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Abstract: - In a recent study of a family of continuous input-output maps representing linear shift-invariant
systems that take a set of bounded uniformly-continuous signals into itself, it is shown that the family contains
causal maps whose impulse response is the zero function, but which take certain inputs into nonzero outputs.
Here we show that a similar result holds for maps whose domain is the whole space of bounded Lebesgue-
measurable signals, and whose range is contained in a set of bounded uniformly-continuous functions.
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1 Introduction

In the signal-processing literature, x(t) typically de-
notes a function. In the following we distinguish be-
tween a function x and x(t), the latter meaning the
value of x at time t. Sometimes a function x is de-
noted by x(·), and also we use Hx to mean H(x).
This notation is often useful in studies of systems in
which signals are transformed into other signals.

Consider a continuous-time linear shift-invariant
system governed by the relation y = Hx in which x is
an input, y is the corresponding output, and H is the
system map that takes inputs into outputs. Assume
that inputs and outputs are complex-valued functions
defined on the set IR of real numbers. As is well
known, it is part of the engineering folklore that the
input-output properties ofH are completely described
by its impulse response. Using a standard interpreta-
tion of what is meant by a system’s impulse response,
it is shown in [1] that this part of the engineering
folklore is incorrect in the simple setting in which x is
drawn from the linear space C of bounded uniformly-
continuous complex-valued functions defined on IR,
and

(i) H is a map from C into C. That is, the system
takes bounded uniformly-continuous inputs 1 into
bounded uniformly-continuous outputs.

(ii) y depends continuously on x with respect to the
usual sup norm. In other words, H is continuous
with respect to the norm given by

‖w‖ = sup
t∈ IR

|w(t)|. (1)

1A complex-valued function x defined on IR is uniformly
continuous if for each ε > 0 there is a δ > 0 for which
|x(t1) − x(t2)| < ε whenever |t1 − t2| < δ. In applications,
inputs are often uniformly continuous. For example, continu-
ous almost periodic functions [2] are uniformly continuous. So
are bounded continuous functions x for which both limt→∞ x(t)
and limt→−∞ x(t) exist.

(iii) H is causal in the usual sense.

More specifically, it was shown that there is an H of
the kind described above whose impulse response is
the zero function, but which takes certain inputs into
nonzero outputs. 2 Here, in the following section, we
show that a similar result holds for continuous input-
output maps whose domain is the whole space of
bounded Lebesgue-measurable functions, and whose
range is contained in C. This result provides signif-
icant additional insight, because system inputs that
need not be uniformly continuous are often of inter-
est, and the maps to which we direct attention are rea-
sonable – in the sense that both the input and output
spaces are spaces of bounded measurable functions.3
(As is well known, bounded measurable functions have
the important property that they are integrable over
any finite subinterval of IR.) Also given in the next
section are some related comments concerning the fre-
quency response of linear systems.

2 Input-Output Maps and Impulse Responses

We begin with the comment made in [1] that, as
is well known, the concept of an impulse function as
described by P. Dirac, while often useful in engineer-
ing and scientific applications, is unsatisfactory from
the viewpoint of mathematics. It is unsatisfactory

2For related results, concerning discrete-time systems, in-
cluding a representation theorem for input-output maps, see [3]
and Appendix G of [4]. For material related in a general sense
concerning discrete-time systems, see [5] and [6]. See also [7],
which addresses continuous-time and continuous-space cases.
It appears that as early as 1932 Banach was aware of the lack
of existence of generalized convolution-sum representations for
certain linear system maps (see [8, pp. 158, 159]). For further
material concerning discrete-time systems, in the context of the
theory of conjugate spaces, see e.g., [9, p. 228, Table 1 and p.
229, Exercise 9].

3Some observations concerning extensions are made in [1],
but the important case addressed here is not considered.



because according to the usual theory of integration,
∫

IR

q(t) dt = 0

for any function q with q(t) = 0 for |t| > 0, even if
q(0) = ∞ is allowed. 4 It is also well known that one
alternative approach (see, for example, [10]) involves
envisioning a sequence of progressively taller and nar-
rower unit-area functions centered at t = 0. Thus,
with Λ the set (0, 1) or the set {n−1, n = 1, 2, . . .}, let
{qλ : λ ∈ Λ} be a family of bounded complex-valued
Lebesgue-integrable functions defined on IR such that

∫
IR

qλ(t) dt = 1

for all λ. Assume that, in some precise sense, the qλ

are progressively taller and narrower as λ → 0. For
example, we can take Λ = (0, 1) or {n−1, n = 1, 2, . . .}
with qλ given by the familiar expression

qλ(t) = 1/λ, |t| ≤ λ/2
= 0, otherwise.

We say that H has an impulse response if
limλ→0(Hqλ)(t) exists as a complex number for each
t, and if H has an impulse response, this limit is taken
to be the impulse response.

In this section we view C as a normed linear space
over the complex numbers, with the norm ‖·‖ given by
(1). Let L∞(IR) stand for the normed linear space of
bounded Lebesgue measurable complex-valued func-
tions defined on IR, with the norm also given by (1),
and let H denote the family of all continuous lin-
ear shift-invariant maps H from L∞(IR) into C. By
H ∈ H is causal is meant that H is causal in the usual
sense that for each t we have (Hx)(t) = (Hy)(t) when-
ever x and y satisfy x(τ) = y(τ) for τ ≤ t. Our main
result is the following, in which BL1(IR) stands for
the set of Lebesgue-integrable elements of L∞(IR).

Theorem 1: There exists a causal H ∈ H with the
following properties.

(i) (Hx)(t) = 0, t ∈ IR for each x ∈ BL1(IR).

(ii) (Hx)(t) = limα→−∞ x(α), t ∈ IR for each
x ∈ L∞(IR) for which the limit on the right side
exists.

This immediately yields the following, because
L∞(IR) clearly contains elements x for which
limα→−∞ x(α) exists and is nonzero.

Corollary: There exists a causal H ∈ H for which

(a) H has an impulse response, and this impulse re-
sponse is the zero function.

(b) There are elements x of L∞(IR) such that Hx is
not the zero function.

4More specifically, with q(0) = ∞ allowed, the integral is
zero as a Lebesgue integral or an improper Riemann integral.
In the remainder of the paper, all integrals are meant to be
interpreted as Lebesgue integrals.

Proof of Theorem 1:
We will use the following result which is proved (but

not formally stated) in [1]. For the reader’s conve-
nience, a proof is given in the Appendix.
Lemma 1: There exists a continuous linear shift-
invariant causal 5 map E from C into itself such that

(Ex)(t) = lim
α→−∞

x(α), t ∈ IR

for each x ∈ C for which the limit on the right side
exists.

Let F denote the map from L∞(IR) into L∞(IR)
defined by

(Fx)(t) =
∫

IR

f(t− τ)x(τ) dτ, t ∈ IR (2)

in which f ∈ BL1(IR). Since

|(Fx)(t1)−(Fx)(t2)| ≤ ‖x‖
∫

IR

|f(t1−τ)−f(t2−τ)| dτ

= ‖x‖
∫

IR

|f(τ) − f(t2 − t1 + τ)| dτ

in which the last integral approaches zero as |t2−t1| →
0, because f is integrable, we see that F in fact maps
into C.
Lemma 2: If x ∈ L∞(IR) satisfies limα→−∞ x(α) = ζ
for some ζ, then

lim
t→−∞

(Fx)(t) = ζ

∫
IR

f(τ) dτ.

Proof of Lemma 2:

Suppose that x is as indicated. We have

(Fx)(t) =
∫

IR

f(t− τ)x(τ) dτ

= ζ

∫
IR

f(τ) dτ +
∫

IR

f(t− τ)[x(τ) − ζ] dτ

for each t. Consider the last integral, and let any ε > 0
be given. Using the hypothesis that f is integrable,
choose a negative c1 so that

sup
α < c1

|x(α) − ζ|
∫

IR

|f(τ)| dτ < ε/2

and then, using the fact that

∫
τ ≥ c1

|f(t− τ)| dτ =
∫ (t−c1)

−∞
|f(τ)| dτ

select a c2 < 0 for which

sup
α∈ IR

|x(α) − ζ|
∫

τ ≥ c1

|f(t− τ)| dτ < ε/2

5Causality here is defined in the same way as for maps in
H.



for t < c2. Observe that for t < c2,∣∣∣∣
∫

IR

f(t− τ)[x(τ) − ζ] dτ
∣∣∣∣ ≤

∫
τ < c1

|f(t−τ)[x(τ)−ζ]| dτ

+
∫

τ ≥ c1

|f(t− τ)[x(τ) − ζ]| dτ < ε/2 + ε/2 = ε,

which proves the lemma.
Lemma 3:

lim
| t |→∞

∫
IR

f(t− τ)x(τ) dτ = 0

for each x ∈ BL1(IR).
Proof of Lemma 3:

Both f and x belong to L2(IR). Using a version of
the Parseval identity,

2π
∫

IR

f(t− τ)x(τ) dτ

=
∫

IR

exp {jωt)}f̂(ω)x̂(ω) dω, t ∈ IR (3)

in which j =
√
−1, and f̂ and x̂ denote the Fourier

transforms of f and x, respectively. These Fourier
transforms belong to L2(IR). By the Schwarz inequal-
ity, z given by z(ω) = f̂(ω)x̂(ω) for all ω is integrable.
Therefore, by the Riemann-Lebesgue lemma, the right
side of (3) approaches zero as | t | → ∞, proving the
lemma.

Continuing with the proof of the theorem, assume
now that f(t) = 0 for t < 0, and that

∫ ∞

0

f(t) dt = 1.

With E as described in Lemma 1, set H = EF . We
see that H is a causal linear shift-invariant continuous
map of L∞(IR) into C. By Lemmas 1 and 3, part (i)
of the theorem holds. Using Lemmas 1 and 2, we see
that part (ii) also holds.

2.1 Comments

The related result in [1] described in the Introduc-
tion concerns the properties of linear-system maps
that take C into itself. Our theorem provides also
a slight improvement of that result: In [1], the system
impulse response is defined in terms of a sequence of
continuous unit-integral inputs that vanish at ∞ and
−∞. By considering the restriction to C of the map
H of our theorem, we see that the conclusion of the
result in [1] holds even without the condition that the
unit-integral inputs vanish at ∞ and −∞. (It is well
known that the integrability of a function over IR does
not imply that it vanishes at ∞ and −∞.)

Another implication of the material discussed con-
cerns the frequency response of linear systems: It is a
wide-spread belief that the input-output properties of
linear shift-invariant systems are completely described
by their frequency-domain response functions,6 i.e.,

6See, for example, [11, pp. 171–175].

by their response to the function exp {jω ·} for gen-
eral ω ∈ IR where j =

√
−1, assuming of course that

this response exists. In the setting of maps from C
into itself, or from L∞(IR) to C, the response clearly
exists, and is it known to be given by

[H exp {jω ·}](t) = exp {jωt}K(ω), t ∈ IR.7 (4)

for each ω, in which K(ω) = [H exp {jω ·}](0). Thus,
according to the the wide-spread belief, the response
of H is completely described by the function K. But
this too was recently found [12] 8 to be contrary to
the facts: there is a continuous E : C → C of the kind
described for which K is the the zero function, but
E takes any nonzero x ∈ C such that x(t) → 0 as
| t | → ∞ into a nonzero element of C.

By considering maps H of the form EF , where
F : L∞(IR) → C is given by (2) and f ∈ BL1(IR)
is such that its Fourier transform never vanishes, and
using Lemma 3, we arrive at the following concerning
continuous maps whose domain is all of L∞(IR).

Theorem 2: There exists an H ∈ H with the fol-
lowing properties.

(i) H exp {jω ·} is the zero function for each ω ∈ IR.

(ii) Hx is a nonzero element of C for every element x
of BL1(IR) with positive L1(IR) norm.

3 Appendix: Proof of Lemma 1

We first introduce some definitions and prove a
proposition.

Let L denote a linear manifold in C that is closed
under translation in the sense that TτL = L for each
τ ∈ IR, where Tτ is the usual shift map defined on L
for each τ by (Tτx)(t) = x(t− τ), t ∈ IR. We do not
rule out the possibility that L = C.

Let Q from C into itself be defined by (Qx)(t) =
x(t), t ≤ 0 and (Qx)(t) = x(0), t > 0. Assume that
L is closed under Q.

Let A be a linear map of L into C. Such an A is
shift invariant (or, equivalently, time invariant) if

(Ax)(t− τ) = (ATτx)(t), t ∈ IR

for each τ ∈ IR and x ∈ L. It is bounded if ‖A‖L :=
sup{‖Ax‖:x ∈ L, ‖x‖ ≤ 1} < ∞. Finally, by A is
causal is meant that A is causal in the usual sense.9
Our proposition is the following.

Proposition: Let A be shift invariant, causal,
and bounded. Then there exists a bounded (and
thus continuous) linear shift-invariant causal map E
from C into itself that extends A in the sense that
Ex = Ax, x ∈ L.
Proof of the Proposition:

We will use the following observation.
7By the linearity and shift-invariance of H, and for

any t ∈ IR, we have exp {−jωt}[H exp {jω ·}](t) =
[H exp {jω(· − t)}](t) = [H exp {jω ·}](0), which gives (4).

8An erratum appears in vol. 21, p. 450, 2002.
9Of course, this means that for each t, we have (Ax)(t) =

(Ay)(t) whenever x and y satisfy x(τ) = y(τ) for τ ≤ t.



Subproposition: Let A be shift invariant. Then A
is causal if and only if A(·)(0) = A(Q ·)(0) on L.
Proof of the Subproposition:

Suppose that A(·)(0) = A(Q ·)(0) on L. Let t ∈ IR
and let x, y ∈ L be such that x(τ) = y(τ) for τ ≤ t.
Using the shift-invariance of A, we have (Ax)(t) =
(AT−tx)(0) = (AQT−tx)(0), and similarly (Ay)(t) =
(AQT−ty)(0). Since QT−tx = QT−ty, A is causal.

Now suppose that A is causal, and let x ∈ L be
arbitrary. Then (Ax)(0) = (AQx)(0) because x(t) =
(Qx)(t), t ≤ 0, which proves the subproposition.

The rest of the proof of the proposition is similar
to a proof in [4]: We have (Ax)(t) = (AT−tx)(0) for
all t and all x ∈ L. The map (A · )(0) is a bounded
linear functional on L, because

|(Ay)(0)| = |(AT−tTty)(0)| = |(ATty)(t)| ≤

sup
β

|(ATty)(β)| ≤ ‖A‖L · ‖Tty‖ = ‖A‖L · ‖y‖

for y ∈ L. By the Hahn-Banach theorem [9, pp. 178
and 181] there is a bounded linear functional F that
extends (A · )(0), which equals A(Q ·)(0), to all of C.
Define E on C by (Ex)(t) = FQT−tx. We see that
E is linear. It maps into the set of complex-valued
bounded functions on IR because

|FQT−tx| ≤ ‖F‖ · ‖QT−tx‖ ≤ ‖F‖ · ‖x‖

for t ∈ IR. Using the fact that the map T(·)x from
IR to C is uniformly continuous for each x ∈ C, it is
easy to check that E is a shift-invariant bounded map
into C. Also, E(·)(0) = FQ and E(Q·)(0) = FQQ =
FQ, showing (by the subproposition) that E is causal.
Since E extends A to C, this completes the proof of
our proposition.

Continuing with the proof of the lemma, let L be
the family of all functions x in C such that such that
limt→−∞ x(t) exists. Take A to be the linear map of
L into C defined by

(Ax)(t) = lim
α→−∞

x(α), t ∈ IR. (5)

We see that L is a linear manifold that is closed un-
der translation and under Q, and that A is linear,
shift invariant, and causal. In addition, A is bounded
because

|(Ax)(t)| = | lim
α→−∞

x(α)| ≤ ‖x‖, t ∈ IR

for x ∈ L. By our proposition, there is a continuous
linear shift-invariant causal map E from C into itself
that extends A. Since (5) holds, this completes the
proof of Lemma 1.
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