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Abstract: -In this paper, two methods for extraction of knowledge rules through Artificial Neural Networks,
with continuous activation functions are presented. Those rules are extracted from neural networks previously
trained and of the sensitivity factors obtained by the differentiation of a neural network. The rules can be used
when analytic models of the physical processes lead to equations of difficult numerical and analytical solutions.
In the operation of industrial processes, the rules can help for the taking of decision of less experienced
operators. The proposed methods wil l be applied for the obtaining of knowledge rules for the cold rolli ng
process.
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1 Introduction
The physical modeling is an activity that demands
larger time in the understanding of the process.
During the development of a model, there are
mathematical complexities that don't have analytic
solutions of easy resolution. This takes to numeric
solutions with great effort computational. The
Artificial Neural Networks (ANN) learn the training
sets supplied and its largest application is in the
representation of physical processes. Through ANNs
is possible to relate the variables of interest of the
process, decreasing the physics detailed study that
relates the variables.

Neural Networks are excellent tools for the
machine learning, because these are applicable in a
great variety of problems and have generalization
capacity. A limitation of Neural Networks is that, the
represented concept  through the training sets, are
extremely difficult for the human understanding. The
ANN's associates values of the training sets, and they
inform its results but don't explain as these were
discovered, ANN's are still a “black box”. For so
much, there is an implicit knowledge, difficult to
extract, whether extracted it can reinforce an
intelli gent machine in the mechanisms to explain its
conclusions.

There are three strategies for knowledge
extraction for neural networks. The first consists of
inserting knowledge, which doesn't need to be
complete nor correct, inside of the neural network so
that through the training process, and considering the
generalization capacity of the ANN's, to recover and
to identify the knowledge incomplete. This technique
is called as "Knowledge-based Neural Networks” -
KNNs and it is seen as a representation of symbolic
rules, [3].

A second strategy is to train the nets KNN using
training sets selected, doing that the rules considered
incorrect, used in the first training of KNN are

corrected to be consistent with the selected training
sets. The third strategy is the knowledge extraction
of nets trained. That is of extreme complexity due
mainly the different configurations of the nets, [4]
and [5].

The three strategies above have been applied for
problems of symbolic knowledge, where the
activation function is a function step (or binary).
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In this work, two strategies for extraction of
rules from neural networks previously trained, with
continuous activation functions are presented. The
methods can be applied for physical processes and
are a new form for extracting knowledge of the
process without to obtain complex analytic
expressions based on models. The methods can be
used in expert and supervision systems and control
on-line, where the computational effort is critical.

On the other hand, many metallurgical processes
depend on the ability of the human operator. In
rolling processes the number of specialists is small ,
while the need for its experience is big. Thus, there
are interest by the construction of expert and
supervision systems, that allow the participation of
less experienced operators. The strategies proposals
in this work can supply knowledge for these types of
systems.

In [6] were used neural networks for cause-
effect analysis of an observation, applied for rolling
process. In [7] two methods based on qualitative
rules to describe the cold rolli ng process were
proposed. Those rules don't describe the relationship
degree of the parameters, what can be introduced
through the sensitivity factors and/or fuzzy sets. This
paper contributes to understand of the cold rolli ng
process, analyzing its behavior for an operation
points chosen.



The methods proposed allow to represent data
and information and possess high computational
performance been attractive for on-line supervision
systems. For example, through the rules IF-THEN is
possible to deduce in a correct way, the adjustment
used to correct deviations in the output thickness of
the material been rolling.

This paper is divided in 4 sections. In the section
2, the methods for extraction of rules of ANN's are
presented; In the section 3, the application of the
methods for the cold rolli ng process are discussed
and in the section 4, the conclusion of the paper is
presented.

2   Knowledge Rules via Ann's Trained
The Neural Networks are powerful tools for Machine
Learning, ([1], [2]). But ANN are considered
essentially a "black box" limiting the use in
applications where the explanation of the reasoning
is fundamental. ANN's associates values of the
training sets, inform results but don't explain as these
results were discovered. There is an implicit
knowledge, difficult to extract, that whether
obtained, it can reinforce an intelligent machine in
the mechanisms to explain its conclusions.

To understand the process for rules extraction
through ANN, wil l be described the case for neurons
with binary activation:
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By example, for N=3 and considering:
{ } { }1,,,,,, 321 CBAYXXX =

An rule obtained of the net, can be:
θThen       C   and   B   andA      If

For the case: 11 −=W , and NiWi ,...,2   1 =∀+= :
θThen       C   and   B   and(NOT)A      If

2.1 First Method: Rules Extraction Through
ANN with Sigmoid Function
The rules above are rules symbolic extracted of the
neural network with activation function of binary
type. For the case of ANN's with continuous

activation functions, for example sigmoid, the rules
extraction process is a more detailed process.

net
Y −+

=
exp1

1

Notice in the previous expression, that there are
infinities values for the exit net (Y). In this work one
of the methods proposed for the extraction of rules is
based on the "Intervalar" analysis of Y. In the future,
new strategies, for extraction of the rules, based on
fuzzy logic can be used.

Considering the neuron with sigmoid activation
function, for the exit Y can be defined the intervals,
as it follows :
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If linguistic values, SMALL, MEDIUM and
LARGE are associated for the intervals in Y:
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as the values of iW  are calculate during the training

process, the method consists in to search the values

iX  that satisfy the equation. The values of 
iX ,

determine the rank for which the exit Y presents a
value tuned as SMALL. Through the method to be
proposed wil l be extracted rules of the type:

SMALLX

XXIf

=∈
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YThen       ][C   and

   ][ B   and   ][A   
P

3

P
2

P
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The rule Eq. (3) should be read as: “ if the entry
“A” belongs to the interval of 1X , where Y is
SMALL and if the entry  “B” belongs to the interval
of 2X , where Y  is SMALL and if the entrance “C”

belongs to the interval of 3X , where Y  is SMALL,

Then output of the net Y is SMALL”.
A hypotheses to be analyzed is the possibil ity to

have intervals G
i

M
i

P
i XXX ][][][ ==  for some “ i.” .

This means that the entry can be eliminated,
therefore it doesn't increase information to the rule
extracted.



For neural networks with two layers, with N
entries, L neurons in the hidden layer and M exits
with sigmoid activation function, the method
proposed only depends on the entries sets and of the
exit Y of the net.

2.2 Second Method: Rules Extraction via
Sensitivity Factors
The modeling is a representation of the physical
aspects of a process, which provides knowledge and
information usable. The analytic model allows to
analyze the cause-effect relationship of the variations
in the parameters of the process. As the knowledge
of the world is finite, it is therefore incomplete. The
models provide numeric amounts of the related
variables and as the idea that we have of a simple
number is finite, of there the model is always
incomplete [6]. A model can be described better if
considered the sensitivity factors of the parameters.
Those factors inform which parameter causes larger
or smaller effect on the process.

Physical models are usually difficult to obtain.
To calculate the sensitivity factors is a difficult task
and depending on the complexity of the model can
demand numeric solutions with great effort
computational. The sensitivity factors can be
obtained by differentiating a neural network trained
[6]. In this paper a method for extraction of rules
with sensitivity factors obtained by the
differentiating a neural network is presented.

Analyzing the process and choosing
},......,,{ 21 muuuU =  as the entries vector and as

},......,,{ 21 mzzzZ =  the exits vector, that represent

the process parameters, the combinations Domain-
Image allow to obtain the training sets. In way to
have a generic method, a  multi-layers neural
network with N entries, M exits and L neurons in the
hidden layer was considered.

After the training process is calculated the
sensitivity factors, by differentiating of ANN. In [6]
the expressions to calculate the sensitivity factors
are:
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Where :
NiU i ,...,0   , =  are the net entries (non-normalized)

and 10 =U  is a polarization entry

Nif a
i ,...,0   (.) =  are the normalization entry

functions  with 1(.)0 =af

NiXi ,...,0   , =  are the normalized entries 
00 UX =

  ,...,0  and  ,...,1  NjLiW h
ij == is the weight

corresponding to the neuron i and entry j
1)(      where,...,0   )( 00 == hhh

j
h
j netfLjnetf  is the sigmoid

function of the hidden layer.
  ,...,0  and  ,...,1  LjMiW o

ij == is the weight of the

neuron i and entry j for the exit layer
   ,...,1   )( Mjnetf h

j
o
j =  is the value of the sigmoid

function for the exit layer
Mif b

i ,...,1   (.) =  are the non-normalized functions of

the exits
MiZ i ,...,1   , =  net exit values

Nkee kk ,..,1 min,max =  higher and lower value of the

entries
Mkss kk ,..,1 min,max =  higher and lower value of

the exits

As each sensitivity factor ,
j

i
U

Z
∂

∂  Mi ,...,1=   and

Nj ,...,1=  has different values inside of the interval,
it is possible to define intervals for each sensitivity
factor as:
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As the values of iW  are calculate during the

training process, the method proposed consists of
calculating the different sensitivity factors, Eq. (4),
and to search through an algorithm the values iU
that satisfy the conditions in Eq (3). The values of



jU  determine the Domain for which the output (Z)

has a value tuned as SMALL, MEDIUM or LARGE.
Through the method proposed is possible to find

rules of the type:
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Z 

UUUIf
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The rule above should be read as: “ if the entry
“A” belongs to the interval of 1U , where 

j

i
U

Z ∂
∂  is

SMALL and if the entry  “B” belongs to the interval
of 2U , where 

j

i
U

Z ∂
∂  is SMALL and if the

entrance “C” belongs to the interval of 3U , where

j

i
U

Z ∂
∂  it is Then SMALL the sensitivity of iZ ∂

with regard to 
iU ∂  is SMALL.” .

3  Application for Rolli ng Process
The Eqs. (7) and (8) describe the equations for the
rolling load and torque respectively.

,E,D),,t,t,hP=f(y,h fboi µ (7)

,E,D),,t,t,h=f(y,hT fboiq µ (8)

For rolling process, the neural representation
was expressed through the relationship Eq. (9). With
six entries, two exits and 13 neurons in the hidden
layer.

),,,,,( Re
q

deNeural
fboi T(P)ytt,hh  →µ   (9)

where: ih  is input thickness, oh  output thickness, µ
friction coefficient, ft  front tension, bt  back tension

and y  average yield stress. The outputs were chosen
as: rolling load (P) and rolling torque (Tq).

In this section, an application of the method
proposed to a strip rolling process is presented. The
operation point was chosen as: ih =5.0 mm; oh =

3.6 mm; µ =0.12 ft =9.098 2kgf/mm ; bt

=0.441 2kgf/mm ; 
_

y  =46.918 2kgf/mm ; E=20,400
2kgf/mm ; R= 292.1 mm and P=  875.31tf (1754,35

kgf/mm). To obtain the data sets for ANN training,
the parameters variations were chosen as:

%8±=ih ; %3±=oh ; %20±=µ ; %30±=ft ;

%30±=bt ; %10±=y . Three different values

were chosen for each parameter resulting in 729
training sets.

Generally, the largest effort to get a neural
network trained lies on collecting and pre-processing

neural network input data. The pre-processing
operation consists in the data normalization in such
away that the inputs and outputs values be within the
0 to 1 range. The following procedure was adopted
to normalize the input data before using it in the
ANN structure:

•  In order to improve convergence of the NN
training process, the normalization interval  [0 ...
1] was reduced to [0.2 ... 0.8].

•  The data was normalized and non-normalized
through the following expressions:

)minL - max(L / )L - (L  L)(L mínonof a ==    (10a)

mínnnonf b L * )L - (1  maxL * L  L)(L +==    (10b)
 

 where Ln is the normalized value, Lo the value
to normalize, Lmin and Lmax are minimum and
maximum variable values, respectively.

•  Lmin and Lmax are computed as:
Lmín = (4 x LimiteInf. - LimiteSup) / 3 (11a)
Lmáx = (LimiteInf. - 0,8 x Lmín) / 0,2 (11b)

The Eq. (11a) and Eq. (11b) are obtained
considering, in the Eq. (10a), Ln = 0.2 with Lo =
LimiteInf and Ln= 0.8 with Lo= LimiteSup,
respectively. Where LimiteInf and LimiteSup are
minimum and maximum values respectively of the
original data sets. After 555000 iterations a average
global error of 0,04 was reached. The final weights
for the hidden and output layers with its polarization
weights are:
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The Figure 1, shows the concentration of the
outputs for the rolling load Eq. (7), for which was



chosen 847,01 −=θ  and 02 =θ  to adjust Eqs (1)

and (2) with 3,01 =y  and 5,02 =y  respectively.
For the first method, through an computational

algorithm  is possible to identify the Domains and
the rules for the entries variables that determines
exits as SMALL, MEDIUM or LARGE, Eq (3).

Figure 1. Outputs for the sigmoid function

For the second method, based on the sensitivity
factors, is possible to identify the domains and the
rules for the entries variables that determine the
sensitivity of the rolling load in relation with others
entries parameters,   Table 1,2 and 3 .

Through the Tables 1,2 and 3 is possible to
observe that the cold rolling process is a no-lineal
process. Observe: to

ih  = 5.00 and oh = 3.6, nothing can be said in

relation to the sensitivity factor 
ih

P

δ
δ , Is it small?,

medium? or large?. The parameters that determine
the linguistic value for the sensitivity factor are the

intervals of variation of the, µ , y , bt  and ft . The

value of δ  corresponds to small variations around
the nominal value of the parameter and this value
can be determined through an computational
algorithm.

As example considers the following rules
(extracted of the Table 1,2 and 3):

Rule 1:
IF ∈ih  [5.0 δ± ] AND

∈oh  [3.492 δ± ] AND

∈µ  [0.096...0.144] AND

∈bt  [0.309...0.573] AND

∈ft [6.369...11.827] AND

∈y  [42.949...52.493]

THEN 
ih

P

δ
δ  is SMALL

Rule 2:
IF ∈ih  [5.0 δ± ] AND

∈oh  [3.492 δ± ] AND

∈µ  [ 0.096 δ± ] AND

∈bt  [0.309...0.573] AND

∈ft [6.369...11.827] AND

∈y  [47.727...52.493]

THEN 
ih

P

δ
δ  is MEDIUM

Rule 3:
IF ∈ih  [5.0 δ± ] AND

∈oh  [3.492 δ± ] AND

∈µ  [ 0.144 δ± ] AND

∈bt  [0.573 δ± ] AND

∈ft [6.369...11.827] AND

∈y  [42.499...48.920]

THEN 
ih

P

δ
δ  is LARGE

4  Conclusions
In process where analytic models are difficult to
obtain or when the models need numerical solution
with great computational effort, as is the case of the
cold rolli ng process, the rules extraction via neural
networks previously trained are an alternative to
represent complex physical processes.

In this work, two methods for extraction of rules
from neural networks previously trained were
presented. Those rules are based in the domains of
the variables of the physical process for which
linguistic values are considered for the variables
linguistic load (P) and for the sensitivity factor

(
ih

P

δ
δ ). Those rules represent the behavior of the

process and they can be used to reinforce the action
of a less experienced operator when disturbances
happen in the process.  The obtained rules can be
used as the base of knowledge of a expert system.

A limitation of the rules extraction methods via
ANN is the need to train again the net for a new data
set. A solution is to train the nets with great capacity
for the generalization. On the other hand, with ANN
correctly trained is possible to obtain the sensitivity
factors for infinite operation points, inside of the data
set for which ANN was trained. Remind that the
obtained sensibility factors of physical models can
present analytic or numeric complexities making
unfeasible the use in real time process.

Another limitation is the unknown value of δ ,
that vary depending on the parameter considered.
The values of can be calculate through a
computational algorithm, and that is one of the
objectives of the next works.



Table 1 Rules based on sensitivity factors to output SMALL
∈ih [ 5.0 δ± ]

∈oh [ 3.492 δ± ] [ 3.6 δ± ] [ 3.708 δ± ]

∈µ [0.096...0.144] [0.096 δ± ] [ 0.120 δ± ] [ 0.096 δ± ] [ 0.120 δ± ] [ 0.144 δ± ]

∈bt
[0.309...0.573] [ 0.441 δ± ] [ 0.573 δ± ] [ 0.309 δ± ] [0.441...0.573] [0.309...0.573] [0.309...0.573] [0.309...0.573]

∈ft [6.369...11.827] [9.098...11.827] [6.369...11.827] [9.098...11.827] [6.369...11.827] [6.369...11.827] [9.098...11.827] [11.827 δ± ]

∈y
[42.949...52.493] [42.226...46.918] [42.226...46.918] [ 42.226 δ± ] [42.226...46.918] [ 41.487 δ± ] [ 41.487 δ± ] [41.487 δ± ]

Table 2 Rules based on sensitivity factors to output MEDIUM
∈ih [ 5.0 δ± ]

∈oh [ 3.492 δ± ] [ 3.6 δ± ] [ 3.708 δ± ]

∈µ [ 0.096 δ± ] [ 0.144 δ± ] [ 0.096 δ± ] [ 0.120 δ± ] [ 0.144 δ± ] [ 0.096 δ± ] [0.120...0.144]

∈bt
[0.309...0.573] [0.309...0.573] [0.309...0.573] [0.309...0.573] [0.309...0.573] [0.309...0.573] [0.309...0.573]

∈ft [6.369...11.827] [6.369...11.827] [6.369...11.827] [6.369...11.827] [6.369...11.827] [6.369...11.827] [9.098...11.827]

∈y
[47.727...52.493] [42.49...52.493] [46.918...51.61] [42.226...51.61] [42.226...51.61] [46.097...50.70] [41.487...50.70]

Table 3 Rules based on sensitivity factors to output LARGE
∈ih [ 5.0 δ± ]

∈oh [ 3.492 δ± ] [ 3.6 δ± ] [ 3.708 δ± ]

∈µ [ 0.144 δ± ] [ 0.144 δ± ] [ 0.144 δ± ]

∈bt [ 0.309 δ± ] [ 0.441 δ± ] [ 0.573 δ± ] [ 0.309 δ± ] [ 0.441 δ± ] [ 0.573 δ± ] [0.309...0.573]

∈ft [6.369...11.827] [6.369...11.827] [6.369...11.827] [9.098...11.827] [6.369..11.827] [ 6.369 δ± ] [ 6.369 δ± ]

∈y [ 52.493 δ± ] [ 52.493 δ± ] [42.499...52.493] [ 51.610 δ± ] [ 50.610 δ± ] [ 51.610 δ± ] [43.336...48.15]
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