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Abstract: In the dynamic analysis of structures condensation methods are often used to reduce the num-

ber of degrees of freedom to manageable size. The approximation properties of these methods can be

enhanced considerably taking advantage of the exactly condensed problem and the corresponding Rayleigh

functional or by using general masters. In this note we discuss how to combine these two approaches.
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1 Introduction

In the analysis of the dynamic response of struc-

tures using �nite element methods very often pro-

hibitively many degrees of freedom are needed to

model the behaviour of the system suÆciently ac-

curate. Static condensation is frequently employed

to economize the computation of a selected group

of eigenvalues and eigenvectors. These methods

choose from the degrees of freedom a small num-

ber of master variables which appear to be repre-

sentative. Neglecting inertia terms the remaining

variables (termed slaves) are eliminated leaving a

much smaller problem for the master variables only.

It has frequently been noted in the literature

that the quality of the eigenvalue and eigenvector

approximations produced by static condensation is

satisfactory only for a very small part of the lower

end of the spectrum and several attempts have been

made to improve the approximation properties (cf.

[6], [7], [8], [10], [11], [12], [13], [14], [15], e.g.). Most

of these approaches are very time consuming since

every wanted eigenvalue has to be corrected individ-

ually by an iterative process and each iteration step

requires the solution of a large linear system.

In [13], [15] we took advantage of properties

of the exactly condensed eigenvalue problem which

is a nonlinear eigenvalue problem T (�)u = 0 and

which is equivalent to the original problem. For T a

Rayleigh functional exists which has similar prop-

erties as the Rayleigh quotient of a linear eigen-

problem. In particular, the eigenvectors of T (�)

are stationary points of p. Hence, evaluating the

Rayleigh functional at the eigenvectors of the con-

densed problem improves the quality of the corre-

sponding eigenvalue approximations substantially.

The improvements can be obtained at very low cost

if condensation is combined with substructuring and

the masters are chosen to be interface degrees of

freedom of the substructures.

Incorporating general masters into the conden-

sation process a di�erent enhancement of the ap-

proximation properties was derived in [10]. This

method has the advantage of being able to choose

more suitable generalized coordinates than just the

displacements at some master nodes. Hence a priori

information of the eigenmodes such as eigenmodes

of similar structures considered in reanalysis (cf. [4])

or prolongations of eigenvector approximations ob-

tained on a coarser grid can be implemented into the

condensation process. The disadvantage is that usu-

ally in the presence of general masters the Rayleigh

functional of the corresponding exactly condensed
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problem can no longer be evaluated at low cost.

In this note we combine the bene�ts of both ap-

proaches. We �rst determine approximate eigenval-

ues ~�j and eigenvectors ~uj from a condensed eigen-

value problem where we take advantage of general-

ized masters. We restrict the eigenvector approxi-

mations to the interface masters of a suitable sub-

structuring, and we evaluate the Rayleigh functional

of these restrictions yielding enhancements of some

of the ~�j at low cost.

The paper is organized as follows: In Section

2 we brie
y sketch condensation in the presence

of generalized masters. Section 3 introduces the

Rayleigh functional of the exactly condensed prob-

lem and its eÆcient evaluation if the masters are

chosen as displacements at the interfaces of a sub-

structuring. The improvement of eigenvalue approx-

imations from a condensed problem in the presence

of general masters is discussed. Finally, in Section

4 we demonstrate the eÆciency of the approach by

a numerical example.

2 General Masters in Condensation

We consider the general eigenvalue problem

Kx = �Mx (1)

where K 2 IR(n;n) and M 2 IR(n;n) are symmetric

and positive de�nite matrices which are usually the

sti�ness and mass matrix of a �nite element model

of a structure, respectively.

To reduce the number of degrees of freedom

Irons [5] and Guyan [2] suggested to choose a small

number of unknowns xm which are to be retained

und to rewrite (1) into the block form

"
Kmm Kms

Ksm Kss

# "
xm
xs

#
= �

"
Mmm Mms

Msm Mss

# "
xm
xs

#

(2)

Neglecting the inertia terms in the second equa-

tion, solving for xs, and substituting xs into the

�rst equation one obtains the statically condensed

eigenproblem

~K0xm = � ~M0xm (3)

where

~K0 := Kmm �KmsK
�1
ss Ksm;

~M0 :=Mmm �KmsK
�1
ss Msm

�MmsK
�1
ss Ksm +KmsK

�1
ss MssK

�1
ss Ksm:

(4)

This reduction is called nodal condensation. It has

the disadvantage that it produces accurate results

only for a small part of the lower end of the spec-

trum. In [10] the approximation properties were

enhanced substantially by general masters.

Let z1; : : : ; zm be linearly independent master

vectors, and supplement it by a basis ym+1; : : : ; yn
of the orthogonal complement of spanfz1; : : : ; zmg.

If we de�ne Z := (z1; : : : ; zm) 2 IR(n;m) and Y :=

(ym+1; : : : ; yn) 2 IR(n;n�m) then x has the unique

representation

x = Zxm + Y xs:

If we insert this into the original problem (1)

and premultiply it by (Z; Y )T we obtain the follow-

ing eigenvalue problem"
Kzz Kzy

Kyz Kyy

# "
xm
xs

#
= �

"
Mzz Mzy

Myz Myy

# "
xm
xs

#

(5)

where for L 2 fK;Mg

Lzz := ZTLZ; Lzy := ZTLY =: LT
yz; Lyy := Y TLY:

(6)

Therefore, the sti�ness and the mass matrix

have been decomposed with respect to the spaces

Z and Y in a similar way as in (2), and indeed it

covers the special case of nodal condensation by set-

ting (Z; Y ) := In.

In principle equation (5) could be employed

to reduce the eigenvalue problem (1) using

fz1; : : : ; zmg as master degrees of freedom. How-

ever, since in practice only the small set of mas-

ters is available, but the large set of slave vec-

tors fym+1; : : : ; yng is de�nitely not the matrices

Kzy;Kyy;Mzy;Myy are usually not at hand. Hence,

the straightforward transfer of (3), (4) to problem

(5) to perform the reduction in the presence of gen-

eral masters does not apply. In [10] it has been

shown how to generate the condensed problem cor-

responding to the decomposition (5) with the basis

z1; : : : ; zm only.

Theorem 1 Let Z = (z1; : : : ; zm) 2 IR(n;m) have

maximal rank. Then the condensed eigenvalue prob-

lem with general masters z1; : : : ; zm is given by

P TKPxm = �P TMPxm (7)

with the projection matrix

P = K�1Z
�
ZTK�1Z

�
�1

ZTZ: (8)
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Since
�
ZTK�1Z

�
�1

ZTZ 2 IR(m;m) is a nonsin-

gular matrix the condensed problem is equivalent to

the projection of problem (1) to the space spanned

by the columns of K�1Z. Hence, equation (8)

demonstrates that condensation is nothing else but

one step of simultaneous inverse iteration with ini-

tial space X := M�1Z. This observation indicates

that we can expect good eigenvalue and eigenvector

approximations from the condensed problem (7) if

we introduce general masters zj := Mxj where xj
denotes approximate eigenvectors of (1). Here we

have in mind known eigenvectors of a similar struc-

ture as in eigenreanalysis (cf. [4], [9], [18]) or known

vibration modes of substructures as in component

mode synthesis (cf.[1], [16], [17]) or prolongations

of known approximate eigenvectors obtained on a

coarser grid (cf. Section 4).

3 Improvement by Rayleigh Functional

A di�erent approach for improving condensation is

to take advantage of the properties of the exactly

condensed problem which is obtained by solving the

second equation of (2) for xs and substituting xs in

the �rst equation. One gets a nonlinear eigenvalue

problem

T (�)xm = 0: (9)

It is well known that T (�) can be given a more

convenient form if modal properties of the slave

problem are exploited. Let � 2 IR(s;s) and 
 :=

diagf!jg 2 IR(s;s) be the modal matrix and the spec-

tral matrix of the slave eigenvalue problem

Kss� = !Mss�; (10)

respectively, such that �TMss� = I and �TKss� =


. Then T (�) can be rewritten as (cf. Leung [8])

T (�) = �K0 + �M0 + SD(�)ST (11)

whereK0 andM0 are the reduced sti�ness and mass

matrix of the statically condensed problem, and

S :=Mms��Kms�

�1; D(�) := diag

(
�2

!j � �

)
:

By the way, this representation demonstrates that

the statically condensed problem is the linearization

of the exactly condensed problem at �̂ = 0.

Let ! be the smallest eigenvalue of the slave

eigenproblem (10), and let J := (0; !). Then for

every �xed vector u 2 IRm, u 6= 0, the real valued

function

f(�; u) : J ! IR; � 7! f(�; u) := uTT (�)u;

i.e.

f(�; u) = �uTK0u+ �uTM0u+
sX

j=1

�2j�
2

!j � �
(12)

with

�j := �Tj Msmu�
1

!j
�Tj Ksmu

is strictly monotonely increasing. Hence, the non-

linear equation f(�; u) = 0 has at most one solution

in J . Therefore, it implicitly de�nes a functional

p : IRm
� D(p)! J; f(p(u); u) = 0;

which is called the Rayleigh functional of the non-

linear eigenproblem (9).

The Rayleigh functional has similar properties

as the Rayleigh quotient for linear eigenproblems.

In particular, the eigenvalues of problem (1) con-

tained in J which are identical to the eigenvalues

of the nonlinear eigenvalue problem (9) in J can be

characterized as minmax values of p, and the eigen-

vectors of T (�) are stationary vectors of p (cf. [15]).

Thus, if �u 2 D(p) is a �rst order approximation of

an eigenvector then p(�u) will be a second order ap-

proximation of the corresponding eigenvalue. Eval-

uating the Rayleigh functional at the eigenvectors

of the statically condensed problem (which are ac-

tually contained in D(p)) therefore should improve

the corresponding eigenvalue approximations con-

siderably.

At a �rst glance this observation seems to be

of doubtful use since all eigenvalues and eigenvec-

tors of the slave eigenvalue problem (10) are needed

to evaluate the Rayleigh functional at some vector

u 2 IRm, and the dimension s of the slave prob-

lem usually will be nearly as big as n, the dimen-

sion of the original problem. However, if we com-

bine condensation with substructuring, i.e. if we de-

compose the structure under consideration into r

substructures and if we choose the masters as the

interface degrees of freedom of the substructures

such that the substructures connect to each other

through master variables only then (numbering the

slave variables appropriately) the sti�ness matrix is
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given by

K =

2
6666664

Kmm Kms1 Kms2 : : : Kmsr

Ksm1 Kss1 O : : : O

Ksm2 O Kss2 : : : O
...

...
...

. . .
...

Ksmr O O : : : Kssr

3
7777775

and the mass matrix M has the same block form.

Hence, the slave problem (10) splits into r indepen-

dent eigenvalue problems

Kssj�ji = !jiMssj�ji; j = 1; : : : ; r:

The coeÆcients �j of the rational function in (12)

can be determined substructurewise, and f obtains

the form

f(�; u) := �uTK0u+ �uTM0u

+
rX

j=1

sjX
i=1

�2

~!ji � �

�
�TjiMsmju�

1

!ji
�TjiKsmju

�2

=: ��0 + ��1 +
rX

j=1

sjX
i=1

�ji
�2

~!ji � �
(13)

where sj denotes the number of slave degrees of free-

dom in the j-th substructure.

Moreover, a considerable saving of work can

be made by the observation that usually the sub-

structures are much sti�er than the entire struc-

ture. Hence, only very few substructure modes have

to be considered in the evaluation of the Rayleigh

functional to achieve an eigenvalue approximation

of good accuracy. Consequently we replace the

Rayleigh functional by the solution ~p(u) 2 J of a

curtailed rational function

~f(�; u) =: ��0 + ��1 +
rX

j=1

~sjX
i=1

�ji
�2

~!ji � �

where ~sj � sj, j = 1; : : : ; r. Notice, that for

a given eigenvector approximation u the function

� 7! ~f(�; ~u) is monotonely increasing and convex,

and therefore the solution ~p(u) of ~f(�; u) = 0 can

be computed easily with Newton's method.

Of course these considerations hold if we replace

the decomposition (2) by (5). However, in the pres-

ence of general masters the matrices Kyy and Myy

are not at hand and therefore the Rayleigh func-

tional can not be evaluated using the representation

of T (�) in (11). In [3] it has been shown that the

following iteration

wk := (K � �kM)�1X(XT (K � �kM)�1X)�1u

�k+1 :=
wT
kKwk

wT
kMwk

converges locally to the value p(u) of the Rayleigh

functional. However, this iteration requires the so-

lution of a large linear system in every step similarly

as in the approaches in [7], [8], [11] or [14].

The way out is to combine the merits of two

condensation methods, i.e. to use preinformations

on eigenvectors of problem (1) as general masters

to determine reasonable eigenvector approximations

u1; : : : ; uk of a reduced problem, to determine re-

strictions ~uj of uj to the interface degrees of free-

dom of a suitable substructuring, and to improve

the eigenvalue approximations by ~p(~uj) where ~p(~uj)

denotes the root of the curtailed rational function
~f(�; ~uj) corresponding to the chosen substructuring.

In [9] and [4] we developed parallel condensation

methods for the case that the interface masters of a

substructuring are complemented by a small num-

ber of approximate eigenvectors as general masters.

In this case the quadratic forms �0 := ~uTK0~u and

�1 := ~uTM0~u in (13) can obtained easily from the

data produced when determining the reduced prob-

lem, and the additional cost to evaluate the modi�ed

curtailed Rayleigh functional are negligible.

4 A numerical example

We consider the free vibration problem of a uniform

thin clamped plate covering the rectangular region


 := (0; 4)� (0; 3) which are governed by the eigen-

value problem

�2u = �u in 
; u =
@u

@n
= 0 on @
:

We discretized this problem by Bogner-Fox-Schmidt

elements (with node variables u, ux, uy and uxy) on

a quadratic mesh of meshsize h = 0:1 and obtained

a discrete problem of dimension n = 4524. Divid-

ing 
 into 12 identical substructures each of them

being a square of sidelength 1 and choosing all in-

terface degrees of freedom as masters we obtained a

reduced problem of dimension m = 636.

For the 10 smallest eigenvalues of the discrete

problem Fig. 1 displays the relative errors of the

approximations of the nodally condensed problem,

its improvement by the Rayleigh functional, and
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the chopped Rayleigh functional where only 3 eigen-

modes of each of the 12 substructures were consid-

ered.

We discretized the plate problem with Bogner-

Fox-Schmidt elements with stepsize h = 1 resulting

in a matrix eigenvalue problem of dimension 24. We

prolongated the eigenvectors corresponding to the 4

smallest eigenvalues to the �ne grid by bi-cubic in-

terpolation, multiplied them by the mass matrixM ,

and used these vectors as additional general mas-

ters. Table Fig. 2 contains the relative errors of the

condensed problem, of the Rayleigh functional and

of the modi�ed Rayleigh functional considering only

the nodal masters on the interfaces of the substruc-

tures. The eigenvalue approximations of the small-

est 4 eigenvalues are improved by 3 orders of mag-

nitude whereas the higher eigenvalues are e�ected

not very much. Notice that the Rayleigh function-

als and its modi�cation are of the same quality.

Fig. 3 shows the relative errors of the approx-

imations by the curtailed modi�ed Rayleigh func-

tional if we take into account 1, 3, 4, 8 and 16 slave

eigenmodes of each substructure, respectively. We

did not consider the case of 2 slave eigenmodes since

the second eigenvalue of each substructure has mul-

tiplicity 2. The higher eigenvalue approximations

gain a good deal of accuracy even for a small num-

ber of slave eigenmodes considered in the curtailed

Rayleigh functional wheres the outstanding approx-

imation properties for the smallest 4 eigenvalues

are deteriorated. Before determining the eigenvec-

tor approximation one should choose the minimum

of the Rayleigh functional and the corresponding

eigenvalue of the condensed problem as eigenvalue

approximation.
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