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Abstract: -The paper presents the results of numerical study of natural convection in multicom-
ponent solution. Three-dimensional calculations have been done to simulate the onset of convective
motion and correspondent flow patterns. The process is considered for Rayleigh number in the range
1 · 103 ÷ 4 · 104, where subcritical convective motion with hexagonal flow pattern is identified. Also
transition from regular cellular convection to to skewed - varicose and knot instability is registered.
The results are in good agreement with the linear and finite amplitude theory of hydrodynamics
stability.
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1 Introduction

Numerical study of mass-transfer in multicom-
ponent systems with phase transition is one of
the most challenging problems for computational
fluid dynamics. The investigations in this field
are encouraged by the requirements of the mod-
ern crystal growth technology.

The paper deals with computer simulation
of natural convection in solidification of ternary
nondilute solution. The problem arises in com-
puter simulation of liquid phase epitaxy (LPE)
– a crystal growth technique that is widely used
for preparation of multicomponent semiconduc-
tor materials with desired structural composition
[1].

The basic principle underlying the growth
of epitaxial layers by LPE is similar to that of
growth of salt crystals from a saturated saline
solution [2]. In a typical setup a saturated solu-
tion of the components A and B in molten C is
brought into contact with a substrate AXB1−XC.
For definiteness, the substrate is supposed to be
placed horizontally under the solution.

To initiate and sustain the growth the system
temperature is decreased. Due to the cooling,
initially saturated solution becomes supersatu-

rated; components A, B precipitate out of the
solution onto the substrate. The mixture is then
relaxed to equilibrium, forming the solid and the
saturated solution. At the solid – liquid inter-
face, compositions of the produced two phases
satisfy the phase diagram, while the bulk of the
liquid retains supersaturated. The reduction in
the concentration of growth units in the vicin-
ity of the growing layer gives rise to nonlinear
concentration profile and leads to density gradi-
ent normal to the substrate. It can be stable,
if the solvent has a greater density than the so-
lutes, and unstable, if the densities are differently
disposed. Here we consider the last case and sup-
pose both components A and B contribute to in-
stability. It means that solutal unstable density
gradient provides a driving force for convective
motion. This is the principle convective mode
in LPE. A second mode may occur due to the
gradual temperature changes.

The non-dimensional parameters, character-
izing the relative strength of buoyancy forces
in natural convection, are solutal (RaDi) and
thermal (RaT ) Rayleigh numbers. They are in-
duced by concentration and temperature gradi-

ents respectively: RaDi =
gβiH

3∆Ci

Diν
, RaT =

1



gβT H3∆T

κν
, where i = A, B, g is the gravitation

constant, βi is solutal expansion coefficient, H is
the characteristic dimension, ν is the kinematic
viscosity, Di is the diffusion coefficient, ∆Ci is
the characteristic concentration difference, κ is
the thermal diffusivity, βT is thermal expansion
coefficient, and ∆T is the characteristic temper-
ature difference.

For reasonable operating conditions, solutal
Rayleigh number varies in the range RaD ∼
103 ÷ 105. The thermal Rayleigh number, due
to slow cooling rate and good heat conductiv-
ity of the liquid phase, is far lower than solutal

one:
RaDi

RaT
∼ 102 [2]. It means that thermal

convection is negligible. The temperature distri-
bution is approximately uniform throughout the
system, but it’s value changes with time. These
temperature changes do not affect the fluid flow
and solute transport significantly. They displace
the equilibria and alter the phase relations at the
crystal-liquid interface [3, 4].

It is well recognized now that transport phe-
nomena in the solution have a profound influence
on the property of the growing epitaxial layer
[4, 5]. Thus the comprehensive study of solutal
convection is crucial for the optimization and re-
finement of the technique.

2 Mathematical model

Computer simulation for LPE growth of
AXB1−XC structures is based on the following
assumptions. The growth takes place under
quasiequilibrium conditions. In particular, it
means that, at the solid-liquid interface, the com-
position of the two phases are related by phase
diagram of the system. Temperature throughout
the system is supposed to be uniform in space
and changes in time according to the prescribed
rule: T (t) = T0 − α(t)t, where T0 is the initial
temperature, α(t) is the cooling rate and t is
time.

The surface kinetics effects are ignored, the
growth rate is not limited by the interface phe-
nomena and controlled by bulk transport. Mass
transfer in the solution is determined by diffusion

and natural convection. Diffusion in the solid
phase is neglected. Furthermore, as the thick-
ness of epitaxial layer is usually within 1 − 2%
of the solution depth, the change of the liquid
volume caused by the film growth is neglected.
The solution is supposed to be incompressible
and Boussinesq approximation is adopted.

Under the above assumptions, the process is
described by 3D time-dependent fluid flow and
mass transport equations.

In Cartesian coordinates (x, y, z), the dimen-
sionless governing equations take the form

∂tV + (V · ∇)V = −∇p + ∆V +
2∑

i=1
GriCiez

∇V = 0

∂tCi + (V · ∇)Ci =
1

Sci
∆Ci

(1)

where ∂ξ ≡ ∂

∂ξ
, ∇ = (∂x, ∂y, ∂z), ∆ = ∇2 =

∂2
xx +∂2

yy +∂2
zz, (x, y, z) ∈ D, D = [0, L]× [0, L]×

[0,H], L/H ≈ 10, V = (Vx, Vy, Vz) is the veloc-
ity vector, p is pressure, Ci, i = A, B is the con-
centration of the correspondent component dis-

solved in the liquid phase, GrDi =
gβiH

3∆Ci

ν2
is

the solutal Grashoff number, Sci = ν/Di is the
Schmidt number, ez = (0, 0,−1).

The non-dimensional variables are introduced
by scaling the length with the depth of the liquid
phase (H), time is scaled with H2/ν and concen-
tration is scaled with the initial concentration of
one of the components in the solution.

The phase transition is going on the substrate
that is placed under the solution at z = 0. The
interface conditions on concentration fields con-
sists of the mass balance between the transported
and incorporated solute species:

Vgr =
∂nCA

ScA(Cs
A − CA)

=
∂nCB

ScB(Cs
B − CB)

(2)

and phase diagram representing the equilibrium
between the solution and growing layer:

Fliq(Ci, T ) = 0, Fsol(Cs
i , Ci, T ) = 0 (3),

where T (t) - temperature of the system, Cs
i - con-

centration of the correspondent solute specie in
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the solid phase. On the remainder of the bound-
ary: ∂nCi = 0. Boundary condition on velocity
field is V = 0.

At t = 0 the liquid is in the static state. Ini-
tial condition for concentration is determined by
phase diagram at temperature T0 and the sub-
strate composition with which the liquid is in
equilibrium.

3 On the finite amplitude insta-
bility

The onset of convection in LPE system has a
known so far analogy. Neglecting the existence
of the component with smaller Grashoff number,
let it be component B, and supposing linearity of
phase diagram, we actually obtain the problem
concerning convective instability in a horizontal
fluid layer with nonlinear undisturbed profile of
active scalar quantity (concentration).

The main results concerning the problem goes
back to [6, 7, 8]. R. Krishnamurti has investi-
gated the onset of convection in the infinite hori-
zontal layer with the mean temperature, as an
active quantity, changing steadily at a rate η.
This represent the case in which the conduction
temperature profile is parabolic, its shape is in-
dependent of time, while all points in the liquid
change in temperature at the same rate η. The
sing and the absolute magnitude of η define the
direction of the profile curvature and the curva-
ture itself respectively.

In [7, 8] it has been shown that the nonlinear
conductive temperature profile, forming in the
fluid when the mean temperature changes at a
rate η, gives rise to stable hexagonal flows for a
range of Rayleigh numbers near the critical. The
direction of flow at the center of the hexagon
is downward if η is positive and upward if η is
negative. The static state is unstable to finite
amplitude disturbances below the critical point
Racr predicted by linear theory. In particular,
for non-dimensional value |η| ∼ 5÷ 10, a change
up to 40% from the critical number has been es-
tablished.

In epitaxial growth, the role of active scalar
quantity instead of temperature plays concentra-

tion. Its evolution at the interface is governed
by the parameter |η̃| = |kα|, where k is the slope
of phase diagram, α is a cooling rate; η̃ can be
treated as the temperature changing rate η in [7].
For a practically used operating conditions [5, 9]
|η̃| ∼ 3÷ 8. (The scaling coincides with [7].)

Though η̃ varies with time and the process
is time-dependent, it is interesting to obtain
Rayleigh number for the onset of convective mo-
tion, i.e. the Rayleigh number beyond which the
steady state would become unstable. The re-
sult also would have a significant practical value
because diffusion limited mass transfer in liquid
phase epitaxy is favorable for the material qual-
ity [5, 9]. For this purpose within the scope of
the model described above, direct numerical sim-
ulation of the process has been carried out.

4 Numerical procedure

The governing equations (1) are approximated
at staggered grid using control-volume approach.
Discretization is conservative of kinetic energy
and concentration of the dissolved species. The
scheme is implicit, has second order in space and
first in time. Navier - Stokes equations and equa-
tions of mass transfer are solved successively at
each time level.

To determine velocity and pressure fields we
use a projection method. In the calculation of the
predicted velocity field, the pressure gradient at
the previous time step is taken into account. The
projection step is performed by solving a Poisson
problem for a pressure-correction.

The calculated velocity field is inserted into
the mass transfer equations. Being indepen-
dent inside the region, they are coupled at the
solid-liquid interface by mass balance conditions
(2) and phase diagram (3). The attempts to
decouple them in any sequential procedure or
by iteration produce highly unreliable procedure
with poor if any convergence [10]. To over-
come the difficulties, we use the algorithm based
on coupled solution of mass transfer equations
with respect to the concentration of both species
and Newton method to deal with nonlinearity
in boundary conditions. The linear systems in-
volved at each Newton iteration are solved by
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conjugate gradient method. The approach has
been used successfully in 2D case [5, 9] and was
extended to 3D.

5 Numerical results

Full scale computer simulation for LPE growth
under reasonable operating conditions has been
done for Rayleigh number Ra = max

i
GriSci

varying in the range 1.1 · 103 < Ra < 3.5 · 104,
Sci = 50.

Fig.1 schematically illustrates time evolution
of undisturbed concentration field from the ho-
mogeneous initial data to a parabolic profile.
The difference between the concentration of the
solution at the top and at the bottom increases
in time as well as the curvature of the concen-
tration profile. Both factors are favorable for the
beginning of convection.

Calculated time history of Rayleigh number
for H = 1.1 is shown in fig.2. The time averaged
value of η̃ is -5.

The simulation presents a transition from
static state to non-regular flow pattern, then to
the rolls and at last to the hexagonal planform
(Fig.3). The motion is upward in the center of
hexagon and down along the sides. That is the
so called cell of ”l ”-type [11]. The run duration
is about 25 vertical diffusion times tDi = H2/Di.

The onset of convective motion is observed at
Ra = 1100, that is approximately 40% less than
well known value 1708 predicted by linear stabil-
ity theory for horizontal layer with rigid bound-
aries and linear profile of active scalar quantity.

The result exactly agrees with R.Krishna-
murti finite amplitude stability analysis [7, 8]. In
subcritical region, hexagons are the only stable
finite amplitude convection. When the Rayleigh
number is slowly increased the convection starts
growing near the critical Rayleigh number in the
form of rolls. For nonlinear undisturbed profile,
this flow pattern is unstable and convective mo-
tion settles at the finite amplitude value of the
stable hexagon solution. For η < 0 it should be
hexagonal cells of ”l ”-type.

Computational results for higher Rayleigh
numbers are presented in fig. 4–6. In the range

1.1 · 103 < Ra < 1.4 · 104, a regular cellular con-
vection pattern is obtained.(Fig.4) For Rayleigh
number between 1.4·104 and 4·104 the transition
to skewed-varicose and knot instability is regis-
tered [11] (Fig.5,6). The mean convective struc-
ture size increases with Ra while Ra < 3 · 104.
Above Ra = 3 · 104 chaotic cellular small-scale
convection is detected (Fig.6). The mean cell
size at Ra = 3.5 · 104 is several times less than
the case of Ra = 1.8 · 104.

The same transition in fluid flow structure
under the increased Rayleigh numbers was ob-
served in experimental study for onset and devel-
opment of convective motion in horizontal layer
with internal heat generation [12]. That is an-
other classical for the stability analysis problem
similar to the considered here.

The grid size we usually use in our simulation
is 50× 50× 15. To validate our numerical proce-
dure, a series of calculations on the refined grids
has been done. The spatial resolution has been
doubled, while the time step has been decreased
in two and four times. The comparison of in-
tegral properties of the solution, such as kinetic
energy of the motion, Rayleigh number time his-
tory, flow structure, shows that grid refinement
does not change the results significantly [13, 14].

6 Conclusions

Three-dimensional numerical simulation for LPE
growth of ternary compounds confirm the exis-
tence of convective motion at Rayleigh numbers
less than critical one predicted by linear stabil-
ity analysis. The planform of subcritical con-
vection and flow direction agree with theoretical
data. The evolution of the flow pattern at Ra
above the critical value is also consistent with
theoretical predictions and experimental results.
The numerical procedure is reliable and allows
to perform long-time computer simulation of the
convective motion in a wide range of operating
parameters.
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Figure 1: Concentration profile Figure 2: Time variation of
Ra/Racr

Figure 3: Ra = 1 · 103 Figure 4: Ra = 2.5 · 103

Figure 5: Ra = 1.8 · 104 Figure 6: Ra = 3.5 · 104

Concentration field distribution in plane z = H. Bright spots have higher concentration value then
dark ones.
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