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Abstract:  We use symbolic model checking to 
verify a VHDL design. This paper mainly focuses on 
Computational Tree Logic (CTL) for model checking 
problem. We have explained these two terms “CTL” 
and “model checking” for providing a clear idea 
about these two. Most importantly we have explored 
the ways of uses of CTL formulae in the case of 
model checking. The importance of the model 
checking, the ways of specifying properties in CTL 
and some most commonly used CTL formulae in 
checking are also stated. Also the uses and 
importance of fairness constraints in CTL formula 
and the conversion of CTL operators have also been 
included in this paper. Lastly, we have given an 
example of the processes of model checking.   
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1 Introduction 

 
Hardware systems are generally specified as 

a set of interacting finite state machines (FSMs).  
Network protocols and CPU controllers are such 
systems that their base structures consist of finite 
state machines.  Therefore, checking the 
correctness of these systems is a major issuie in 
digital system design and verification.   

Current techniques for testing FSMs are 
simulations and testing.  But the problems with 
the simulations are: it can not run for ever; it 
will be many times slower than the simulated 
system; can be very expensive; and there is no 
guarantee all the possible runs will be simulated. 
Testing also suffers from similar disadvantages. 
There are some additional disadvantages such 

as, not all (infinite) inputs can be presented; input 
patterns needs to be automatically-generated; no 
guarantee that bad inputs will be presented; and 
especially messy for concurrent systems like 
multi-component systems. These two can reveal 
the presence of bugs but can never establish the 
absence of bugs.This is a fundamental limitation 
for safety-critical systems. For these reasons, the 
application of model checking is increasing day by 
day. Model checking uses transition systems 
(Kripke Structure) to model systems and temporal 
logics to specify properties.  It makes the 
verification problem reduced to graph algorithmic 
problems that can be fully automated [1, 2, 3, 6] 
and relatively easy to use. It is very successful in 
verifying hardware, communication protocols and 
other many embedded systems. It is increasingly 
popular in industry. Besides, there are some robust 
tools such as SPIN, SMV, COSPAN, VIS, 
SMART etc. that can be easily and effectively 
used as verification tools. But the problem is as the 
number of interacting components increase the 
size of the transition system increases 
exponentially that creates a very serious problem 
namely the state explosion problem. 

The use of modeling checking in place of 
simulation or testing is now common in most of 
the cases of hardware, software, concurrent 
systems, reactive systems design verification. This 
checking uses temporal logic (mainly CTL) to 
specify the properties to be verified.  In our paper, 
we have explored a brief idea on how we can use 
Computational Tree Logic (CTL) for model 
verification purpose. We have explained about the 
model, the CTL formula, the necessity of  fairness 



 

in CTL formula and lastly a full elaborative 
example of model checking 

 
2 Symbolic Model Checking 

 
Symbolic CTL model checking is a formal 

verification technique which has proven itself 
practical in the verification of hardware 
specifications and implementations. A design of 
N latches is viewed as a state machine 
containing 2**N states, and the temporal logic 
CTL is used to reason about the 
design. Symbolic representation and 
manipulation of the design allows the state 
machine to be traversed without explicitly 
building it, thus making the technique feasible 
for N=100 andmore.   

To understand the term “model”, we need to 
be familiar with transition system and Kripke 
Structure. A transition system is a structure TS = 
(S, S0, R) where, S is a finite set of states; S0  ⊆  
S is the set of initial states and R  ⊆  S × S is a 
transition relation which must be total i.e. for 
every s in S there exists s’ in S such that (s, s’) is 
in R (∀ s ∈ S ∃ s’ ∈ S . (s, s’) ∈ R). On the other 
hand, M = (S, S0, R, AP, L) is a Kripke 
Structure; where (S, S0, R) is a transition system. 
AP is a finite set of atomic propositions (each 
proposition corresponds to a variable in the 
model) and L is a labeling function. It labels 
each state with a set of atomic propositions that 
are true in that state. The atomic propositions 
and L together convert a transitions system into 
a model.   

The foremost step to verify a system is to 
specify the properties that the system should 
have. For example, we may want to show that 
some concurrent program never deadlocks. 
These properties are represented by temporal 
logic. Computational Tree Logic (CTL) is one of 
the versions of temporal logic. It is currently one 
of the popular frameworks used in verifying 
properties of concurrent systems [4].In this 
paper; we take consideration of only this type of 
logic for model checking. Once we know which 
properties are important, the second step is to 
construct a formal model for that system. The 
model should capture those properties that must 
be considered for the establishment of 
correctness. Model checking includes the 
traversing the state transition graph (Kripke 
Structure) and of verifying that if it satisfies the 
formula representing the property or not, more 

concisely, the system is a model of the property or 
not.  

Each CTL formula is either true or false in a 
given state of the Kripke Structure. Its truth is 
evaluated from the truth of its sub-formulae in a 
recursive fashion, until one reaches atomic 
propositions that are either true or false in a given 
state. A formula is satisfied by a system if it is true 
for all the initial states of the system. 
Mathematically, say, a Kripke Structure K = (S, 
S0, R, AP, L) (system model) and a CTL formula 
Ψ (specification of the property) are given. We 
have to determine if K |= Ψ  holds (K is a model 
of Ψ) or not. K |= Ψ holds iff  K, s0 |= Ψ for 
every s0 ∈ S0. If the property does not hold, the 
model checker will produce a counter example 
that is an execution path that can not satisfy that 
formula.  
 
3 Standard CTL Formulae 
 

Formulas in standard CTL are built from 
atomic propositions, which correspond to variables 
in the model being verified, standard Boolean 
operators (e.g., AND, OR, XOR, NOT), and 
temporal operators.  Each temporal operator 
consists of two parts: a path quantifier ( A or E ) 
and a temporal modality ( F , G , X ,U ). There are 
two different path quantifiers: A indicates that the 
modality defines a property that should be true on 
all possible paths and E indicates that the property 
needs only hold on some path. The temporal 
modalities describe the ordering of events in time 
along a path and have the following meaning:  

φF  : (reads φ  holds sometime in the future) is 
true of a path if there exists a state in the path 
where formula φ is true.   

φG  : (reads φ  holds globally) is true of a path 
if φ is true at every state in the path.   

φX  : (reads φ  holds in the next state) is true 
of a path if φ  is true in the state reached 
immediately after the current state in the path.   

ψφ U  : (reads φ  holds until ψ  holds, called 
strong until) is true of a path if ψ  is true in some 
state in the path, and φ  holds in all preceding 
states.   

The semantics of the CTL operators are stated 
below: 

K, s |= EX (Ψ) there exists s’ such that s → s’ 
(R(s, s’)) and K, s’ |=Ψ.  It means that s has a 
successor state s’ at which Ψ holds. 
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K, s |= EU (Ψ1, Ψ2) iff there exists a path L 
= s0, s1, … from s and k >= 0 such that: K, L(k) 
|= Ψ2 and if 0 ≤ j < k, then K, L(j) |= Ψ1. 

 K, s |= AU(Ψ1, Ψ2) iff for every path L = 
s0, s1, … from s there exists k >= 0 such that: K, 
L(k) |= Ψ2 and if 0 ≤ j < k, then K, L(j) |= Ψ1.  

AX (Ψ): It is not the case there exists a next 
state at which Ψ does not hold i.e. for every next 
state Ψ holds. 

EF (Ψ): There exists a path L from s and k 
>= 0 such that: K, L(k)|=Ψ. 

AG (Ψ): It is not the case there exists a path 
L from s and k>= 0 such that: K, L(k)|= Ψ i.e. 
for every path L from s and every k >= 0;K, 
L(k)|=Ψ 

AF(Ψ) : For every path L from s, there 
exists k>= 0 such that: K, L(k)|= Ψ. 

EG(Ψ): It is not the case that for every path 
L from s there is a k >= 0 such that K,L(k)|=Ψ. 
It means that there exists a path L from s such 
that, for every k>= 0: K, L(k) |= Ψ. 

Some basic CTL operators among those 
stated above are shown graphically for easy 
understanding in Figure 1. In this figure, if it is 
assumed that in the filled states, the formula f 
holds, then we can say that the formula EF f, AF 
f, EG f and AG f are satisfied in the initial states 
(a) in the figures 1.a, 1.b, 1.c and 1.d 
respectively.    

 

 
 
 

Figure 1: Basic CTL Operators 
 
 
4 CTL Formula Conversion (Universal 

formula to Existential formula) 
 

For a universal CTL formula all states in a 
design that are reachable from the initial states 
should be checked.  However for an existential 
CTL formula only one case from the initial states 
should be found that satisfies the formula.  It is 

clear that algorithms of existential CTL formula 
can be implemented easier than universal CTL 
formula, so universal formulas are converted to 
existential formulas.  That is, all universal path 
quantifiers are replaced with the appropriate 
combination of existential quantifiers and Boolean 
negations.  Also "finally" operators are converted 
to "until" operators.  This returns a new formula 
that shares absolutely nothing with the original 
formula (not even the strings).  The "original 
Formula" field of each new sub formula is set to 
point to the formula passed as an argument.  In 
addition, if and only if the original formula is of 
type AG, AX, AU, AF, or EF, the "converted flag" 
is set.   

These conversions are as below: 
 

Formulae Converted Formulae 
AX f ~ EX (~f) 
EF f E (True U f) 
AG f ~ EF(~f) 
AF f ~ EG (~f) 

A (f U g) ~E[~g U (~f ∧ ~g)] ∧  ~EG ~g 
 

Table 1: Conversion of CTL formulae 
 

5 Unwinding 
 

We use usually the Computation Tree Logic 
(CTL) for specifying these kinds of formula for 
model checking. It is one of the versions of 
temporal logic. State Transition Graph (STG) is 
used to derive the computation trees. Now the 
question is how we can build a tree from the STG. 
The graph structure is unwound into an infinite 
tree rooted at the initial state. Figure 2 shows an 
example of unwinding a graph (traffic-light 
controller; R, G and Y indicate RED, GREEN and 
YELLOW respectively) into a tree. All possible 
computations of the system being modeled are 
represented by the paths in the tree. Formulae in 
CTL refer to the computation tree derived from the 
model. CTL is classified as branching time logic 
because it has operators that describe the 
branching structure of this tree.  

 
Figure 2: Unwinding of state transition graph. 
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Now, we may describe some formulae of it. 

The formula EG (RED) is true as there exists at 
least one path where in all its states; there is 
RED (the path R, R, R …….). The formula E 
(RED U GREEN) is also true as there is at least a 
path (R, R, G……) where all the states hold R 
until we reach a state with G. But the formula 
AF (GREEN) is false as there is at least one path 
in which no state is with the atomic proposition 
G. 

 
6 Expressing properties in CTL  

 
CTL formulas are sometime problematical 

to interpret. For this, a designer may fail to 
understand what property has been actually 
verified. Here we want to add some common 
constructs of CTL formula used in hardware 
verification.  
1.  AG (Request → AF Acknowledgement): For 
all reachable states (AG), if Request is asserted 
in the state, then always at some later point (AF), 
we must reach a state where Acknowledgement 
is asserted. AG is interpreted relative to the 
initial states of the system whereas AF is 
interpreted relative to the state where Request is 
asserted. A common mistake would be to write 
Request → AF Acknowledgement in place of AG 
(Request → AF Acknowledgement). The 
meaning of the former is that if Request is 
asserted in the initial state, then it is always the 
case that eventually we reach a state where 
Acknowledgement is asserted, while the latter 
requires that the condition is true for any 
reachable state where Request holds. If Request 
is identically true, AG (Request → AF 
Acknowledgement) reduces to AG AF 
Acknowledgement.  
2.  AG (AF DeviceEnabled): The proposition 
DeviceEnabled holds infinitely often on every 
computational path. 
3.  AG (EF start): From any reachable state, 
there must exist a path starting at that state that 
reaches a state where start is asserted. In other 
words, it must always be possible to reach the 
restart state.  
4.  EF ( x ∧ EX ( x∧ EX x)) → EF ( y ∧ EX EX z): 
If it is possible for x to be asserted in three 
consecutive states, then it is also possible to 
reach a state where y is asserted and from there 
to reach in two more steps a state where z is 
asserted.  

5.  EF ( ~Ready ∧ Started): It is possible to get to a 
state where holds started, but ready does not hold.  

6. AG (Send → A (Send U Receive)): It is always 
the case that if Send occurs, then eventually 
Receive is true, and until that time, Send must 
continue to be true.  

7. AG (in → AX AX AX out): Whenever in goes 
high, out will go high within three clock cycles. 

8. AG(~storage_coke→ AX storage_coke): if the 
coke storage of a vending machine becomes empty, 
it gets recharged immediately. 

9. AG AF ((~storage_coke ∨  ~storage_coffee) ∧ 
(storage_coke ∧ storage_coffee)): the recharge 
transaction of a vending machine (of coke and 
coffee) takes place infinitely often. 
 
7 Fairness properties in CTL 
 

In verifying concurrent systems, we are 
occasionally interested only in correctness along 
fair execution [5]. It is often necessary to 
introduce some notion of fairness. For example, if 
there are two processes trying to use a shared 
resource using an arbiter, we may wish to consider 
only those executions in which the arbiter does not 
ignore one of its request inputs from either of the 
processors forever. Alternatively, we may want to 
consider communication protocols that operate 
over reliable channels which have the property 
that no message is ever continuously transmitted 
but never received. A fairness constraint can be an 
arbitrary set of states, usually described by the 
formula of the logic. If fairness constraints are 
interpreted as a set of states, then a fair path must 
contain an element of each constraint infinitely 
often. If fairness constraints are interpreted as 
CTL formulas, then a path is fair if each constraint 
is true infinitely often along the path. The path 
quantifiers in the logic are then restricted to fair 
path [6]. An example of a fairness condition is P 
that restricts the system to only those paths where 
P is asserted infinitely often. Basically we use 
fairness constraints to rule out undesired 
executions. Let us discuss this with an example.  

In Figure 3 (a), the two processes (PR1 and 
PR2) want to use the shared resource using the 
arbiter. Figure 3 (b) shows the corresponding 
STG. For this example, the atomic propositions 
are, AP = {idle1, waiting1, using1, idle2, waiting2, 
using2} where, idlei, waitingi and usingi mean that 
process i is idle, waiting for and using the resource 
respectively. Here, the state 0 is the initial state. 
The APs that are “True” in a specific state are 
expressed by a labeling function L. So, from the 



 

Figure 3 (b), we can find that L(0) = { idle1, 
idle2}; L(1) = { waiting1, idle2,}; L(2) = { using1, 
idle2 }; L(3) = { idle1, waiting2}; L (4) = { idle1, 
using2}; L(5) = { waiting1, waiting2 }; L(6) = { 
using2,waiting1}; and L(7) = { using1,  waiting2 }. 
From this, we can make some assertions about a 
computation of the above graph. These are a) If 
at some stage process 1 is waiting then at some 
later stage it is using the resource (the path (1, 2) 
or (3, 4) or (5, 6, 7)); b) at no stage both 
processes are using the resource (all the states); 
c) If a process is waiting then it does so until it 
starts to use the resource (as in a)) and d) There 
is a stage at which both processes are waiting 
(5). 

 

 
 

 
 
Figure 3 (a): Two processes use the shared 
resource using the arbiter; (b) the state transition 
graph 
 

 A computation in which 3, 5 and 7 are 
visited infinitely often but 4 and 6 are visited 
only finitely often is really unfair. So, it may be 
the case that the computation in the sequence 3, 
5, 7, 3, 5, 7 … goes on infinitely. In this case, 
process2 never gets the access to the shared 
resource and as a result the formula AG 
(waiting2 → AF (using2)) is “False”. But we, of 
course want to see this formula “True” for the 
correctness of the design. To avoid such 
unwilling thing, we can put the constraints that 
any fair path must visit the any of the states got 
applying by the rule (~waiting2 V using2). This 
rule gives us all the states except (3, 5 and 7).  

Note that, it is clear from the graph that from the 
states 3, 5 and 7, if we want to hit any others states 
that must be visited; we have only to options either 
4 or 6. In these two states, the process 2 gets the 
resource to use. So, it satisfies AG (waiting2 → AF 
(using2)). For any design, we may need to add 
more than one fairness constraints. Here, we see 
the same problem if a computation goes infinitely 
often over the path 0, 3, 4, 0, 3, 4 …or 0, 1, 2, 0, 1, 
2…or 1, 5, 6, 1, 5, 6… . Here, we have just tried to 
narrate the necessity of fairness with example. 

 
8 Case Study 

 
In this section we use the controller part of a 

simple processor, SAYEH and we verify this 
controller by standard CTL.  The architecture of 
this processor is simple, but it has enough 
hardware for our work in formal verification and 
test and testability research.  The processor has a 
16-bit data bus and a 16-bit address bus.  The 
processor has 8 and 16-bit instructions.  Short 
instructions may contain shadow instructions, 
which effectively pack two such instructions into a 
16-bit word. 

 

Decode Exec

Fetch Halt

Reset

 
 

Figure 5:  State machine of SAYEH Controller 
 
The controller of SAYEH has five states: reset, 

halt, fetch, decode, and exec.  External signals 
ExternalReset and instruction control transitions 
between states of this state machine.  The state 
machine of SAYEH controller is shown in Fig. 5. 

With CTL, all properties of this state machine 
are written.  These properties are in three classes.  
With these three classes that are explained below, 
each state machine will be completely verified.  
The three classes are as follows: 

The first class of properties should be checked 
for all states.  This class is divided into three sets 
of properties: 

“There is no deadlock in any state”.  This 
property is expressed in ECTL as Equation (1). 
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“States are reachable from the initial state 
(reset)”.  This property is presented in ECTL as 
Equation (2). 

},,,{
)(

execdecodefetchresetS
SPstateAF

∈∀
=               (2) 

 
“Each state is reachable from any state”.  

This property is shown in ECTL as Equation (3).                      
)!()(( resetPstateEXexecPstateAG =→=    (3) 

 
The second class of properties is different 

from one state to another.  In this class of 
properties “immediate states after each states” 
are checked.  For example: 

)!()(( resetPstateEXexecPstateAG =→=    (4) 
 
The third class of properties is to check 

transitions between states with respect to the 
input signals and instructions.  For example: 

)!(
)1Re&((

resetPstateAX
setExternalexecPstateAG

=
→==  (5) 

 
9 Conclusions 
 

Formal verification replaces simulation in 
certain applications.  For testing the correctness 
of a digital system that consists of FSMs 
verification is efficient and easy to use.  This is 
an exact method and does not require test data.   

Model checking has many important 
advantages over the mechanical theorem provers 
or proof checkers for verification of the different 
hardware and protocols. In the cases like 
protocol design, network design and many 
others where it is more complex and expensive 
to check/test after the implementation, model 
checking can be brilliantly used in those cases to 
find the bug before the implementation. In 
model checking, CTL, an important family of 
temporal logic is effectively and increasing used 
to specify the properties of the model to be 
verified.   
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