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Abstract: - Vibration signals resulting from rolling element bearing defects, present a rich content of physical
information, the appropriate analysis of which can lead to the clear identification of the nature of the fault.
This paper proposes a  method for  processing of signals resulting from rolling element bearing defects, based
on the use of a  shifted  wavelet filter  family. Using a time-frequency representation of the signal, the method
is designed in a way that can exploit the underlying physical concepts of the modulation mechanism, present
in the vibration response of bearings with localized defects. Systematic  selection criteria for the choice of the
critical parameters that characterize the  wavelet family are used. Experimental results and industrial
measurements for  different types of bearing faults confirm the validity of the overall approach.
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1   Introduction
Bearings are of great importance to almost all

kinds of rotating machinery, and are among the
most  frequently encountered components in the vast
majority of rotating machines. As a consequence of
their importance and widespread use, bearing failure
is one of the main causes of breakdown of rotating
machinery. Therefore, quite naturally, fault
identification of rolling element  bearings has been
the subject of extensive research [1].

Vibration analysis has been established as the
most common and reliable analysis method. Defects
or wear cause impacts at frequencies governed by
the operating speed of the unit and the geometry of
the bearings, which in turn are modulated by
machine natural frequencies. The signature of a
damaged bearing consists of exponentially decaying
ringing that occurs periodically at the characteristic
defect frequency. A corresponding well-established
physical model has been proposed in [2]. The
location dependent characteristic defect frequencies
make it possible to detect the presence of a defect
and to diagnose on what part of the bearing the
defect is. The difficulty of  defect detection lies in
the fact that the signature of a defective bearing is
spread across a wide frequency band and hence can
be easily masked by noise. Its spectrum consists of
of a  series of harmonics of the characteristic defect
frequency, with the highest amplitude around the
resonance frequency. Typically the amplitude at the
characteristic defect frequency is small and not
easily  noticed. For the solution of this problem

several methods have been proposed, based either
directly on the shape of the time domain form of the
signal, or on its spectral content. Of all those
methods, the most widely accepted is the envelope
analysis [3-4]. This method includes band-pass
filtering  in a   region where there is a high signal-to-
noise ratio,  typically around a resonance, and
demodulation of the filtered signal.

 The  ringing modes of a bearing and its
supporting structure cannot easily be predicted,
because they depend on factors such as operating
condition and development of the defect. Thus, in
frequency domain methods, an intelligent selection
of the frequency band is required.

In order to overcome this problem a number of
time-frequency domain methods have been
proposed, such as the Short Time Fourier
Transform, the Wigner-Ville Distribution and the
Wavelet Transform. Wavelets have been established
as the most widespread tool in many areas of signal
processing, due to their flexibility and to their
efficient computational implementation [5]. They
have  been introduced in vibrations [6] and there are
specific case studies for bearing fault detection [7-8]
and for other machine components [9]. In many
cases the application of wavelets has been combined
and enriched by using additional features, such as
Gaussian/exponential-enveloped functions [10], or
de-noising methods [11].

In this paper a method is proposed, which uses a
shifted wavelet filter  for rolling element bearing
fault diagnosis. Prediction of the resonant
frequencies is not required, minimizing the



interventions by the end user.  In chapter 2 a brief
review of the basics of the wavelet theory with
emphasis on the wavelet filter design is presented. In
section 3 the implementation of the proposed
method is described.  The major parameters
affecting its performance are analyzed in section 4.
Results of the implementation  on a simulated
signal, as well as on experimental and industrial
measurements for two different types of bearing
faults are provided in section 5, verifying the
effectiveness of the method.

2  Wavelets and Shifted Wavelet Filter   
 The continuous  wavelet transform (CWT) of a

finite energy signal x(t) with the analyzing wavelet
%(t) is the convolution of x(t) with a scaled and
conjugated wavelet:
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 The wavelet coefficient W(.,b) measures the
similarity between the signal x(t) and the analyzing
wavelet %(t) at different scales as defined by the
parameter a, and different time positions as defined
by the parameter b. The factor .–1/2 is used for
energy preservation. Equation (1)  indicates that the
wavelet analysis is a time-frequency analysis.
Alternatively the wavelet transform can be also
considered as a special filtering operation as it is
implied by the following equation
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where X(f) and �(f) are the Fourier transforms of
x(t) and %(t) respectively, and F-1 denotes the
Inverse Fourier Transform.   

Gauss enveloped oscillations are among the most
widely used wavelet  functions:
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where c is a constant typically chosen as   F 1��1/2.
The Fourier Transform of the analyzing function of
Eq.(3) is a real valued Gaussian shaped window:
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where  f0  is the center frequency of the window
and 1  determines its width. Thus, the corresponding
frequency band covered by the window is practically
limited in the range 

0 0
[ 2 , 2]f fσ σ− + . The

parameter 1 balances the width of the wavelet
window in the time and in the frequency domain.

  The  shifted  wavelet family in this paper,  uses
wavelets, whose shape in the frequency domain is
defined by Eq. (4). The center frequency fi of the the

wavelets can be varied, but their frequency
bandwidth remains unchanged, as indicated by the
subsequent Equations (5) and (6 )
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 For a specific center frequency fi, a complex signal
Ws(fi,2) results in the time domain, which, in view of
Equation (7) is considered to be analytic, since the
function  �� is real and well localized  for
appropriate values of 1. Figure 1 shows an example
of  shifted  wavelets in the frequency domain. The
similarity between the shape of the used wavelet and
the typical impact generated transients, renders it an
effective tool in magnifying and identifying impact
components hidden in signals.
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Figure 1. An example of shifted
Gauss enveloped wavelet windows.

3 The Diagnosis Procedure
As previously mentioned, whenever a defect

present in one surface of a bearing strikes another
surface, an impact results, exciting the resonances of
the bearing and of the overall mechanical system.
Thus, the pulsation generated by rolling bearing
defects, excites vibration at characteristic defect
frequencies as well as a high-frequency response in
the overall machine structure. In rolling element
bearings, the interesting diagnostic information is
contained in the repetition frequency of the impacts,
rather than in their overall frequency content. The
objective of the  proposed approach is to isolate the
low-frequency information of the measured signal,
that contains the percussive frequencies caused by
the bearing defect.
The  wavelet of Eq.3 can provide a quite suitable
and effective tool towards this direction.

1. As a first step for the implementation of the
proposed method Eq. (7) is applied, using a discrete
signal x(j) j=1,…,M, where M is the number of



samples of the signal. A complex matrix W is thus
formed

 { }*-1( , ) ( ) ( )iW i j F X f � I=                                      (8)

Each row i of this matrix corresponds to a specific
center frequency fi, while each column j corresponds
to a different time instant. The real part of each  row
i of the matrix W is in principle the bandpass filtered
signal around a specific  frequency fi, and contains
more interesting diagnostic information, when fi  is
close to a resonant frequency.

2. A matrix Cw is formed, based on the real parts
of the elements of the matrix  W.
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3. A matrix Rw is formed by squaring   the
elements of the matrix Cw  as follows:
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Each row of the matrix of the matrix Rw represents
the squared bandpass filtered signal around one
center frequency fi.

 4. A matrix Pw is formed. Each row Pw,i of the
matrix Pw is the  power spectrum of each row Rw,i of
the matrix Rw.
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w iR denotes the power spectrum of a row

Rw,i.The length of each row  Pw,i of the matrix Pw is
M/2, where M is the length of the discrete signal
x(j), but actually a much smaller number K(<M) of
elements of each row is necessary to be kept, since
the interesting diagnostic information has been
moved to the low frequency region.

5. An average power spectrum Pav is formed by
adding the elements of each column of the matrix Pw
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where k=1,…,K
Alternatively the autocorrelation functions of the
rows of the matrix  Rw may be used instead of the
power spectra.

6. The spectrum Pav is inspected. The presence of
a characteristic defect frequency indicates the
presence of the corresponding fault.
  The method is summarized in Fig.2. The basic idea
is that the rectification generates  sum and difference
frequencies  as well as double frequencies.  The
difference frequencies appear in the low frequency

region of the spectrum of the rectified signal.  If
modulation exists, the modulating frequencies will
dominate the low frequency region. In the case of a
rolling element bearing with a defect, the successive
impacts produce a series of impulse responses which
may be amplitude modulated as a result of the
passage of the fault through the load zone or of the
varying transmission path between the impact point
and the vibration measurement point. The spectrum
of such a signal would consist of a harmonic series
of frequency components spaced at the bearing
defect frequency with the highest amplitude around
the resonance frequency. Thus, the same modulation
effect exists in all  the frequency bands, being more
evident in the resonance bands.  The squaring
process in Eq.10 causes a frequency shift   to the
low frequency region. The addition of the elements
of each column of matrix Pw in Eq. (12) magnifies
the  modulating frequencies, while other frequency
components fade. This happens because the
modulating frequencies are concentrated on specific
columns of the matrix Pw.

4  Parameter Selection
The sampling rate determines the total frequency

bandwidth. This bandwidth should be selected as

 

A discrete signal is obtained. The 
parameters of the wavelet analysis are 
selected. 

Time-frequency representation of the 
discrete signal . A complex matrix W 
is produced.  

Squaring of the real parts of the time 
frequency representation. A real  
matrix Rw is produced. 

Power Spectra of each row of the real 
matrix. A matrix  Pw is produced 

Sum of each column of the power 
spectra matrix Pw. Inspection of the 
resulting spectrum for the presence of 
characteristic defect frequencies. 

Figure 2. The diagnostic procedure using
shifted wavelet filter



high as necessary, in order to include a necessary
number of structural natural frequencies, excited by
the characteristic impulses of the bearing defect.
Thus, the measured signal includes all the relevant
information necessary for allowing the fault features
to be properly exposed.

The parameters N, f0,, fh  in Equations (5-7) are
chosen in such a way, that the center frequencies of
the first and last wavelet correspondingly comply to
the typical values of 0.8fNyq and 0.2fNyq, where fNyq  is
the Nyquist rate. Thus, a frequency range  [0.2fNyq,
0.8fNyq] is scanned in intervals determined by the
choice of N. The lower limit of this range must be
high enough to suppress low frequency components
due to misalignment, unbalance etc. Besides, the
upper limit of this range, namely the center
frequency of the first wavelet window, must be
sufficiently lower than the Nyquist rate, in order to
avoid frequency folding when applying squaring in
Eq.(10).

The weighting parameter 1 in Eq.(6)   determines
the width of the Gaussian window of the shifted
filter. The width of the Gaussian window determines
the number of harmonics of the characteristic ball
pass frequency that will be observed in the final
spectrum.  The characteristic defect frequencies of a
bearing depend  on the rotor frequency FR. For
example the BPFI (Ball Pass Frequency Outer Race)
of a bearing is  rFR, where r is a constant, which
depends on the geometrical characteristics of the
bearing. The values of  r are  known  for each   type
of bearing and in a general case   r=10 is proposed
as an approximation. Usually  two or three
harmonics of the characteristic defect frequency are
expected for bearing fault diagnosis.  So the value of
1 should satisfy:
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where nh determines the number of the expected
harmonics of the characteristic defect frequency.
The value of N can be estimated if an overlap
coefficient nov is assumed, according to N= 0.6nov /1
( the nearest integer). Large values of the number N
result in smaller frequency intervals and thus in a
greater possibility that the center frequency of a
wavelet exactly coincides with a resonant frequency.
A value of nov =1.3  is  proposed as a compromise
between accuracy and computational effort.

 5  Experiments
The method is first tested on a simulated impulse

train. Each impulse is assumed to be modulated by a
single harmonic frequency with an exponential

decay. This signal can be considered as a simulation
of a signal resulting from a rolling element bearing
with a fault on the outer race. The impact repetition
frequency (BPFO) is assumed to be 120 Hz and the
natural frequency excited is assumed to be 3 kHz
The sampling rate is assumed 16384 Hz. The

resulting simulated waveform, is shown in   Fig.
3(a). Figure 3(b) presents the signal after adding  a
significant level of white Gaussian noise, and two
discrete frequencies 20 Hz and 130 Hz  in order to
simulate low frequency effects. In Fig.4, a) the
spectrum of the simulated noisy signal and b) the
spectrum of its envelope are illustrated. The
information regarding the impulse sequence can not
be detected, because it is masked by the additive
noise and the low frequencies. In Fig.5 the spectrum
obtained by the proposed procedure is dominated by
the assumed repetition frequency of the impacts
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Figure 3. a) A simulated pulse train b) The
simulated pulse train  with additive noise and
discrete low frequencies.
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Figure 4. a) Spectrum of the simulated signal of
Fig.3 (b).  b) Spectrum of the envelope of the
simulated signal



(=120 Hz) and its harmonics. The interesting
diagnostic information  has been detected.

    Two characteristic experimental cases are also
presented, each one been typical of a vibration
response, corresponding to a different type of
bearing fault. In all cases, the measuring device was
based on a Pentium II/266MHz portable computer,
equipped with a PCMCIA DAQCard-1200 data
acquisition card from National Instruments. This is
an 8-channel software-configurable 12-bit data
acquisition card, with a total sampling rate capacity
of 100KHz. A B&K type 8325 accelerometer was
used, with a sensitivity of 97.3 mV/g and a dynamic
range of 1 Hz to 10 kHz. The code of the algorithm
that was used in the data  acquisition procedure has
been developed under the LabVIEW programming
environment of National Instruments. Case A
presents an outer race fault and case B an inner race
fault. The measurement in case A was conducted on
an industrial   motor bearing and in case B the
measurement was conducted on a machinery fault
simulator.

The bearing examined in Case A is of type
6324MC3 manufactured by SKF. The rotor speed is
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Figure 5. Spectrum of the simulated signal of
Fig.3(b) using the shifted wavelet filter
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Figure 6. a) Time waveform and
b)spectrum of the vibration response of a
outer race fault signal.
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Figure 8. a) Time waveform and b) spectrum, of
a vibration signal measured on a bearing with
inner race fault.
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Figure 7. Spectrum of the outer race fault
signal using shifted wavelet filter

Figure 9. Spectrum of the inner race
fault signal using shifted wavelet filter.



about 1,500 rpm and the characteristic Ball Passing
Frequency Outer race (BPFO ) is approximately 78
Hz. The sampling frequency of the measurment was
20 kHz.   Figure 6 presents, (a)  the measured
acceleration signal and (b)   the spectrum of the
measured signal. The proposed procedure is applied
and the spectrum obtained is illustrated in Fig.7. It is
dominated by the characteristic defect frequency
BPFO and a harmonic. The fault has been identified.

The bearing examined in Case B consists of 8
balls, has a ball diameter equal to 0.2813 inches, a
pitch diameter equal to 1.1228 inches and a contact
angle equal to 0 deg. A fault on the inner race was
produced. The shaft rotation frequency was about 36
Hz. The sampling frequency of the measurement
was 16394 Hz. Figure 8 presents, a) a part of the
time waveform and b) the spectrum of the measured
signal. Although a “spiky” behavior is observable in
the signal,  the nature of the fault cannot be
identified without further processing. The proposed
method is applied and the obtained spectrum is
illustrated in Fig.9. The shaft rotation frequency its
harmonics and the characteristic defect frequency
(BPFI=181Hz) are dominating the spectrum.  In this
case, a strong modulation effect by the shaft rotation
frequency is observed, indicating a severe  inner
race defect.

4 Conclusion
The exploitation of the underlying physical

concepts of the modulation mechanism and of the
time-frequency localization capabilities of the used
wavelet, can lead to an effective method being able
to effectively identify the nature of rolling element
bearing faults. In all cases, the spectrum obtained,
contained the  corresponding necessary diagnostic
information.

 The implementation of the method can be
conducted in an almost automatic way, with the
minimal possible degree of user intervention. It can
be easily implemented for on line applications.

The method provides a consistent algorithm for
detection of localized defects in rolling element
bearings and allows the diagnosis of the locations of
the defects, but is still a qualitative approach.
Further work is needed for a quantitative
application.
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