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SERBIA AND MONTENEGRO
Abstract: - In our trials to do contributions to the conjectures about expanding some products,which Peter Borwein established, we made a lot of useful programs for their discussions. They enabled us to prove some properties od such expansions and more often to nominate new conjectures. We think that they can be useful in final proof.
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1 Introduction
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Also, for a number 
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The polynomial 
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 We can expand it in the next way
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Next we will denote 
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 when it is clear which value of 
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corresponds to noted polynomial. The program 
GenerateJA [ns_, ne_, m_, q_]
is our program which generates the polynomials 
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 It uses temporary function J [n_, m_, q_] which generates product 
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J[n_, m_, q_] :=

Expand[Product[Product[1 –  q^(m*i + j), {j, 1, m - 1}],{i, 0, n - 1}]];

GenerateJA[ns_, ne_, m_, q_] := Block[{T, t, A, h, j, n, k},

  Clear[q]; k = m;
  n = ne - ns + 1;

  A = Table[Table[0, {i, m}],
  {j, n}];

  For [j = 1, j <= n, j++,

    T = J[j + ns - 1, m, q];

    t = Length[T];

    For [h = 1, h <= t, h++,

      d = PolyDegree[T[[h]]];

      A[[j, 1 + Mod[d, m]]] +=
      T[[h]];

      ];

    Do[ 
      A[[j, l]] = 

        Expand[ReplaceAll[A[[j, 
        1]]/q^(l - 1), q -> 
        q^(1/m)]], {l, 1 , m}];

    Do [A[[j, l]] = -A[[j, l]],
    {l, 2, m}];
    ];

Return[A]; 
]; (* End Function *)
We have used temporary MATHEMATICA function  PolyDegree[p_] for computing degree of polynomial 
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. At first, the function J[n_, k_, q_] expands product (1). Then loop of variable 
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 collecting in the matrix  
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In a personal communication in 1990., Peter Borwein had conjectured that all polynomials 
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According to results obtained by our programs, we can establish two  conjectures.

Conjecture 1. (The first Borwein type conjecture)  
For any number 
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For 
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Conjecture 2. (The second Borwein type conjecture)  For any even number 
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Example 1.1. For concrete values 
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2 The matrix form

Let 
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. Our functi-on Make [n_, m_, q_] finds matrix 
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Make[n_, m_, q_] :=

Block[{Var, h, i, j, l, T, t, Anm1, An, A, Tmp, Tm, tm, Tm1},

  Clear[Var];

  A =0* IdentityMatrix[m];

  T = ExpandAll[Product[1 - q^(m*(n
      - 1) + j),{j, 1, m - 1}]];

  Anm1 = ExpandAll[Var[0] – Sum 

        [Var[i]*q^i, {i, m - 1}]];

  An = ExpandAll[Anm1*T];

  t = Length[An];

  For [h = 0, h <= m - 1, h++,

    Tmp = Coefficient[An, Var[h],
      1];

    t = Length[Tmp];

    For [j = 1, j <= t, j++,

      Tm=ReplaceAll[Tmp[[j]], n ->
        (m+1)];

      tm = Mod[PolyDegree[Tm], m];

      Tm1 = ExpandAll[ReplaceAll[

        Tmp[[j]]/q^tm, q -> 

                      q^(1/m)]];

      If[tm > 0, Tm1 = -Tm1];

      A[[tm + 1, h + 1]] += Tm1; 
    ]; 
  ];

  Return[A]; 
];

The main idea is to represent (1) in a form
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where
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When we replace 
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 with (2), and expand right side by collecting addends corresponding to same 
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The matrix 
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 is represented by Anm1 in our program and right side of equation (4) is computing with An = ExpandAll[Anm1*T]; where  
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 are represented via array of temporary symbolic variables Var[j]. First we take addends with common  Var[h] in variable  Tmp. Then, we are grouping ad-dends corresponding to 
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Example 2.1. For 
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Relation (3) can be used for computing  The next algorithm computes 
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 by using the relation (3) for given matrix 
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 which can be computed by the function  Make [n_, m_, q_].
MatrixGenerator[nn_, k_, q_, F_] 
             := Block[{AaA, i, j},   
  Clear[AaA];

  AaA[0] = Insert[Table[0, {j, 
                k - 1}], 1, 1];

  Do[AaA[i + 1] = ExpandAll[
    ReplaceAll[F, n -> (i + 1)].
      AaA[i]];  , {i, 0, nn - 1}];

  Return[Table[AaA[i], {i, 1,
                           nn}]]; 
];

Here input matrix 
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 is functional matrix of symbolic variables 
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 and 
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3  Fundamental recurrence relation

It seems to be of great importance to find separate recurrence relations for the sequences 
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. Program Fundamental [F] finds funda-mental recurrence relation for matrix computed by function Make [n_, m_, q_].

Fundamental[F_] :=

Block[{Sys, J, J1, h, i, n, d, M,
                        A, CF},

  Clear[Var];

  {d, d1} = Dimensions[F];

  A = Table[0, {d + 1}]; 
  M = IdentityMatrix[d];

  A[[1]] =

    Var[1, 1] -    

       {First[ReplaceAll[F, 
                n -> n + 1]]}.

    Table[{Var[i]}, {i, d}];

  Do [

    M = ExpandAll[ReplaceAll[F, 
           n -> n + h - 1].M];

    A[[h]] =

      Collect[ExpandAll[{{Var[1,
                  h]}} - {First[

      ReplaceAll[F, n -> n + 
                        h]]}.M.

      Table[{Var[i]}, {i, d}]],

      Table[Var[i], {i, d}]];

    , {h, 2, d + 1}

  ]; (* End Do h*)

  Sys = Table[A[[h, 1, 1]] == 0,
  {h, 1, d - 1}];

  Print["Simplifying system....."];

  Sys = Simplify[Sys];

  Print["Solving....."];

  sol = Solve[Sys, Table[Var[i], 
  {i, 2, d}]];

  Print["Simplifying   

            solution....."];

  sol = Simplify[sol,
         TimeConstraint -> 600];

  J = ReplaceAll[A[[d, 1, 1]],
      sol[[1]]];

  Print["Simplifying J....."];

  J = Simplify[J];

  J = Collect[J, Union[{Var[1]},

     Table[Var[1, i], {i, 1, d}]]];

  Return[J];

];

Main idea is to make a system of 
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Also, it holds
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Previous equations, for 
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which is fundamental recurrence equation of sequence 
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In the first Do - loop, we are forming equations (5). Product 
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 is computing iterati-vely and is represented by 
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. Equations are storing in variable 
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 and are being computed by definition in body of loop. Next, we are solving formed system, replacing solution to 
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The next theorems deal with general recurrence relation for concrete values 
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Theorem 3.1. For 
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with only difference in initial values.
Theorem 3.2. For 
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with only difference in initial values:


[image: image108.wmf]1,01

234

2

:1,1,

12,

nn

Aq

qqqq

===+

=++++

FFF

F



[image: image109.wmf]3

2,012

:1,1,1,

nn

Aqq

====++

FFFF



[image: image110.wmf]23

3,012

:1,1,1.

nn

Aqq

====++

FFFF


We have generated recurrence equations for 
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, but these relations are rather complicated, and that is why they are not presented here. Also for 
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 our program needs large amount of time to produce the result, because polynomial and rational expressions obtaining by our program are so large. Also, the matrices 
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4 Reciprocal polynomials 

Let us notice some reciprocal polynomials.

Theorem 4.1. The polynomial 
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Proof. Starting from
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i.e.
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wherefrom conclusions follow. (  
5 The zeros

Let us remind that a polynomial
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We will denote by 
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where 
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Obviously, 
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Now, the coefficients of the polynomial
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and the sums 
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wherefrom we get much faster algorithm for evalua-ting of the coefficients 
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. Next is a code of function GenerateNewtonAi[n_, m_, q_] which generates vector 
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GenerateNewtonAi[n_, m_, q_] :=

    Module[{dgJ, h, j, k, l, m, n,
                  s, a, list, mm},

      dgJ = (m - 1)*m/2*n^2;

      Do[s[nn] =

         Sum[(m*k + j)*
             KroneckerDelta[
             Mod[nn, m*k + j], 0],

             {j, 1, m - 1}, 
             {k, 0, n - 1}];

             , {n, 1, dgJ}];

      a[0] = 1; a[1] = -s[1];

      Do[

        a[mm] = -(s[mm] +   

        Sum[a[j]*s[mm - j], 
        {j, 1, mm - 1}])/mm;

        , {mm, 2, dgJ}];

      list = Table[0, {i, 1, m}];

      list[[1]] = Sum[a[m*k]*q^k,
              {k, 0, dgJ/m}];

      Do[

        list[[i]] = 
          -Sum[a[m*k + i - 1]*q^k,
          {k, 0, dgJ/m - 1}];

          , {i, 2, m}];

      Return[list];

      ];
Note that values of 
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6 Conclusion
In this paper, we presented some algorithms and programs for analyzing conjectures of Borwein type. There are presented 3 algorithms for computation of polynomials 
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. From the computed polynomials, we conjectured two generalizations of Borwein conjecture. Next we made a programs for computing the matrix 
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 in recurrence relation (3), and separate (fundamental) recurrence relation for the sequence 
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. Also we presented some theoretical results obtained by our programs. For further research, it seems to be interesting to consider sequence 
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 are positive and small, and relation (6) makes a nice recurrent connection between coefficients of polynomials 
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