multiplication.

In order to have a more intuitive understanding of the
transformer � in (2), we assume that we have chosen an
alphabet � such that any rectangular mathematical image
can be divided into ��� equal-sized rectangular subimages,
each addressed uniquely by a single symbol in the alphabet
�. All such subimages can then be recursively partitioned
further into even smaller subimages. This way, any image
can be identified with a mapping 	 � F in terms of the

4



Figure 2. �� as the Addresses
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following correspondence: 	�
�=intensity of the whole im-
age, 	�
�=intensity of the subimage addressed by 
 � ��.
Any transformer � � L can then be interpreted as a map-
ping that transforms a multiresolutional image to another
multiresolutional image, such that the transformed image
at any given level, ��, is completely determined by that
of the original image at the same level. For example, let
� � ��� �� �� �� �� �� and the recursive partition of a rectan-
gular image be exemplified in Fig. 2. In general, if an 	 � F
represents an image, then for any 
 � ���� � � � �� � ��

(treated as a member of �), function 	 
def
�
�	� belongs to

F and represents the ��-th quadrant of ����-th quadrant
of � � � of ��-th quadrant of ��-th quadrant of the original
image 	 � F. Now we are ready to intuitively examine how
to construct level-preserving transformers.

To achieve the level-preservation, we will construct
the transformers level by level. At level ��, the
level-preservation can only be achieved by ��	��� �� ��


 ����
	��
�. Then we go to each of the quadrant trans-
formed subimage, ��	��� , apply a level-preserving trans-
form there to 1 level deeper. This transformer will be char-
acterised by a ��� � �, and the � in this case has to be 1
because of the required level-invariance. In other words,
we apply ��� to image 	 (just at the 1st level), then ap-
ply �� � � to the transformed subimages addressed by
�, and then, in general, apply �
 � � to the previously
cumulatively-transformed resulting subimage addressed by

. This, therefore, implies that a level-preserving trans-
former can be represented by a � � � and a sequence of
matrices ��
 � ��
��� , which is basically the same result
as Proposition 2.

There is a more interpretable subset of L, which con-
tains some simpler and invertible transformers. These trans-
formers can be represented by a sequence of permutations
��
 � ���
��� through the use of (2) in which � � �
and �
�
 � � if � � �
� � and =0 if otherwise. These
transformers are thus called permutative transformers. As
an example, if we make use of the alphabet and the parti-
tion scheme illustrated in Fig. 2, then the permutative trans-
former ��
 � ��� ���
��� represents simply an image re-
flection against the diagonal axis. In fact, permutative trans-

formers will emcompass a wide range of transformers, in-
cluding almost all intuitive transformers such as reflections,
rotations, and block permuations.

Proposition 3 Let � � ���� ��� ���� ��� be the alphabet.
For any transformer � � L, there exist a matrix � � �

and transformers �
 � L for � � �� ���� � such that

�� Æ � �

��

��

��
�
 Æ �
 �  � �� ���� � � (4)

If � is permutative, then there are permutative transformers
�
 � L such that

�� Æ � � �
 Æ �
� � � � �� ���� � � (5)

That is, for any � � �, there exists a symbol � � � and a
permutative transformer � such that � Æ � � � Æ �.

Before we supply the proof, we note that the properties
here, other than analysing the mathematical structure of the
transformers, may serve an important role in the theory of
representing an algebra function 	 � F by a weighted finite
automata of minimum number of states.
PROOF: Since (2) can be written as

��	������� � � � ����

�

����

��

��


�
�

����

����� �
���

�
��
��
�

� � � �
����������

��
�
	�� ��
� � � � �
��




�

����

��

��
��
	
�� ����� � � ������

we see that (4) follows from the above immediately. If � is
permutative, then for each  , there is only one � such that
��
 
� �. In fact such ��
 must be 1 due to the permutative
nature of �. Hence (5) follows from (4). Q.E.D.

4 Automata Representations of Algebra
Functions

Among all the functions in F, the ones of finite precision
do play more important roles, particularly in the potential
applications. This is because it is easy to introduce a metric
d on the linear space F so that any 	 � F can be approxi-
mated under the metric d by a sequence �	�� of functions
	� � F of finite precision. One such metric can be defined
by

�	�
def
�

��
���

�

��
�	���

�	��
def
�

�

����

�

���

�	�
��� �	 � F

5



because the triangle inequality �	 	 �� � �	�	 ��� holds
for all 	� � � F. Moreover, �	 � ��� � � means 	 and �
are identical at the level of ��. Since �	�� � � implies
�	�� � � for all � � � � � due to the level-invariance of
	 , the definition of �	� well respects the level-consistency
of the functions in F. If 	 is to represent an image in an
application, for instance, then �	 � ��� � � means 	 and
� are identical at the resolution of ��.

Proposition 4 Any 	 � F of finite precision can be repre-
sented by a weighted finite automaton.

PROOF: Suppose 	 is of finite precision � . Then for

�
def
��	
 �
 � ����� we have !� � � for all ! � � and

� � �. This means that if � is enumerated by � � �!��
�
���,

then we have !��
� � "� and !�� �
�


 #�
�
!
 for some

real values "� and #�
�
 . If we set the $ states, represented

by the state functions !� respectively, assign the "� to the
corresponding state as the initial distribution, and assign
the value #�

�
 as the weight associated with the transition
from state  to state � on the symbol � � �, then the en-
tity �"�� #

�
�
 �  � � � �� ���$� � � �� comprises a weighted

finite automaton, and the values 	�
� for all 
 � �� can
be derived from running this automaton. More precisely,
for any 
 � �� � � ��� � ��, the value !�
� for any state
function !� is "�
the sum of the weight product of all the
paths of 
 starting from the state  . Since 	 is among the
state functions, the proposition is thus proven. Q.E.D.

We note that the automaton constructed in the above
proof is overly bloated. There are algorithms which can
enable one to derive a much smaller automaton. Also this
proposition is essentially already known, see e.g. [2], al-
beit in different forms. It is included here for completeness,
and for the fact that the above bloated proof actually pro-
vides good insights into the next proposition. To this end,
a broader version, utilising level-preserving transformers, is
described in the following

Proposition 5 Let 	 � F be finite and T � L is nonempty.
Then the following inference procedure will construct a
weighted finite automaton of near-minimum number of
states.

(i) initialise: queue � � �	��, length of the queue � �
�, current pointer in the queue  � �

(ii) for each � � �, if 	 �� �
��


�� �
��
�

��T �	�, then
set #���

�
 � �
�� ; otherwise set � � �	� and append
	� to �.

The inferred weighted finite automaton thus reads 	 �
� ��

��T

��

�� #���

�
 �	
 , where � is the total number of the
states.

PROOF: The fact that the derived automaton regenerates the
original algebra function 	 is manifested in the description
of the procedure itself. In the extreme case of T � �1�,
one can show that the above generated automaton has in-
deed the minimum number of states. For more general T,
some additional conditions such as T be a group under the
composition “Æ” may be needed to ensure theoretically that
the automaton has the minimum number of states. For the
universality at this stage, we hence choose the term near-
minimum in the proposition. Q.E.D.

We note that the main role of introducing T � L in
the construction of an automaton representation of a level-
compatible algebra function is that it may significantly re-
duce the number of states in the resulting automaton. We
also note that if T is a group of permutative transform-
ers, then, with the help of (5), we can show that the near-
minimum in Proposition 5 is in fact a true minimum.

5 Applications

A simple application of F, or more precisely, �, is the
representation of continuous real function � � ��� �� �� �

via the composition of an 	 � �� �� � and a � � �� ��
��� �� by ��
� �

��
��� ���

�� for 
 � ���� � � � with

� � ��
def
���� �� ���� � � ��. Real valued functions may be

calculated through the use of weighted finite automata cor-
responding to the algebra function 	 . For further pursuit in
this connection, readers may consult [1] for the coverage
related to the alphabet �� � ��� �� and to the line and level
automata. We shall however not follow this direction here
any further.

A more pertinent application is the generation of fractal
images through the use of weighted finite automata and the
level-preserving transformers. In the trivialest but illustra-
tive cases in Fig. 3, we have two weighted finite automata
on alphabet �	 � ��� �� �� �� and alphabet �� � ��� ��
respectively, both of which can regenerate the same image
(the leftmost). The partition scheme on the 2nd automaton
is somewhat involved because the bisection needs to take
turn to be done horizontally and vertically. In fact, each
image may be assigned a positive or negative orientation
initially, the subimages obtained by a bisection will then be
assigned the opposite orientation. A bisection will be done
horizontally or vertically, depending on whether the image
to be bisected is positively or negatively oriented. This ad-
justment is due to the directional imbalance caused by the
choice of ��, and is thus not needed for the case of �	 in
the other automaton in Fig. 3.

A slightly less trivial fractal image, mathematically an
algebra function 	 � F of non-finite precision, can be
generated by the weighted finite automaton in Fig. 4 with
� � �	, where the level-preserving transformers �, � and
� are reflection transformers against the vertical, horizontal
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Figure 3. Automata on �	 and ��

2(1)

0,3(1) 0,1,2,3(1)

�(1) �(1)

�(1) �(1)

�(1)�,�(1)

Figure 4. Graph Representation of an Au-
tomaton on �	

1:1 2:1

3:1

�� � � �� � � �� � � ����

� � �� �� �� ����

���� �� ����

and diagonal axises respectively. The label “� � ����” on an
edge, for instance, refers to the transition on the symbol “3”
with weight “1”, and to the fact that the state function needs
to be transformed under “�” before being used. The label
“� � �” inside an oval box, for instance, says it represents
state “2” and has the average intensity value �. The gen-
erated fractal image then becomes that in Fig. 5, and tiles
up well with itself too. A natural image can also be rep-
resented or approximated by a weighted finite automaton
whenever the image is regarded as an algebra function in F
of finite precision. For instance, the images in Fig. 6 are
the algebra function that can be generated from a weighted
finite automaton of 1609, and respectively 941, states and
3 level-preserving transformers. If we save the automaton
as the representation of the original image, we obtain in ef-
fect an image compression similar to that in [2–5]. In im-
age compression based on weighted finite automata, the use
of certain symmetry mappings are instrumental at reduc-
ing the total number of states, improving compression ratio
in the course. Our level-preserving transformers are there-
fore the utmost legitimate generalisation of such symmetry
mappings. We note that symmetries or similarities are im-

Figure 5. Fractal Image as an Algebra Func-
tion of Non-finite Precision

Figure 6. Image Generated by Weighted Finite
Automata
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mensely useful in various fields including for example the
group theoretical analysis in both image processing and so-
lutions of dynamical systems [7–9]. So are the weighted
finite automata, see [10] for the application to the speech
recognition.

6. Conclusions

We have studied in great details the structure and the
characterisation of level-compatible algebra functions as
well as the level-preserving transformers on such functions.
It is shown that weighted finite automata may be used to
represent or generate level-compatible algebra functions,
and that the use of level-preserving transformers could sig-
nificantly reduce the number of states in the resulting au-
tomata. We have also discussed the potential use of the the-
ory developed here to other fields such as fractal generation
and image compression.
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