The Temperature Field in the Greenhouse during Clear-sky Day
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Abstract: - In this paper is analyzed temperature field in greenhouse made by the sun energy. The obtained formula for the temperature could not be expressed over elementary functions because the solution contains integral without primitive function. Therefore this integral was simulated by algebraic function and temperature was calculated with approximate expression. The results obtained have shown that the used approximation is a good one since theoretical temperature curves were in good agreement with experimental data.
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1  Introduction

During a clear-sky day the warming up of greenhouse begins at the east and ends at the west side. We shall assume that the greenhouse roof warms up during the whole day. The mathematics model for this case requires that the source function in the temperature field equation contains a line of point sources which turn on in different moments of time. The convection in the greenhouse can be neglected and only diffusion and absorption effects affect the distribution of the thermal energy [1,2]. Taking this into account, we shall analyze the temperature-field equation [3] which reads:
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Here, T is temperature in °C, D is the diffusion coefficient of air, P is the thermal energy absorption factor. The fitting factor A( has the dimension 
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In (1), 
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 denotes the Dirac’s delta function.


Here, we shall study the particular integral of (1), because the temperature of the homogeneous part vanishes very quickly due to the absorption effects.

2. The solution of the temperature field equation


Equation (1) shall be solved by the operator method [4]. Therefore we introduce the following operators:
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For delta function, we shall use the integral representation:
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The Heaviside’s function represents integral of the delta function. Consequently we can write:
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Taking into account (3), (4) and (5) the equation (1) becomes:


[image: image10.wmf]×

p

=

-

i

)

(

T

)

F

ˆ

D

ˆ

(

t

4

2

1


	
	
[image: image11.wmf]å

ò

ò

=

m

¥

¥

-

-

w

+

-

m

w

w

×

m

m

M

)

t

t

(

i

)

r

r

(

k

i

e

d

k

d

A

1

3

r

r

r

r


	(6)



The formal solution of (1) is given by:
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The operator 
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 can be written in two ways:

	
	
[image: image14.wmf]ï

î

ï

í

ì

-

-

-

=

-

-

-

)

D

ˆ

F

ˆ

(

F

ˆ

)

F

ˆ

D

ˆ

(

D

ˆ

F

ˆ

D

ˆ

t

t

t

t

1

1

1

1


	(8)


The corresponding inverse operators, taking into account that 
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and
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After substitution (4) and (5) in (7) and application of the operator (9), the following expression is obtained:


[image: image19.wmf]×

w

w

p

=

å

ò

ò

=

m

¥

¥

-

-

w

+

-

m

m

m

M

)

t

t

(

i

)

r

r

(

k

i

e

d

k

d

i

)

(

A

T

1

3

4

2

r

r

r

r


	
	
[image: image20.wmf]å

¥

=

w

÷

÷

ø

ö

ç

ç

è

æ

w

+

-

×

0

2

1

1

n

n

n

i

i

Dk

P

)

(


	(11)


If the series in (11) is convergent it leads to the result:
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If the series does not converge, instead the operator (9), the operator (10) has to be applied. The series obtained in this way is convergent and it leads to the same result as in (12). 


The integral over frequencies can be solved with help of the integral in complex plane:
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Since 
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, the contour L has the form given in Fig 1.
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The integral over big semi-circle is equal to zero. So we obtain:
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where from it follows:
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After substitution (14) in (12), the expression for temperature becomes:
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where 
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and
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In the integral (16) we go over to spherical coordinates and after integration over angles the following result is obtained:
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where
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For finding of the integral (18) the following integral in the complex plane has to be used:
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[image: image114.png]
Since 
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On the basis of quoted, we can write
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it means that:
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Including (21) into (18) we obtain:
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The integral (17) can be solved by going over to spherical coordinates. The integration over angles reduces (17) into
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In (23) the Poisson type integrals appear. After solving these integrals we find that:
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Including (22) and (24) into (15) we get the following formula for temperature
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where 
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 is arbitrary integration constant coming from integration over time in (23).


Integral over time in (24) has not the primitive function and therefore it will be solved approximately. We shall introduce the notation:
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The function in this integral will be denoted by

	
	
[image: image45.wmf]2

3

2

4

x

e

)

x

(

Dx

Px

m

r

-

-

=

F


	(27)


It is seen that 
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It means that the function 
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Taking into account the features of the function 
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, given above, it can be simulated for 
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It is seen that 
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wherefrom it follows that the abscissa of its maximum is
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Equating 
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The maximum of the function 
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This result follows from the requirement 
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Equating 
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Since the function 
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The approximate expression for the function 
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The function 
[image: image85.wmf]m
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 is given by the formula (22), while approximate formula for 
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 is given by (37). After including (22) and (37) into (15), we obtain the approximate formula for the temperature:
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Undetermined part of (38), containing 
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Substituting (39) in (38) we obtain the final expression for the temperature:
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Notations in (40) are given above but it is suitable to be written again:
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3. An illustrative example as a conclusion


We shall consider cubic greenhouse whose edge is 3m. The thickness of the glass is 
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On the basis of the formulae (40) and (41) were calculated time dependencies of the temperature in the center of the greenhouse, and at the points with coordinates 
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The results of numerical calculation are given on the figures 3, 4 and 5. On the figure 3 it is seen that the temperature near the roof decreases. This means that heat moves from the roof to other parts of the greenhouse. In the center of the greenhouse and in nursery plant the temperatures have the maxims and they are lower than in the vicinity of the roof.
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Fig. 3
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Fig 4.
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Fig. 5


The behavior of the temperature described above is in the satisfactory agreement with the experiments.
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