The Dynamics of Tumour Cords
Following the Delivery of a Cell Killing Agent

A. BERTUZZI', A. FASANO?, A. GANDOLFI!

Tstituto di Analisi dei Sistemi ed Informatica “A. Ruberti” - CNR
Viale Manzoni 30, 00185 Roma
ITALY

bertuzzi@iasi.rm.cnr.it gandolfi@iasi.rm.cnr.it

?Dipartimento di Matematica “U. Dini”
Universita degli Studi di Firenze
Viale Morgagni 67/A, 50134 Firenze
ITALY
fasano@math.unifi.it

Abstract: The tumour cord response to a cell killing agent is described by a mathematical model
that represents the cord as a continuum with cylindrical symmetry, and accounts for cell motion
by a purely kinematic approach. The model includes oxygen diffusion from the central vessel, the
dependence of cell proliferation on oxygen concentration, the drug diffusion and the degradation of
dead cells. An example of model simulation is presented.
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1 Introduction

Although the microarchitecture of the tissue in
solid tumours is quite irregular, tumour cells
arranged in cylindrical structures around cen-
tral blood vessels are observed in some human
and experimental tumours. These structures
are named tumour cords [1]. Oxygen and nutri-
ent deprivation in cells remote from vessels lead
to cell death, so that tumour cords are generally
surrounded by necrosis. The response of tumour
cords to a single dose of radiation or drug has
been experimentally investigated in [2,3]. Math-
ematical models describing the cell population
in the cord at the stationary state and the cord
growth within a normal tissue have been re-
cently proposed [4,5,6]. In Bertuzzi et al. [7,8], a
model that describes the cord response to radia-
tion or drugs was proposed: here we summarize
this model, showing a simulation of a typical
response.

2 Model assumptions

Let us consider a tumour cord inside a regu-
lar array of parallel and identical cords. The
main assumptions of the model are summarized
as follows: (i) Cylindrical symmetry is assumed.
We denote by r, the radius of the central ves-
sel, and by r the radial distance from the axis.
Let B be the radius of the cylindrical boundary

where there is no exchange of matter. (ii) All
variables that describe the cell population state,
the cell velocity field and the concentrations of
chemicals are independent of the axial coordi-
nate. (iii) Cell velocity is radially directed. (iv)
Oxygen is the only species of “nutrient” consid-
ered, o(r,t) denoting its local concentration. (v)
Cells die if ¢ falls to a threshold 0. In addi-
tion, random cell death, either spontaneous and
induced by treatments, may occur within the
cord. The rate of spontaneous cell death, u(o),
is a nonincreasing function of o. (vi) The rate of
cell proliferation, x(c), is a nondecreasing func-
tion of 0. We take x=x, for 0 >0p, and x=0
for 0<og, 0g€(oy,0p). Below op, the progres-
sion rate through cell cycle slows down and/or
the fraction of quiescent cells increases. Below
g, all cells become quiescent and, if o increases
over o, resume instantaneously the prolifera-
tive status. (vii) Dead cells are degraded to a
fluid waste at a rate p, within the cord, and at
a rate fiy in the necrotic region.

Within the cord we have thus viable cells,
dead cells and extracellular fluids, for which we
assume equal mass densities. Under the contin-
uum hypothesis, we consider the volume frac-
tions occupied locally by these components, de-
noted by vy, vy and, respectively, vy (vy+vy+
vy =1). Two regions can be defined: the cord,
where v, >0, and the surrounding necrotic zone



(N) where v, =0. In N, only dead cells and
extracellular fluids are present. We denote by
py(t) the cord radius.

To represent cell motion in a purely kine-
matic framework, we make the further simplify-
ing assumptions: (viii) The velocity of the cel-
lular component is the same for both living and
dead cells, and is given by the scalar field u(r, t).
(ix) The volume fraction v, of extracellular flu-
ids is constant.

3 Model equations
Let us define:

v(r,t) = vy (r,t)/(1-vp). 1)

From the mass balance for the viable cells, we
can write for v the following equation for ry <

r<ppy(t):

a1ty rwv) = (@) —u(o) —np(t,0)—pc(e,0)]v

(2)
where pu is the rate of spontaneous cell death,
pr is the death rate due to radiation, and p is
the death rate due to the cytotoxic drug, ¢(r,t)
denoting the drug concentration. By writing the
mass balance of the sum of the viable and dead
cells, and taking into account assumption (ix),
it is easy to obtain

divy = 12(7“u)
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From Eq. (3) with u(ry,t) =0, the velocity field
is obtained as

= { f;; z[(x(o) + py)v —pyldz  To<r<py(t)
prulpy,t) = (fin/2)(r* = pRy) 7'>PN(t)&4)
Diffusion is the dominant transport mecha-
nism for oxygen and it can be considered quasi-
stationary. Thus we have:

Ao = f(o)v, (5)
with the boundary conditions

o) =0*, 2l =0, (@)
" lr=py(®)

where f(o) is the ratio between the consump-
tion rate (times 1-v,) and the oxygen diffusion

coefficient. If u(py,t)—py > 0, that is, if the
cells enter the necrotic zone, the cord boundary
r=py is defined by the condition

a(pn(t),t) = on (7)

and the interface is a non-material free bound-
ary. Otherwise, the cord boundary becomes a
material interface defined by

pn = u(pn(t);1), (8)

and the following inequality has to be satisfied

o(pn(t),t) > oy - (9)

The existence and uniqueness of a station-
ary solution of the above model in the absence of
treatment has been proved [7], under the con-
dition x, > miny. In this state, the radius py
of the cord is constant, and a radius B, exists
where u =0, representing the outermost bound-
ary of the system formed by the cord and the
surrounding necrosis. During the treatment, the
equation

B = U(B(t),t) ’ B(O) = BO ’ (10)
that describes the motion of the external bound-
ary of the system, has to be considered.

Also for the drug transport, diffusion is as-
sumed to be the dominant transport mecha-
nism. Moreover, we do not distinguish the ex-
tracellular from the intracellular drug concen-
tration. Thus we can write for the drug concen-
tration ¢ the following equation:

% —DoAc = —po(c,o0)v, (11)
ot
with
c(ro,t) = c*(t), (12)
Ooc
O |,—p)
¢(r,0) =0, (14)

where: D is the diffusion coeflicient of the
drug, ¢ (c,0) represents the net rate of drug
consumption by the tumour cells, and the func-
tion ¢*(t) in (12) represents the pharmacokinet-
ics of the drug in the tumour vasculature. We
note that the dependence of ¢, on ¢ may indi-
rectly account for the different drug consump-
tion by cycling and quiescent cells.

The existence and uniqueness of the solu-
tion of Egs. (2), (3), (5), (10) and (11) with the



corresponding boundary conditions and the sta-
tionary state as initial condition, that gives the
evolution of the cord after the treatment, was
also established in [7].

4 Response to treatment:
merical results

The numerical simulation of the response to
treatment has been obtained assuming the sta-
tionary state as initial condition. The simplest
case, that however represents a prototype of
cord response and that will be illustrated here,
is that of the response to radiation when pp is
a function 3(t) of time only. A(t) describes the
delayed effects that follow the delivery of a sin-
gle dose of radiation at ¢t =0. We assumed for
B(t) a trapezoidal pattern with duration 7" and
maximal value pg,. ... The function f(o) was
assumed Michaelis-Menten as described in [4].
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Fig. 1. Evolution of viable cell population. Pa-
rameters values: r, = 20, o* = 35, op = 20,
0o =1.125, o)y =1; x(0) increasing as a Michaelis-
Menten curve in (og,0p) from zero to x, =
In 2/24; p(o) =0, py =0.02, iy =0.01; ppp,, =
0.24, T=12. O,-concentration in mmHg, length
in gm and time in h.

Figure 1 represents the ratio between the
total volume (per unit cord length) of viable
cells and its value at ¢t =0. As Fig. 2 shows,
the cord boundary p,, which is non-material at
the stationary state, quickly turns into a ma-
terial interface and it remains so during all the
regression phase, confirming the crucial role of
the constraints in the model. Then, it switches
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Fig. 2. Cord size response. Parameters values
as in Fig. 1.

again to be non-material during the regrowth
phase with a slope discontinuity. Figure 2 also
shows B(t), and the radii pp(t) and pg(t) where
oxygen tension has the values o, and o, re-
spectively. The time course of these latter radii
reveals a substantial reoxygenation of the cord
after the treatment. This phenomenon is bet-
ter illustrated by Fig. 3, that shows the oxygen
concentration at r = py(t). Whereas the mini-
mum of viable cell number occurs at t=T, the
minima of p, and B occur later, this fact being
related to the non-instantaneous degradation of
dead cells.
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Fig. 3. Oxygen concentration at cord boundary.
Parameters values as in Fig. 1.

Simulations of the response with p, being
also a function of ¢, to account for the reduced



radiosensitivity of hypoxic cells, showed a gen-
eral pattern of the response similar to that of
Figs. 1 and 2. In this case, because of the reoxy-
genation of the cord, the model predicts that the
response to a two-fractions treatment is more
effective than the response to a single unsplit-
ted dose (provided that the effects of sublethal
damages and repair are neglected).

The response shown in Figs. 1-3 is also rep-
resentative of the general features of the re-
sponse to drug administered as a single bolus
when drug pharmacokinetics is rather fast. Ex-
tensive simulations of model response have been
reported in [8].

5 Conclusions

The model, despite the numerous simplifying
assumptions and idealizations, appears able to
capture both the response of the cell population
and the evolution of cord size after treatment,
i.e., the regression of the cord radius followed
by its regrowth. Moreover, the model empha-
sizes the role of the degradation rate of dead
cells on the macroscopic response of the tumour
mass. The model is a first step towards a deeper
insight of the events that follow treatment ad-
ministration, and of their relevance in the as-
sessment of the efficacy of treatment schedules.
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