

CTL Property Language in Formal Verification of Systems

 A System Approach

Hamid Shojaei, *Mojtaba Shahidi
Electrical and Computer Engineering Department, Faculty of Engineering

University of Tehran, Iran
*Electrical and Computer Engineering Department,Faculty of Engineering

 Ferdowsi University of Mashhad
Address: Electrical Engineering Department,Faculty of Engineering,

Ferdowsi University of Mashhad, Mashhad, Iran

Abstract: We use symbolic model checking to
verify a VHDL design. This paper mainly focuses on
Computational Tree Logic (CTL) for model checking
problem. We have explained these two terms “CTL”
and “model checking” for providing a clear idea
about these two. Most importantly we have explored
the ways of uses of CTL formulae in the case of
model checking. The importance of the model
checking, the ways of specifying properties in CTL
and some most commonly used CTL formulae in
checking are also stated. Also the uses and
importance of fairness constraints in CTL formula
and the conversion of CTL operators have also been
included in this paper. Lastly, we have given an
example of the processes of model checking.

Keywords: VHDL, Formal Verification,
Symbolic Model Checking, CTL

1 Introduction

Hardware systems are generally specified as

a set of interacting finite state machines (FSMs).
Network protocols and CPU controllers are such
systems that their base structures consist of finite
state machines. Therefore, checking the
correctness of these systems is a major issuie in
digital system design and verification.

Current techniques for testing FSMs are
simulations and testing. But the problems with
the simulations are: it can not run for ever; it
will be many times slower than the simulated
system; can be very expensive; and there is no
guarantee all the possible runs will be simulated.
Testing also suffers from similar disadvantages.
There are some additional disadvantages such

as, not all (infinite) inputs can be presented; input
patterns needs to be automatically-generated; no
guarantee that bad inputs will be presented; and
especially messy for concurrent systems like
multi-component systems. These two can reveal
the presence of bugs but can never establish the
absence of bugs.This is a fundamental limitation
for safety-critical systems. For these reasons, the
application of model checking is increasing day by
day. Model checking uses transition systems
(Kripke Structure) to model systems and temporal
logics to specify properties. It makes the
verification problem reduced to graph algorithmic
problems that can be fully automated [1, 2, 3, 6]
and relatively easy to use. It is very successful in
verifying hardware, communication protocols and
other many embedded systems. It is increasingly
popular in industry. Besides, there are some robust
tools such as SPIN, SMV, COSPAN, VIS,
SMART etc. that can be easily and effectively
used as verification tools. But the problem is as the
number of interacting components increase the
size of the transition system increases
exponentially that creates a very serious problem
namely the state explosion problem.

The use of modeling checking in place of
simulation or testing is now common in most of
the cases of hardware, software, concurrent
systems, reactive systems design verification. This
checking uses temporal logic (mainly CTL) to
specify the properties to be verified. In our paper,
we have explored a brief idea on how we can use
Computational Tree Logic (CTL) for model
verification purpose. We have explained about the
model, the CTL formula, the necessity of fairness

in CTL formula and lastly a full elaborative
example of model checking

2 Symbolic Model Checking

Symbolic CTL model checking is a formal

verification technique which has proven itself
practical in the verification of hardware
specifications and implementations. A design of
N latches is viewed as a state machine
containing 2**N states, and the temporal logic
CTL is used to reason about the
design. Symbolic representation and
manipulation of the design allows the state
machine to be traversed without explicitly
building it, thus making the technique feasible
for N=100 andmore.

To understand the term “model”, we need to
be familiar with transition system and Kripke
Structure. A transition system is a structure TS =
(S, S0, R) where, S is a finite set of states; S0 ⊆
S is the set of initial states and R ⊆ S × S is a
transition relation which must be total i.e. for
every s in S there exists s’ in S such that (s, s’) is
in R (∀ s ∈ S ∃ s’ ∈ S . (s, s’) ∈ R). On the other
hand, M = (S, S0, R, AP, L) is a Kripke
Structure; where (S, S0, R) is a transition system.
AP is a finite set of atomic propositions (each
proposition corresponds to a variable in the
model) and L is a labeling function. It labels
each state with a set of atomic propositions that
are true in that state. The atomic propositions
and L together convert a transitions system into
a model.

The foremost step to verify a system is to
specify the properties that the system should
have. For example, we may want to show that
some concurrent program never deadlocks.
These properties are represented by temporal
logic. Computational Tree Logic (CTL) is one of
the versions of temporal logic. It is currently one
of the popular frameworks used in verifying
properties of concurrent systems [4].In this
paper; we take consideration of only this type of
logic for model checking. Once we know which
properties are important, the second step is to
construct a formal model for that system. The
model should capture those properties that must
be considered for the establishment of
correctness. Model checking includes the
traversing the state transition graph (Kripke
Structure) and of verifying that if it satisfies the
formula representing the property or not, more

concisely, the system is a model of the property or
not.

Each CTL formula is either true or false in a
given state of the Kripke Structure. Its truth is
evaluated from the truth of its sub-formulae in a
recursive fashion, until one reaches atomic
propositions that are either true or false in a given
state. A formula is satisfied by a system if it is true
for all the initial states of the system.
Mathematically, say, a Kripke Structure K = (S,
S0, R, AP, L) (system model) and a CTL formula
Ψ (specification of the property) are given. We
have to determine if K |= Ψ holds (K is a model
of Ψ) or not. K |= Ψ holds iff K, s0 |= Ψ for
every s0 ∈ S0. If the property does not hold, the
model checker will produce a counter example
that is an execution path that can not satisfy that
formula.

3 Standard CTL Formulae

Formulas in standard CTL are built from
atomic propositions, which correspond to variables
in the model being verified, standard Boolean
operators (e.g., AND, OR, XOR, NOT), and
temporal operators. Each temporal operator
consists of two parts: a path quantifier (A or E)
and a temporal modality (F , G , X ,U). There are
two different path quantifiers: A indicates that the
modality defines a property that should be true on
all possible paths and E indicates that the property
needs only hold on some path. The temporal
modalities describe the ordering of events in time
along a path and have the following meaning:

φF : (reads φ holds sometime in the future) is
true of a path if there exists a state in the path
where formula φ is true.

φG : (reads φ holds globally) is true of a path
if φ is true at every state in the path.

φX : (reads φ holds in the next state) is true
of a path if φ is true in the state reached
immediately after the current state in the path.

ψφ U : (reads φ holds until ψ holds, called
strong until) is true of a path if ψ is true in some
state in the path, and φ holds in all preceding
states.

The semantics of the CTL operators are stated
below:

K, s |= EX (Ψ) there exists s’ such that s → s’
(R(s, s’)) and K, s’ |=Ψ. It means that s has a
successor state s’ at which Ψ holds.

{q}

{P}

{P}

K, s |= EU (Ψ1, Ψ2) iff there exists a path L
= s0, s1, … from s and k >= 0 such that: K, L(k)
|= Ψ2 and if 0 ≤ j < k, then K, L(j) |= Ψ1.

 K, s |= AU(Ψ1, Ψ2) iff for every path L =
s0, s1, … from s there exists k >= 0 such that: K,
L(k) |= Ψ2 and if 0 ≤ j < k, then K, L(j) |= Ψ1.

AX (Ψ): It is not the case there exists a next
state at which Ψ does not hold i.e. for every next
state Ψ holds.

EF (Ψ): There exists a path L from s and k
>= 0 such that: K, L(k)|=Ψ.

AG (Ψ): It is not the case there exists a path
L from s and k>= 0 such that: K, L(k)|= Ψ i.e.
for every path L from s and every k >= 0;K,
L(k)|=Ψ

AF(Ψ) : For every path L from s, there
exists k>= 0 such that: K, L(k)|= Ψ.

EG(Ψ): It is not the case that for every path
L from s there is a k >= 0 such that K,L(k)|=Ψ.
It means that there exists a path L from s such
that, for every k>= 0: K, L(k) |= Ψ.

Some basic CTL operators among those
stated above are shown graphically for easy
understanding in Figure 1. In this figure, if it is
assumed that in the filled states, the formula f
holds, then we can say that the formula EF f, AF
f, EG f and AG f are satisfied in the initial states
(a) in the figures 1.a, 1.b, 1.c and 1.d
respectively.

Figure 1: Basic CTL Operators

4 CTL Formula Conversion (Universal

formula to Existential formula)

For a universal CTL formula all states in a
design that are reachable from the initial states
should be checked. However for an existential
CTL formula only one case from the initial states
should be found that satisfies the formula. It is

clear that algorithms of existential CTL formula
can be implemented easier than universal CTL
formula, so universal formulas are converted to
existential formulas. That is, all universal path
quantifiers are replaced with the appropriate
combination of existential quantifiers and Boolean
negations. Also "finally" operators are converted
to "until" operators. This returns a new formula
that shares absolutely nothing with the original
formula (not even the strings). The "original
Formula" field of each new sub formula is set to
point to the formula passed as an argument. In
addition, if and only if the original formula is of
type AG, AX, AU, AF, or EF, the "converted flag"
is set.

These conversions are as below:

Formulae Converted Formulae
AX f ~ EX (~f)
EF f E (True U f)
AG f ~ EF(~f)
AF f ~ EG (~f)

A (f U g) ~E[~g U (~f ∧ ~g)] ∧ ~EG ~g

Table 1: Conversion of CTL formulae

5 Unwinding

We use usually the Computation Tree Logic
(CTL) for specifying these kinds of formula for
model checking. It is one of the versions of
temporal logic. State Transition Graph (STG) is
used to derive the computation trees. Now the
question is how we can build a tree from the STG.
The graph structure is unwound into an infinite
tree rooted at the initial state. Figure 2 shows an
example of unwinding a graph (traffic-light
controller; R, G and Y indicate RED, GREEN and
YELLOW respectively) into a tree. All possible
computations of the system being modeled are
represented by the paths in the tree. Formulae in
CTL refer to the computation tree derived from the
model. CTL is classified as branching time logic
because it has operators that describe the
branching structure of this tree.

Figure 2: Unwinding of state transition graph.

{q}

{P} {P, q} {P}

d: A {p U q}

{P, q}

{q}

{P}

c: AX {P}

{P}

{P, q} {P}

b: EG {P} {q}

{P, q} {P}

a: EX {P}

Now, we may describe some formulae of it.

The formula EG (RED) is true as there exists at
least one path where in all its states; there is
RED (the path R, R, R …….). The formula E
(RED U GREEN) is also true as there is at least a
path (R, R, G……) where all the states hold R
until we reach a state with G. But the formula
AF (GREEN) is false as there is at least one path
in which no state is with the atomic proposition
G.

6 Expressing properties in CTL

CTL formulas are sometime problematical

to interpret. For this, a designer may fail to
understand what property has been actually
verified. Here we want to add some common
constructs of CTL formula used in hardware
verification.
1. AG (Request → AF Acknowledgement): For
all reachable states (AG), if Request is asserted
in the state, then always at some later point (AF),
we must reach a state where Acknowledgement
is asserted. AG is interpreted relative to the
initial states of the system whereas AF is
interpreted relative to the state where Request is
asserted. A common mistake would be to write
Request → AF Acknowledgement in place of AG
(Request → AF Acknowledgement). The
meaning of the former is that if Request is
asserted in the initial state, then it is always the
case that eventually we reach a state where
Acknowledgement is asserted, while the latter
requires that the condition is true for any
reachable state where Request holds. If Request
is identically true, AG (Request → AF
Acknowledgement) reduces to AG AF
Acknowledgement.
2. AG (AF DeviceEnabled): The proposition
DeviceEnabled holds infinitely often on every
computational path.
3. AG (EF start): From any reachable state,
there must exist a path starting at that state that
reaches a state where start is asserted. In other
words, it must always be possible to reach the
restart state.
4. EF (x ∧ EX (x∧ EX x)) → EF (y ∧ EX EX z):
If it is possible for x to be asserted in three
consecutive states, then it is also possible to
reach a state where y is asserted and from there
to reach in two more steps a state where z is
asserted.

5. EF (~Ready ∧ Started): It is possible to get to a
state where holds started, but ready does not hold.

6. AG (Send → A (Send U Receive)): It is always
the case that if Send occurs, then eventually
Receive is true, and until that time, Send must
continue to be true.

7. AG (in → AX AX AX out): Whenever in goes
high, out will go high within three clock cycles.

8. AG(~storage_coke→ AX storage_coke): if the
coke storage of a vending machine becomes empty,
it gets recharged immediately.

9. AG AF ((~storage_coke ∨ ~storage_coffee) ∧
(storage_coke ∧ storage_coffee)): the recharge
transaction of a vending machine (of coke and
coffee) takes place infinitely often.

7 Fairness properties in CTL

In verifying concurrent systems, we are
occasionally interested only in correctness along
fair execution [5]. It is often necessary to
introduce some notion of fairness. For example, if
there are two processes trying to use a shared
resource using an arbiter, we may wish to consider
only those executions in which the arbiter does not
ignore one of its request inputs from either of the
processors forever. Alternatively, we may want to
consider communication protocols that operate
over reliable channels which have the property
that no message is ever continuously transmitted
but never received. A fairness constraint can be an
arbitrary set of states, usually described by the
formula of the logic. If fairness constraints are
interpreted as a set of states, then a fair path must
contain an element of each constraint infinitely
often. If fairness constraints are interpreted as
CTL formulas, then a path is fair if each constraint
is true infinitely often along the path. The path
quantifiers in the logic are then restricted to fair
path [6]. An example of a fairness condition is P
that restricts the system to only those paths where
P is asserted infinitely often. Basically we use
fairness constraints to rule out undesired
executions. Let us discuss this with an example.

In Figure 3 (a), the two processes (PR1 and
PR2) want to use the shared resource using the
arbiter. Figure 3 (b) shows the corresponding
STG. For this example, the atomic propositions
are, AP = {idle1, waiting1, using1, idle2, waiting2,
using2} where, idlei, waitingi and usingi mean that
process i is idle, waiting for and using the resource
respectively. Here, the state 0 is the initial state.
The APs that are “True” in a specific state are
expressed by a labeling function L. So, from the

Figure 3 (b), we can find that L(0) = { idle1,
idle2}; L(1) = { waiting1, idle2,}; L(2) = { using1,
idle2 }; L(3) = { idle1, waiting2}; L (4) = { idle1,
using2}; L(5) = { waiting1, waiting2 }; L(6) = {
using2,waiting1}; and L(7) = { using1, waiting2 }.
From this, we can make some assertions about a
computation of the above graph. These are a) If
at some stage process 1 is waiting then at some
later stage it is using the resource (the path (1, 2)
or (3, 4) or (5, 6, 7)); b) at no stage both
processes are using the resource (all the states);
c) If a process is waiting then it does so until it
starts to use the resource (as in a)) and d) There
is a stage at which both processes are waiting
(5).

Figure 3 (a): Two processes use the shared
resource using the arbiter; (b) the state transition
graph

 A computation in which 3, 5 and 7 are
visited infinitely often but 4 and 6 are visited
only finitely often is really unfair. So, it may be
the case that the computation in the sequence 3,
5, 7, 3, 5, 7 … goes on infinitely. In this case,
process2 never gets the access to the shared
resource and as a result the formula AG
(waiting2 → AF (using2)) is “False”. But we, of
course want to see this formula “True” for the
correctness of the design. To avoid such
unwilling thing, we can put the constraints that
any fair path must visit the any of the states got
applying by the rule (~waiting2 V using2). This
rule gives us all the states except (3, 5 and 7).

Note that, it is clear from the graph that from the
states 3, 5 and 7, if we want to hit any others states
that must be visited; we have only to options either
4 or 6. In these two states, the process 2 gets the
resource to use. So, it satisfies AG (waiting2 → AF
(using2)). For any design, we may need to add
more than one fairness constraints. Here, we see
the same problem if a computation goes infinitely
often over the path 0, 3, 4, 0, 3, 4 …or 0, 1, 2, 0, 1,
2…or 1, 5, 6, 1, 5, 6… . Here, we have just tried to
narrate the necessity of fairness with example.

8 Case Study

In this section we use the controller part of a

simple processor, SAYEH and we verify this
controller by standard CTL. The architecture of
this processor is simple, but it has enough
hardware for our work in formal verification and
test and testability research. The processor has a
16-bit data bus and a 16-bit address bus. The
processor has 8 and 16-bit instructions. Short
instructions may contain shadow instructions,
which effectively pack two such instructions into a
16-bit word.

Decode Exec

Fetch Halt

Reset

Figure 5: State machine of SAYEH Controller

The controller of SAYEH has five states: reset,

halt, fetch, decode, and exec. External signals
ExternalReset and instruction control transitions
between states of this state machine. The state
machine of SAYEH controller is shown in Fig. 5.

With CTL, all properties of this state machine
are written. These properties are in three classes.
With these three classes that are explained below,
each state machine will be completely verified.
The three classes are as follows:

The first class of properties should be checked
for all states. This class is divided into three sets
of properties:

“There is no deadlock in any state”. This
property is expressed in ECTL as Equation (1).

},,,{
)!()((

execdecodefetchresetS
SPstateEXSPstateAG

∈∀
=→=

 (1)

0

1 3

5 2 4

7 6

Req1 Req2

Grt1 Grt2

Grt1 Grt2

Req2 Req1

Req2
Req1

Ret1

Req2 Ret1

(b)

Req2

Arbiter
Req-1

Grt-1
Req-2

Grt-2
 Resource

PR1

PR2

(a)

“States are reachable from the initial state
(reset)”. This property is presented in ECTL as
Equation (2).

},,,{
)(

execdecodefetchresetS
SPstateAF

∈∀
= (2)

“Each state is reachable from any state”.

This property is shown in ECTL as Equation (3).
)!()((resetPstateEXexecPstateAG =→= (3)

The second class of properties is different

from one state to another. In this class of
properties “immediate states after each states”
are checked. For example:

)!()((resetPstateEXexecPstateAG =→= (4)

The third class of properties is to check

transitions between states with respect to the
input signals and instructions. For example:

)!(
)1Re&((

resetPstateAX
setExternalexecPstateAG

=
→== (5)

9 Conclusions

Formal verification replaces simulation in
certain applications. For testing the correctness
of a digital system that consists of FSMs
verification is efficient and easy to use. This is
an exact method and does not require test data.

Model checking has many important
advantages over the mechanical theorem provers
or proof checkers for verification of the different
hardware and protocols. In the cases like
protocol design, network design and many
others where it is more complex and expensive
to check/test after the implementation, model
checking can be brilliantly used in those cases to
find the bug before the implementation. In
model checking, CTL, an important family of
temporal logic is effectively and increasing used
to specify the properties of the model to be
verified.

10 References

1. E. M. Clarke, J. R. Burch, O. Grumberg, D.

E. Long and K. L. McMillan, “Automatic
verification of sequential circuit designs”,
Phil. Trans. R. Soc. Lond. A; pp. 105- 120.
1992.

2. E. M. Clarke, E. A. Emerson, and A. P.
Sistla, “Automatic Verification of Finite-
State Concurrent Systems Using Temporal
Logic Specifications,” in ACM Transitions

on Programming Languages and Systems, 8(2),
pp. 244–263, 1986.

3. Jerry R. Burch, M. Clarke, David E. Long, L.
McMillan, David L. Dill, “ Symbolic Model
Checking for Sequential Circuit Verification”,
IEEE Transactions on Computer-Aided
Design of Integrated Circuit and Systems; Vol.
13, No. 4, 1994.

4. Steve Easterbrook and Victor Petrovykh,
"Model-Checking over Multi-Valued Logics",
in Proceedings of Formal Methods Europe
(FME'01), March 2001

5. Michael Huth, “Logic in Computer Science:
tool-based modeling and reasoning about
systems”, IEEE Session T1C; 2000.

6. E. M. Clarke, E. A. Emerson and A. P. Sistla,
Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic”,
ACM Transactions on Programming
Languages and Systems, Vol. 8, No. 2, pp.
244-263, April 1986.

7. Edmund M. Clarke, Jr., Orna Grumberg and
Doron A. Peled, “Book: “Model Checking”,
The MIT Press; Second printing 2000.

