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Abstract: This paper deals with the minimal rank completion problem when the partial matrixP has
the speci�ed entries equal to zero, and the remaining entries are nonzero variables of a �eld. We give an
upper and a lower bound for the minimal rank ofP and study when these bounds coincide. In this case,
the minimal rank of P is characterized.
Finally, we obtain completions with minimal rank for some classes of pattern matrices as the class of
pattern block band matrices which includes the pattern tridiagonal matrices.
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1 Introduction
Matrix completion problems involve study of par-
tial matrices, that is, rectangular matrices some of
whose entries are speci�ed, and the remainder of
whose entries are free variables of some indicated
set. By a completion of a partial matrix we con-
sider a speci�cation of the free variables yielding a
conventional matrix.
Consider a (zero) pattern matrixP , that is, P is

a partial matrix whose speci�ed entries are equal
to zero, and the remaining entries are nonzero vari-
ables of a �eld. In this paper we ask for those com-
pletions of P with the lowest possible rank.

2 De�nitions
We recall some concepts given in [2, 4]. For a posi-
tive integer n we denote by 〈n〉 the set {1, 2 . . . , n}.
Let A be an m × n matrix and let α ⊆ 〈m〉 and
β ⊆ 〈n〉. We denote by A [α | β] the submatrix of

A whose rows are indexed byα and whose columns
are indexed by β in the order listed.
Two matrices A and B are said to be permuta-

tionally equivalent if there exist permutation ma-
trices P1 and P2 such that A = P1BP2. We recall
the permanent of an n × n matrix A = (aij) by
per(A) =

∑
σ∈Sn

(∏n
i=1 aiσ(i)

)
, where the summa-

tion extends over all permutations of 〈n〉.

De�nition 1 Let G = {V (G), E(G)} be a bipar-
tite graph where the vertex-set is V (G) = VR(G)∪
VC(G), VR(G) = {vi, i ∈ 〈m〉}, and VC(G) =
{wj , j ∈ 〈n〉}.
A set of r edges (vi1 , wj1), . . . , (vir , wjr) in E(G)

is said to be an r-matching (between {vi1 , . . . , vir}
and {wj1 , . . . , wjr}) if vi1 , . . . , vir are distinct and
wj1 , . . . , wjr are distinct.
An r-matching is said to be a constrained r-

matching if it is the only r-matching in G between
{vi1 , . . . , vir} and {wj1 , . . . , wjr}.



De�nition 2 Any m × n matrix A = (aij) over
a �eld F has associated a bipartite graph GA =
{V (GA), E(GA)}. The vertex-set V (GA) has m+n
vertices denoted by V (GA) = {v1, v2 . . . , vm, w1,
w2, . . . , wn} and it is divided into two disjoint sub-
sets V (GA) = VR(GA) ∪ VC(GA) where VR(GA) =
{vi, i ∈ 〈m〉} is associated with the rows of A,
and VC(GA) = {wj , j ∈ 〈n〉} is associated with
the columns of A. The edge-set of GA is the set
E(GA) = {(vi, wj) | aij 6= 0}.

De�nition 3 Let F be an arbitrary �eld. A ma-
trix P is said to be a (zero) pattern matrix, with
respect to F, if each nonzero element is an indepen-
dent indeterminate over F. We denote the nonzero
indeterminate entries by stars. Note that a pat-
tern matrix P is a special partial matrix and it is
also called a generic matrix with respect to F (see
[1, pp. 294]). We use the same notation P [α | β]
for a subpattern of P as we introduce above for a
standard submatrix.
The pattern of a matrix A over F, pattern(A),

is the pattern matrix obtained by replacing every
nonzero entry of A by an indeterminate element
of F. If pattern(A) = P , then A is also called a
completion matrix of P . Note that pattern(A) =
pattern(B) if and only if GA = GB, therefore
any m × n pattern matrix P = (pij) over F is
associated with a bipartite graph GP such that,
(vi, wj) ∈ E(GP ) if and only if the entry pij of
P is an unspeci�ed element of F.
The minimal rank of a pattern matrix P over

F, mr(P ), is de�ned by the number mr(P ) =
min{rank(A) | pattern(A) = P}. Similarly,
MR(P ) = max{rank(A) | pattern(A) = P} de-
notes the maximal rank of P over F.
An n×n pattern matrix P is said to be formally

singular (nonsingular) over F if every matrix over
F with pattern P is singular (nonsingular).

3 A lower bound for the minimal
rank

In this section we obtain a lower bound for the
minimal rank of a pattern matrix P . We consider
some results given by Hershkowitz and Schneider in
[4, Section 3] and we extend them to a �eld with
only two elements by using a di�erent approach.

The implication (1) ⇒ (2) in Lemma 1 is proved
by [1, Theorem 1.4.2] where a (0, 1)-matrix A of
order n with permanent equal to 1 is considered.

Lemma 1 Let F be an arbitrary �eld. Let P be an
m × n pattern matrix, and let r be a nonnegative
integer with 1 ≤ r ≤ min{m,n}. Consider the
following conditions:
1. GP has a constrained r-matching.

2. P has an r × r subpattern permutationally
equivalent to a triangular pattern with nonzero
diagonal entries.

3. P has an r×r subpattern formally nonsingular
over F.

We have, (1)⇔ (2) ⇒ (3). Furthermore, if F is a
�eld of at least three elements, then the three con-
ditions are equivalent.

It is known (see [4, Example 3.6]) that condition
(3) does not imply conditions (1) and (2) whenF
is the �eld {0, 1} with two elements. Moreover, by
Lemma 1 we obtain next Theorem.

Theorem 1 Let F be an arbitrary �eld. Let P be
an m×n pattern matrix, and let r be a nonnegative
integer, 1 ≤ r ≤ min{m, n}. If P satis�es any
condition of Lemma 1, then every matrixA over F
with pattern P has rank(A) ≥ r. Then, mr(P ) ≥ r.

De�nition 4 Let F be an arbitrary �eld. We de-
�ne the maximal triangle size of an m× n pattern
matrix P and denote it by MT(P ) = r, if r is the
maximal nonnegative integer satisfying the condi-
tion (2) of Lemma 1.

Now, we obtain a lower bound for the minimal
rank of a pattern matrix P over F.

Corollary 1 Let F be an arbitrary �eld. Let P be
an m× n pattern matrix, then MT(P ) ≤ mr(P ).

The converse of Theorem 1 holds for the cases
r = 1 or r = min{m, n} (see [4, Theorem 3.4,
Corollary 3.5]).

Lemma 2 Let F be an arbitrary �eld. Let P be an
m × n pattern matrix, and let r be a nonnegative
integer with 1 ≤ r ≤ min{m,n}. Consider the
following conditions:



1. GP has an r-matching.

2. P has an r×r subpattern which is not formally
singular over F.

We have, (1) ⇐ (2). Furthermore, if F is a �eld
of at least three elements, then the two conditions
are equivalent.

Proof:
(2) ⇒ (1) Let Q = P [i1, . . . , ir | j1, . . . , jr] be
a subpattern of P which is not formally singu-
lar over F, then there exists an r × r matrix A
over F with pattern(A) = Q and det(A) 6= 0.
We can suppose that ai1j1ai2j2 . . . airjr 6= 0, that
is, (vi1 , wj1), . . . , (vir , wjr) is an r-matching in GP .
When F is a �eld with at least three elements, (1)
⇒ (2) is established in [4, Lemma 3.7]. ¤
It is known (see [4, Example 3.8]) that condition

(1) does not imply condition (2) in Lemma 2 when
F is the �eld {0, 1} with two elements.
The next result follows easily from Lemma 2. See

also [4, Lemma 3.7] for the necessary condition in
the particular case r = m = n.

Theorem 2 Let F be a �eld of at least three ele-
ments. Let P be an m×n pattern matrix, and let r
be a nonnegative integer with 1 ≤ r ≤ min{m, n}.
P satis�es any condition of Lemma 2 if and only if
there exists a matrix A over F with pattern P and
rank(A) ≥ r. Then, MR(P ) ≥ r.

By Theorem 2 we note that MR(P ) = r, if and
only if, r is the maximal nonnegative integer sat-
isfying any condition of Lemma 2. Note that from
the conditions of Theorems 1 and 2 the results
given in [4, Theorem 3.9] can be obtained.

4 An upper bound for the mini-
mal rank

From Section 3 we have the inequalities,MT(P ) ≤
mr(P ) ≤ MR(P ). Observe that MR(P ) is, in gen-
eral, a bad upper bound for mr(P ), therefore we
introduce a better upper bound for the minimal
rank of P as the next Proposition 2 shows.

De�nition 5 Let F be an arbitrary �eld. Let P
be an m × n pattern matrix. We call a complete

subpattern of P to any subpattern of P with all
nonzero entries. A covering by complete subpat-
terns of P is a collection of complete subpatterns
which cover the nonzero elements of P . The cov-
ering is minimum if no covering has a smaller car-
dinality. The minimum covering number of P ,
bi(P ), is the cardinality of a minimum covering
of P . This de�nition appears in the bipartite graph
theory as the biclique covering number [3, pp. 116]
and [5, pp. 30]. We denote by bi(P ) = bi(GP ) the
biclique covering number of the bipartite graphGP

associated with P . Recall that bi(GP ) is the small-
est number of bicliques (i.e. complete bipartite sub-
graphs) which cover the edges of GP .

Proposition 1 Let P be an m×n pattern matrix
over a �eld F of at least bi(P ) + 1 elements. Then
mr(P ) ≤ bi(P ).
Proof: We construct a completion matrix AP

of P with rank(AP ) ≤ bi(P ), then mr(P ) ≤
rank(AP ) ≤ bi(P ) and the proposition follows.
Let bi(P ) = s, then there exist s complete sub-

patterns of P which cover the nonzero entries ofP ,
and we obtain a decomposition ofP in m× n pat-
tern matrices Pk = (p(k)

ij ) with bi(Pk) = 1, k ∈ 〈s〉.
For each k, let Ak = (a(k)

ij ) be the (0, 1)-
completion matrix of Pk, that is,

a
(k)
ij =





1, if p
(k)
ij = ∗

0, if p
(k)
ij = 0

Note that rank(Ak) = 1. Let AP =
∑s

k=1 Ak,
then pattern(AP ) = P because F is a �eld of at
least s + 1 elements and every entry aij ∈ AP

satis�es 0 ≤ aij ≤ s. Furthermore, rank(AP ) ≤∑s
k=1 rank(Ak) = s and the result follows. ¤
We remark that Proposition 1 does not hold in

general for a �eld of at most bi(P ) elements as one
can see in [4, Example 3.6]. In that case we have
bi(P ) = 2, but mr(P ) = 3 over the �eld {0, 1}.
Nevertheless, the minimum number of elements of
F depends on the structure of the given pattern
matrix P = (pij). This is, if each nonzero entry
pij ∈ P satis�es p

(k)
ij 6= 0, for some integer k, k ∈

〈kij〉, 1 ≤ kij ≤ s, and let t ≥ kij , for all i ∈ 〈m〉,
j ∈ 〈n〉. Then the matrix AP on Proposition 1 can
be a completion matrix of P if F contains at least
the elements of the set {0, 1, 2, . . . , t + 1}.



Proposition 2 Let F be a �eld of at least three
elements. Let P be an m× n pattern matrix, then
bi(P ) ≤ MR(P ).

Proof: Let MR(P ) = r, then by Theorem 2, GP

has an r-matching but GP does not have any t-
matching for t > r. By Frobenius-König Theorem
(e.g. [4, Theorem 3.1]) there exists r lines (rows
and/or columns) that contain all nonzero elements
of P . Suppose, for instance, that i1, i2, . . . , ir1 rows
and j1, j2, . . . , jr2 columns cover the nonzero en-
tries of P , with r1 + r2 = r and ri ≥ 0. Then, we
construct the r1 + r2 complete subpatterns of P ,

P [ip | β], p ∈ 〈r1〉, and pipj 6= 0, ∀j ∈ β ⊆ 〈n〉
P [α | jp], p ∈ 〈r2〉, and pijp 6= 0, ∀i ∈ α ⊆ 〈m〉.
By De�nition 5, bi(P ) ≤ r and the result follows.
¤
We remark that Proposition 2 does not hold

for the �eld {0, 1} (see [4, Example 3.8]) because
bi(P ) = 3, but mr(P ) = MR(P ) = 2.

Theorem 3 Let P be an m×n pattern matrix over
a �eld F of at least bi(P ) + 1 elements, then

MT(P ) ≤ mr(P ) ≤ bi(P ) ≤ MR(P ).

Remark 1 Note that Theorem 3 is a direct con-
sequence of Propositions 1 and 2 when the �eld
has at least 3 elements. However, in the cases
bi(P ) = 0 or 1 the result is clear and no change
needed. In fact, bi(P ) = 0 if and only if P = 0,
and bi(P ) = 1 if and only if P is permutationally
equivalent to a pattern matrix with only one r × s
complete subpattern for some r ∈ 〈m〉, s ∈ 〈n〉,
and the remaining entries are zero. For this pat-
tern matrix P , if F is a �eld of two elements then
MT(P ) = mr(P ) = bi(P ) = MR(P ) = 1 and The-
orem 3 holds.

Remark 2 Let P be a pattern matrix. We are
looking for the equality MT(P ) = bi(P ) of The-
orem 3, because in this case the minimal rank ofP
is characterized. For the trivial cases,MT(P ) = 1
or MT(P ) = min{m, n} the equality holds. In
fact, MT(P ) = 1 when P is a complete pattern
or when P has at least one nonzero row, and ev-
ery other nonzero row has the same pattern to this
one, so P [ nonzero rows | nonzero columns ] is a

complete subpattern that covers all nonzero entries
of P , therefore bi(P ) = 1.
The case MT(P ) = bi(P ) = min{m,n} = m

occurs when P has an m×m diagonal (or triangu-
lar) subpattern with nonzero diagonal entries. Fur-
thermore, in the next section we introduce some
classes of pattern matrices P where the equality
MT(P ) = mr(P ) = bi(P ) holds.

5 Applications: Pattern Block
Band Matrices

From now on, letP be a pattern matrix over a �eld
F of at least bi(P ) + 1 elements.

De�nition 6 We call the n×n pattern matrix P =
(pij) with pij = 0, if and only if, | i − j |> h, 0 ≤
h ≤ n − 1, the pattern band matrix of bandwidth
2h + 1.

The trivial cases when h = 0 and h = n − 1
have been studied in Remark 2. From now on, we
consider that h satis�es 1 ≤ h ≤ n− 2, and obtain
the following result.

Proposition 3 Let P be the n × n pattern band
matrix of bandwidth 2h + 1, then mr(P ) = n− h.

Proof: Note that MT(P ) ≥ n − h by considering
the (n − h) × (n − h) triangular subpattern of P
given by P [1, 2, . . . , n−h | h+1, . . . , n]. Otherwise,
we consider the position of the nonzero entries of
P , and denote by Bk = P [k, k + 1, . . . , k + h |
k, k+1, . . . , k+h], k ∈ 〈n−h〉, the (h+1)×(h+1)
complete subpatterns ofP which cover the nonzero
elements of P , then bi(P ) ≤ n − h. By Theorem
3, we have mr(P ) = n− h. ¤

Remark 3 Let P be the n × n pattern band ma-
trix of bandwidth 2h + 1, and let {Bk}n−h

k=1 the
(h+1)×(h+1) complete subpatterns in a minimum
cover of P of Proposition 3. Then a minimal rank
completion matrix AP = (aij)n

i,j=1 of P is obtained
in a similar way as Proposition 1 shows, that is,

aij =





0, if aij 6∈ Bk, ∀k ∈ 〈n− h〉
1, if aij ∈ Bk, for one k ∈ 〈n− h〉
... ...
n− h, if aij ∈

⋂n−h
k=1 Bk



In fact, by Proposition 1 we have rank(AP ) ≤
bi(P ) = n − h. By Proposition 3 we obtain
rank(AP ) ≥ mr(P ) = n−h, then rank(AP ) = n−h
and AP is a minimal rank completion matrix of the
pattern band matrix P of bandwidth 2h + 1.

Remark 4 Let P be an n × n real pattern band
matrix of bandwidth 2h+1. If h is a positive integer
satisfying

n− 1
2

< h ≤ n− 2

then the study ofmr(P ) is equivalent to considering
the smaller pattern band matrix of size (2(n−h)−
1)×(2(n−h)−1) obtained by deleting the rows and
columns with indices {n−h, n−h+1, . . . , h} of P
because they are duplicate rows (and columns).

De�nition 7 We call an n×n pattern matrix P =
(pij) a pattern block band matrix if

1. pii 6= 0, for all i ∈ 〈n〉,

2. pij 6= 0 if and only if pji 6= 0,

3. pij = 0 implies pik = 0, for k > j.

The bandwidth is 2h + 1, where h is the smallest
number such that | i − j |> h implies pij = 0 for
all i, j ∈ 〈n〉.
Note that the class of pattern block band matri-

ces is the class of pattern matrices with block di-
agonal nonzero entries, and the rest of entries are
zero. Furthermore, the diagonal blocks could have
the same sizes, so this class includes the class of
pattern band matrices where the diagonal blocks are
all (h + 1)× (h + 1) ( see De�nition 6).

Remark 5 In Propositions 4 and 5 we have a pat-
tern block band matrix P with bi(P ) = s, and con-
sider the position of the nonzero entries ofP , then
we denote by {Bk}s

k=1 the wk × wk complete sub-
patterns which cover the nonzero elements ofP in
a similar way as the proof of Proposition 3 intro-
duces for the case of pattern band matrices. Fur-
thermore, we suppose that eachBk has intersection
with Bk+1 in a nk×nk complete subpattern for any
nk ∈ 〈wk− 1〉, k ∈ 〈s− 1〉. It is easy to obtain that
h = max1≤k≤s{wk} − 1.

Proposition 4 Let P be an n × n pattern block
band matrix of bandwidth 2h + 1. Then MT(P ) =
mr(P ) = bi(P ).

Proof: Let bi(P ) = s. By Theorem 3 we only
need to prove that MT(P ) ≥ s, that is, we try
to construct an s × s triangular subpattern of P
with nonzero diagonal entries. By Remark 5, the
triangular subpattern is given by the s rows

{1, w1 − n1 + 1, . . . ,
s−1∑

k=1

wk −
s−1∑

k=1

nk + 1}

and the s columns of P

{w1, w1 + w2 − n1, . . . ,

s∑

k=1

wk −
s−1∑

k=1

nk}

i.e., we consider the �rst row and the last column
of each Bk, k ∈ 〈s〉. ¤

Remark 6 Let P be a pattern block band matrix.
By Remark 3, it is easy to construct a minimal rank
completion matrix of P . Otherwise, not only we
can obtain bi(P ) by graph theory, but also Proposi-
tion 5 gives the possible positive integers forbi(P ).
Note that the upper boundn−h is the result when a
pattern band matrix is considered (Proposition 3).

Proposition 5 Let P be an n × n pattern block
band matrix of bandwidth 2h + 1, then

n− 1
h

≤ bi(P ) ≤ n− h, h ∈ 〈n− 2〉.

Proof: Denote s = bi(P ). By Remark 5 one can
obtain the following relation between the size ofP
and the size of each Bk, k ∈ 〈s〉

s∑

k=1

wk −
s−1∑

k=1

nk = n

Since h = max1≤k≤s{wk} − 1, then ∑s
k=1 wk ≤

s(h + 1). From ∑s−1
k=1 nk ≥ s− 1, we have

n =
s∑

k=1

wk −
s−1∑

k=1

nk ≤ s(h + 1)− (s− 1) = sh + 1

that is, n−1
h ≤ bi(P ).



Now, let wk1 = max1≤k≤s{wk} = h + 1, then
n =

∑s
k=1 wk −

∑s−1
k=1 nk =

∑k1−1
k=1 (wk − nk) + h + 1 +

∑s−1
k=k1

(wk+1 − nk)

≥ (k1 − 1) + h + 1 + (s− k1) = h + s. ¤

Example 1 Let P be the 11×11 real pattern block
band matrix of bandwidth 9,

P =




∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗




,

where the zero entries of P are not introduced. We
can see that bi(P ) = 6, and

w1 = 3, w2 = 4, w3 = 5, w4 = 4, w5 = 4, w6 = 2
n1 = 2, n2 = 3, n3 = 3, n4 = 2, n5 = 1.

By using the proof of Proposition 4, we construct
the triangular subpattern Q = P [1, 2, 3, 5, 7, 10 |
3, 5, 7, 8, 10, 11] of P , then 6 ≤ MT(P ) ≤ mr(P ) ≤
bi(P ) = 6. By Remarks 3 and 6, one can obtain
the following completion matrix AP of P (the zero
entries are not introduced)

AP =




1 1 1
1 2 2 1 1
1 2 3 2 2 1 1

1 2 2 2 1 1
1 2 2 3 2 2 1

1 1 2 2 2 1
1 1 2 2 3 2 1 1

1 1 2 2 1 1
1 1 1 1
1 1 1 2 1

1 1




As rank(AP ) = 6, then AP is a minimal rank com-
pletion of P . Finally, for this example, the inequal-
ity in Proposition 5 is

10
4
≤ 6 ≤ 7

The lower bound bi(P ) = 3 is obtained if we con-
sider an example with w1 = w2 = 5, w3 = 3
and n1 = n2 = 1. Otherwise, the upper bound
bi(P ) = 7 appears for wk = 5, k ∈ 〈7〉 and nj = 4,
j ∈ 〈6〉, which represents an 11 × 11 pattern block
band matrix of bandwidth 9.

6 Conclusion
In this work we obtain a lower and an upper bounds
for the minimal rank of any rectangular pattern
matrix. We apply these bounds to characterize the
minimal rank for some classes of square pattern
matrices as the class of pattern block band matrices
which includes the class of pattern band matrices,
and illustrate our theoretical results in the �nal
example.
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