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Abstract:- The paper deals with the state estimation problem for impulsive control system described by differential
inclusions with measures. The problem is studied under uncertainty conditions with set–membership description
of uncertain variables which are taken to be unknown but bounded with given bounds (e.g., the model may contain
unpredictable errors without their statistical description). Basing on the techniques of approximation of the discon-
tinuous generalized trajectory tubes by the solutions of usual differential systems without measure terms we study
the dependence of trajectory tubes of the impulsive differential inclusion on system parameters that define the con-
straints on initial data, a variation of impulses, restrictions on measurable controls and may be treated, e. g., as errors
of the system modelling. So the main topic of the paper is to study the problems of the sensitivity of the considered
differential system (and its set-valued solutions) with respect to possible errors.
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1 Introduction

In this paper the impulsive control problem for a dy-
namic systems with unknown but bounded initial states
is studied. Such problems arise from mathematical
models of dynamical and physical systems for which
we have an incomplete description or a loose mode
of time dependence of their generalized coordinates
[1, 2, 3, 4, 5, 6, 7, 8].

We discuss an approach based on ideas of well
known discontinuous time substitution [9]. Using the
techniques of differential inclusions theory [10, 11,
12, 2] we study the dependence of set-valued so-
lutions (trajectory tubes) of the impulsive differential
inclusion on system parameters.

There is a long list of publications devoted to
impulsive control optimisation problems, among them
we mention here only the results related to the present
investigation [13, 14, 6, 15, 16, 17]. The question
arises how the results of classical control theory es-
tablished for uncertain dynamical systems can be ex-
tended to the case of impulsive systems. Our study
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combines both approaches mentioned above and
presents new results related to sensitivity analysis for
differential uncertain systems of impulsive structure.

In this paper we consider a dynamic control sys-
tem described by a differential equation with a usual
control functionu(·) and a measure (or impulsive con-
trol component)v(·):

dx(t) = f(t, x(t), u(t))dt + (1)

+ B(t, x(t), u(t))dv(t), x ∈ Rn, t0 ≤ t ≤ T,

with unknown but bounded initial condition

x(t0 − 0) = x0, x0 ∈ X0. (2)

Hereu(t) is a usual (measurable) control with
constraint

u(t) ∈ U, U ⊂ Rm, (3)

andv(t) is an impulsive control function which is con-
tinuous from the right, with constrained variation

Vart∈[t0,T ] v(t) ≤ µ, (4)

whereµ is a given positive number.
So we consider here the case when the system

control variable consists of two partsw = {u, v} with
the first componentu being of the ordinary type and



the second onev being the measure (or the impulsive
control). We assume also thatf(t, x, u) andn × k-
matrixB(t, x, u) are continuous in their variables.

One of the principal points of interest of the the-
ory of control under uncertainty conditions [1, 4, 5] is
to study the set of all solutions

x[t] = x(t, t0, x0, u, v)

to (1) - (2). The guaranteed estimation problem con-
sists in describing the set

X[·] = X(· , t0, X0) =
⋃

{u(·), v(·)}
{ x[·] | x[t] =

x(t, t0, x0, u, v), x0 ∈ X0 } (5)

of solutions to the system (1) - (2) under constraints
(3) - (4) and thet – cross-section (t – cut) X[t] of
theX[·]. Thet – cutX[t] is actually the attainability
set (the reachable set) of the system at instantt from
the initial set-valued ”state”X0. The setX[t] may be
treated also as the unimprovable set-valued estimate
of the unknown statex(t) of the system (1) - (2) under
restrictions (3) - (4).

The mathematical background for investigations
of set-valued estimatesX[t] ranging from theoretical
schemes to numerical techniques may be found in [1,
4, 5, 18].

Thus, in this paper we actually apply the set-
membership (bounding) approach to the description
and to the studies of the information states for a non-
linear impulsive system with hard bounds on the un-
certain initial states.

2 Problem Formulation

2.1 Uncertain Impulsive Systems with
Parameter Disturbance

In this section we consider a dynamic system of a sim-
pler type described by a differential equation with a
measure

dx(t) = f(t, x(t), u(t))dt + B(t)dv(t), (6)

with unknown but bounded initial condition

x(t0 − 0) = x0, x0 ∈ X0
λ. (7)

Herex ∈ Rn, t0 ≤ t ≤ T and we assume that matrix
function B in (1) depends on time only andu(t) is

a usual (measurable) control with the parameterized
constraint

u(t) ∈ Uλ, Uλ ⊂ Rm,

andv(t) is an impulsive control function which is con-
tinuous from the right, with

Vart∈[t0,T ] v(t) ≤ µλ.

Hereλ is a finite dimensional parameter (λ ∈
Rk) that will be taken as tending to some fixed value
λ0 (obviously without loss of generality we may take
λ0 = 0).

We will study the dependence of trajectory tubes
X[·] of the impulsive differential system on system
parametersλ that define the constraints on initial data,
a variation of impulses, restrictions on measurable con-
trols. These parameter disturbances may be treated, e.
g., as errors of the system modelling or as hard bounds
on admissible system noises.

So the main topic of the paper is to study the
problems of the sensitivity of the considered differen-
tial system (and its set-valued solutions) with respect
to possible errors of modelling.

2.2 Reformulation of the Problem in Terms
of the Differential Inclusions Theory

Along with the system (6)–(7) let us consider a new
system, namely, a differential inclusion of the follow-
ing type

dx(t) ∈ Fλ(t, x(t))dt + B(t)dv(t), (8)

with the initial condition

x(t0 − 0) = x0, x0 ∈ X0
λ. (9)

Here we use the notation

Fλ(t, x) = f(t, x, Uλ) = ∪{ f(t, x, u) | u ∈ Uλ }
for the set-valued mapFλ in (8).

The introduction of this differential inclusion (8)
which we will study further may be motivated by the
well known results given by the control theory [10]
and also by results of the theory of differential inclu-
sions [11, 12].

LetXλ(·, t0, X0
λ) be the set of all solutions to the

inclusion (8) that emerge fromX0
λ (the trajectory tube

related to all initial state vectorsx0 and all admissible
impulse controlsv(t) and defined as in (5)). Denote

Xλ[t] = Xλ(t, t0, X0
λ)



to be its cross-section at instantt. The setXλ[t] is
actually the reachable set of the impulsive differential
inclusion (8) - (9) (or, equivalently, of the impulsive
control system (6) - (7)) from the initial setX0

λ taken
at instantt.

So the main problem given in section 2.1 may
be reformulated in terms of the differential inclusions
theory that is in order to answer the main questions
we need to find first the type of the dependance of
set-valued solutionsXλ[·] of (8) on the variation of
parameter vectorsλ.

3 Problem Solution

3.1 Basic Assumptions

Assume thatFλ is a continuous multivalued map (Fλ :
[t0, T ] × Rn → convRn) that satisfies the Lipschitz
condition with constantsL1, L2 > 0, namely

h(Fλ(t1, x), Fλ(t2, y)) ≤ L1|t1− t2|+L2 ‖ x− y ‖,

∀x, y ∈ Rn, ∀t1, t2 ∈ [t0, T ]

where convRn denotes the space of all compact and
convex subsets ofRn andh(A,B) is the Hausdorff
distance forA, B ⊆ Rn, i.e.

h(A,B) = max {h+(A,B), h−(A,B)},

with h+(A,B), h−(A,B) being the Hausdorff semidis-
tances between setsA,B,

h+(A,B) = sup{d(x,B) | x ∈ A}, h−(A,B) =

h+(B, A), d(x,A) = inf {‖ x− y ‖ | y ∈ A}.
Assume also the Lipschitz continuity of the ma-

trix functionB(t)

‖ B(t1)−B(t2) ‖≤ L3|t1 − t2|, ∀t1, t2 ∈ [t0, T ]

and also the so-called extendability condition ( [10] )

Fλ(t, x) ⊂ c(1 + ||x||)S,

S = { x ∈ Rn | ||x|| ≤ 1 }.
Definition 1. A function x[t] = x(t, t0, x0) (x0 ∈
X0

λ, t ∈ [t0, T ]) will be called a solution (a trajectory)
of the differential inclusion (8) if for allt ∈ [t0, T ]

x[t] = x0 +
t∫

t0

ψ(t)dt +
t∫

t0

B(t)dv(t), (10)

whereψ(·) ∈ Ln
1 [t0, T ] is a selector ofFλ, i.e.

ψ(t) ∈ Fλ(t, x[t]) a.e.

The last integral in (10) is taken as the Riemann-
Stieltjes one. Following the scheme of the proof of the
well-known Caratheodory theorem we can prove the
existence of solutionsx[·] = x(·, t0, x0) ∈ BV n[t0, T ]
for all x0 ∈ X0 whereBV n[t0, T ] is the space ofn-
vector functions with bounded variation at[t0, T ].

3.2 Discontinuous Replacement of Time

Let us introduce a new time variable ( [9, 17, 15] ):

η(t) = t +
t∫

t0

dv(t),

and a new state coordinate

τ(η) = inf { t | η(t) ≥ η }.

Consider the following auxiliary differential inclusion

d

dη

(
z
τ

)
∈ Gλ(τ, z) (11)

with the initial condition

z(t0) = x0, τ(t0) = t0, t0 ≤ η ≤ T + µλ.

Here

Gλ(τ, z) =
⋃

0 ≤ν≤ 1

{
(1− ν)

(
Fλ(τ, z)

1

)
+

+ ν

(
B(τ)

0

) }
. (12)

Let us prove two auxiliary results connected with
two properties of the system (11).
Lemma 1. The mapGλ(τ, z) is convex and compact
valued

Gλ : [t0, T + µλ]×Rn → convRn+1

andGλ(τ, z) is Lipschitz continuous in both variables
τ , z.
Proof. Let us fix some admissibleλ, τ andz. and
prove first thatGλ(τ, z) is a convex set. Take anyg1

andg2 such thatgi ∈ Gλ(τ, z) (i = 1, 2). Then from
(12) we have that there exist numbersν1, ν2 (νi ∈



[0, 1], i = 1, 2) and vectorsf1, f2 ( fi ∈ Fλ(τ, z),
i = 1, 2) such that

gi = (1− νi)

(
fi

1

)
+ νi

(
B(τ)

0

)
.

We need to prove that for anyα (α ∈ [0, 1])

αg1 + (1− α)g2 ∈ Gλ(τ, z).

Denoteν∗ = αν1 + (1− α)ν2 and

f∗ =
α(1− ν1)
(1− ν∗)

f1 +
(1− α)(1− ν2)

(1− ν∗)
f2. (13)

For anyα ∈ [0, 1] we haveν∗ ∈ [0, 1] and the
coefficients in (13) determine the convex combination
of f1, f2. From the convexity ofFλ(τ, z) we conclude
thatf∗ ∈ Fλ(τ, z) and therefore

αg1 + (1− α)g2 = (1− ν∗)

(
f∗
1

)
+

+ ν∗

(
B(τ)

0

)
∈ Gλ(τ, z).

Let us prove now that the setGλ(τ, z) is compact
in Rn+1. It is easy to check thatGλ(τ, z) is bounded
(becauseFλ(τ, z) is assumed to be bounded). So we
need to prove only thatGλ(τ, z) is closed, i.e. if we
have

gn = (1− νn)

(
fn

1

)
+ νn

(
B(τ)

0

)
,

with fn ∈ Fλ(τ, z), νn ∈ [0, 1] andgn → g (n →∞)
then the limitg should belong toGλ(τ, z). Indeed,
basing on the compactness ofFλ(τ, z) and [0, 1] we
can extract converging subsequences

fnk
→ f∗ ∈ Fλ(τ, z), νnk

→ ν∗ ∈ [0, 1].

Sincegnk
→ g (k →∞), we have

g = (1− ν∗)

(
f∗
1

)
+ ν∗

(
B(τ)

0

)
,

thereforeg ∈ Gλ(τ, z). The Lipschitz continuity of
Gλ(τ, z) follows directly from our basic assumptions
given in the section 3.1. So Lemma 1 is proved.

In addition to the above assumptions we will as-
sume further that the initial problem constraints de-
pend continuously on a parameterλ (λ ∈ Rk) in such
a way that

lim
λ→0

h(X0
λ, X0) = 0,

lim
λ→0

h(Uλ, U) = 0, lim
λ→0

µλ = µ.

The next auxiliary property provides the conti-
nuous dependance of the set-valued right-hand side
Gλ(τ, z) of the differential inclusion (11) on a param-
eterλ.
Lemma 2. Under the above assumptions we have

lim
λ→0

h(Gλ(τ, z), G0(τ, z)) = 0, ∀(τ, z) ∈ Rn+1.

Proof. It is the direct consequence of the continuity
of set-valued functionFλ(τ, z).

3.3 Main Results

Denotew = {z, τ} the extended state vector of the
system (11) and consider trajectory tube of this dif-
ferential inclusion (which has no measure or impulse
components):

Wλ[η] =
⋃

w0)∈X0
λ
×{t0}

w(η, t0, w
0), t0 ≤ η ≤ T+µλ.

From Lemmas 1-2 and from the properties of tra-
jectory tubes of ordinary differential inclusions [10, 4]
we can conclude that the following result is valid.
Theorem 1. The limit equality

lim
λ→0

h(Wλ[T + µλ],W0[T + µ]) = 0.

is true.
The next lemma explains the construction of the

auxiliary differential inclusion (11).
Lemma 3. The setXλ[T ] is the projection ofWλ[T +
µλ] at the subspace of variablesz:

Xλ[T ] = πzWλ[T + µλ].

The proof of this Lemma follows from the defi-
nition of the system (11).

Combining Theorem 1 and Lemma 3 we have
the main result of this section concerning the continu-
ity of the time cross-sections of trajectory tubes of the
impulsive differential system on parameters.
Theorem 2. The following equality

lim
λ→0

h(Xλ[T ], X0[T ]) = 0.

is true.
Remark. If we have the additional constraint on the
range of vector measurev(dt) defined by a closed and



convex coneK ⊂ Rk then instead of the auxiliary
system (11) we should consider the following system

d

dη

(
z
τ

)
∈ Gλ(τ, z) (14)

with

Gλ(τ, z) =
⋃

0 ≤ ν ≤ 1

{
(1− ν)

(
Fλ(τ, z)

1

)
+

+ ν

(
B(τ)(K ∩ S)

0

) }
.

The main continuity results given by Theorems 1 and
2 are valid in this case also (but the proofs of analogies
of Lemmas 1-3 become more complicated).

3.4 The Reparametrization Approach

We study in this section the following measure differ-
ential inclusion

dx(t) ∈ F (t, x(t))dt + (15)

+ G(t, x(t))v(dt), ∀t ∈ [0, 1]

x(0) = x0, v(dt) ∈ K
where

F : [0, 1]×Rn → conv(Rn),

G : [0, 1]×Rn → Rn×k, K = C∗([0, 1];K)

andK is a positive pointed convex closed cone inRk.
The first question that arises here is how to define

the solutionx(·) to (15) or to its differential inclusion
interpretation (as it was done in Definition 1 above):

x(t) = x(0) +
t∫

0

f(τ, x(τ))dτ+

+
t∫

0

G(τ, x(·))v(dτ), ∀t ∈ [0, 1],

wheref andG are suitable selections ofF andG.
The main problem in this context is to define cor-

rectly the interaction between the evolving trajectory
and the impulsive integrating measure in (15). We un-
derline here that the trajectoriesx(t) are discontinu-
ous and belong to a space of functions with bounded
variation. Among many results related to treatment of
dynamic systems of this kind let us mention the results

devoted to a precise definition of a solution to (1) es-
pecially for the caseB = B(t, x) [17] and a long list
of publications concerning the optimality conditions
(e.g., [19, 15, 20, 16]).

The approach presented in [16, 7] enables a def-
inition of a solution concept which ensures the well
posedness of the control problem. The technique to
study the parameter continuity conditions is based now
on the reparameterization procedure that reduces the
original problem to an auxiliary conventional one.
Definition 2 [16, 7]. Thereparameterized systemis

ẏ(s) ∈ F (θ(s), y(s))θ̇(s) + G(θ(s), y(s))γ̇(s),

beingγ̇(s) the variation rate of the control measure in
the reparameterized time.

For a givenv and a pair of measurable selections
(f,G) of (F,G), we have a set of reparametrized tra-
jectories satisfying :

Fv,f,G =
{
y(·) : ẏ(s) = f(θ(s), y(s))θ̇(s)+

+G(θ(s), y(s))γ̇(s), γ̇(s) ∈ K,

(θ̇(s), γ̇(s)) ∈ Ω, a.e. in[0, 1]
}

,

where

Ω := {w ∈ R+ ×K :
q∑

i=0

wi = 1},

γ(0) = 0 andγ(η(t)) = v([0, t]), ∀t ∈ [0, 1].
Then, we apply existing conditions to this new

auxiliary problem and express them in terms of the
data of the original problem as it was done in the above
section.

4 Conclusions

We considered here the continuous dependence of the
trajectory tubes (and therefore of the reachable sets)
of the impulsive control system on the variation of
finite dimensional parameter that defines the system
constraints.

The results were achieved by some consequent
steps:

– first, we modify the control problem and intro-
duce instead of it the impulsive differential inclusion
with set-valued solutions;

– second, we invent and study the ordinary dif-
ferential inclusion (in the extended state space) con-
nected with the impulsive inclusion from step 1;



– third, we analyze the properties of set-valued
solutions of the system of step 2, then we return back-
ward and obtain the results concerning the solution of
the initial impulsive problem.

In case when the singular system component de-
pends on the state we apply the time reparametriza-
tion techniques which uses the concept of “robust so-
lution” to measure driven differential inclusions.
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